Potential health benefits of Cucurbita ficifolia: An updated review

Main Article Content

Dhananjay Yadav
Pallavi Singh Chauhan
Meerambika Mishra
Minseok Kwak

Keywords

Cucurbita ficifolia, antidiabetic properties, anti-inflammatory properties, hypolipidemic activity

Abstract

Plant-based medicines are widely used in the treatment of type 2 diabetes and its complications. Among them, pumpkin is one of the popular edible plants which are consumed as vegetables. Recent data suggested that pumpkin has significant medicinal properties that can be utilized in the therapy of diabetes and to lower down associated morbidity. The presence of unique natural edible substances in the pumpkin which includes phytochemicals and antioxidants. Several potential medical benefits such as hepatoprotective, anti-cancerous, antimicrobial, anti-inflammatory and antiulcer activities are also documented. The purpose of the present article is to discourse the antidiabetic potentials and lipid-lowering properties of pumpkin which may convey further research and a clinical trial with this plant for the betterment of mankind. Additionally, the review insight a short description on distribution, botanical and physical characteristics, ecology and nutritional values.

Abstract 1703 | PDF Downloads 861

References

1. Choudhury H, Pandey M, Hua CK et al. An update on natural compounds in the remedy of diabetes mellitus: A systematic review. Journal of traditional and complementary medicine 2017; 8: 361-76.
2. Chang CLT, Lin Y, Bartolome AP, Chen Y-C, Chiu S-C, Yang W-C. Herbal therapies for type 2 diabetes mellitus: chemistry, biology, and potential application of selected plants and compounds. Evidence-based complementary and alternative medicine : eCAM 2013; 2013: 378657-.
3. Shukia R, Sharma S, Puri D, Prabhu K, Murthy P. Medicinal plants for treatment of diabetes mellitus. Indian Journal of Clinical Biochemistry 2000; 15: 169-77.
4. Petrovska BB. Historical review of medicinal plants' usage. Pharmacogn Rev 2012; 6: 1-5.
5. Ehrlich S. Herbal Medicine (University of Maryland Medical Center); 2013.
6. Choudhury H, Pandey M, Hua CK et al. An update on natural compounds in the remedy of diabetes mellitus: A systematic review. Journal of traditional and complementary medicine 2018; 8: 361-76.
7. Kesavadev J, Saboo B, Sadikot S et al. Unproven Therapies for Diabetes and Their Implications. Adv Ther 2017; 34: 60-77.
8. Dhiman RK, Chawla YK. Herbal medicines for liver diseases. Dig Dis Sci 2005; 50: 1807-12.
9. Jain A, Mishra M, Yadav D et al. Evaluation of the antihyperglycemic, antilipidemic and antioxidant potential of Cucurbita ficifolia in human type 2 diabetes. Progress in Nutrition 2018; 20: 191-8.
10. Yadav D, Cho K-H. Preventive and therapeutic aspects of selected herbal medicines in diabetes mellitus. Progress in Nutrition 2017; 19: 117-26.
11. Yamaguchi M. World vegetables. AVI, Westport 1983.
12. Whitaker TW, Davis GN. Cucurbits. Botany, cultivation, and utilization. Cucurbits Botany, cultivation, and utilization 1962.
13. Mukherjee S, Shaw A, Ganguly S, Ganguly T, Saha P. Amarinin: A new growth inhibitor from Luffa amara. Plant and cell physiology 1986; 27: 935-8.
14. Hodgkinson AD, Bartlett T, Oates PJ, Millward BA, Demaine AG. The Response of Antioxidant Genes to Hyperglycemia Is Abnormal in Patients With Type 1 Diabetes and Diabetic Nephropathy. Diabetes 2003; 52: 846-51.
15. Kurutas EB. The importance of antioxidants which play the role in cellular response against oxidative/nitrosative stress: current state. Nutrition journal 2016; 15: 71-.
16. Oguntibeju OO. Type 2 diabetes mellitus, oxidative stress and inflammation: examining the links. International journal of physiology, pathophysiology and pharmacology 2019; 11: 45-63.
17. Pandey A, Tripathi P, Pandey R, Srivatava R, Goswami S. Alternative therapies useful in the management of diabetes: A systematic review. Journal of pharmacy & bioallied sciences 2011; 3: 504-12.
18. Chaudhury A, Duvoor C, Reddy Dendi VS et al. Clinical Review of Antidiabetic Drugs: Implications for Type 2 Diabetes Mellitus Management. Frontiers in endocrinology 2017; 8: 6-.
19. Riddle MC. Modern Sulfonylureas: Dangerous or Wrongly Accused? Diabetes Care 2017; 40: 629-31.
20. McCreight LJ, Bailey CJ, Pearson ER. Metformin and the gastrointestinal tract. Diabetologia 2016; 59: 426-35.
21. Karimi A, Majlesi M, Rafieian-Kopaei M. Herbal versus synthetic drugs; beliefs and facts. Journal of nephropharmacology 2015; 4: 27-30.
22. Zhang J, Onakpoya IJ, Posadzki P, Eddouks M. The safety of herbal medicine: from prejudice to evidence. Evidence-based complementary and alternative medicine : eCAM 2015; 2015: 316706-.
23. Mahmoodpoor A, Medghalchi M, Nazemiyeh H, Asgharian P, Shadvar K, Hamishehkar H. Effect of Cucurbita Maxima on Control of Blood Glucose in Diabetic Critically Ill Patients. Advanced pharmaceutical bulletin 2018; 8: 347-51.
24. Acosta-Patino JL, Jimenez-Balderas E, Juarez-Oropeza MA, Diaz-Zagoya JC. Hypoglycemic action of Cucurbita ficifolia on Type 2 diabetic patients with moderately high blood glucose levels. J Ethnopharmacol 2001; 77: 99-101.
25. Xia T, Wang Q. Hypoglycaemic role of Cucurbita ficifolia (Cucurbitaceae) fruit extract in streptozotocin‐induced diabetic rats. Journal of the Science of Food and Agriculture 2007; 87: 1753-7.
26. Glew R, Glew R, Chuang L-T et al. Amino acid, mineral and fatty acid content of pumpkin seeds (Cucurbita spp) and Cyperus esculentus nuts in the Republic of Niger. Plant foods for human nutrition 2006; 61: 49-54.
27. Román RR, Lara AL, Alarcón FA, Flores JS. Hypoglycemic activity of some antidiabetic plants. Archives of medical research 1992; 23: 105-9.
28. Kumar GP, Sudheesh S, Vijayalakshmi N. Hypoglycaemic effect of Coccinia indica: mechanism of action. Planta medica 1993; 59: 330-2.
29. Koike K, Li W, Liu L, Hata E, Nikaido T. New phenolic glycosides from the seeds of Cucurbita moschata. Chem Pharm Bull (Tokyo) 2005; 53: 225-8.
30. Xiong X. Study on extraction and separation of effective composition of pumpkin polysaccharide and its glucatonic effect. Chin Tradit Patent Med 2000; 22: 563-5.
31. Xia T, Wang Q. D‐chiro‐Inositol found in Cucurbita ficifolia (Cucurbitaceae) fruit extracts plays the hypoglycaemic role in streptozocin‐diabetic rats. Journal of pharmacy and pharmacology 2006; 58: 1527-32.
32. Asgary S, Moshtaghian SJ, Setorki M et al. Hypoglycaemic and hypolipidemic effects of pumpkin (Cucurbita pepo L.) on alloxan-induced diabetic rats. African Journal of Pharmacy and Pharmacology 2011; 5: 2620-6.
33. Simpson R, Morris GA. The anti-diabetic potential of polysaccharides extracted from members of the cucurbit family: A review. Bioactive Carbohydrates and Dietary Fibre 2014; 3: 106-14.
34. Wang X, Zhang L-S, Dong L-L. Inhibitory effect of polysaccharides from pumpkin on advanced glycation end-products formation and aldose reductase activity. Food chemistry 2012; 130: 821-5.
35. Yang S, Xue-min X, Jue C, Ming K. Effect of pumpkin polysaccharide granules on glycemic control in type 2 diabetes. Central South Pharmacy 2003; 5: 006.
36. Xia T, Wang Q. Antihyperglycemic effect of Cucurbita ficifolia fruit extract in streptozotocin-induced diabetic rats. Fitoterapia 2006; 77: 530-3.
37. Bayat A, Azizi-Soleiman F, Heidari-Beni M et al. Effect of Cucurbita ficifolia and Probiotic Yogurt Consumption on Blood Glucose, Lipid Profile, and Inflammatory Marker in Type 2 Diabetes. International Journal of Preventive Medicine 2016; 7: 30.
38. Diaz-Flores M, Angeles-Mejia S, Baiza-Gutman LA et al. Effect of an aqueous extract of Cucurbita ficifolia Bouche on the glutathione redox cycle in mice with STZ-induced diabetes. J Ethnopharmacol 2012; 144: 101-8.
39. Roman-Ramos R, Almanza-Perez J, Fortis-Barrera A et al. Antioxidant and anti-inflammatory effects of a hypoglycemic fraction from Cucurbita ficifolia Bouché in streptozotocin-induced diabetes mice. The American journal of Chinese medicine 2012; 40: 97-110.
40. Jessica GG, Mario GL, Alejandro Z et al. CHEMICAL CHARACTERIZATION OF A HYPOGLYCEMIC EXTRACT FROM CUCURBITA FICIFOLIA BOUCHE THAT INDUCES LIVER GLYCOGEN ACCUMULATION IN DIABETIC MICE. African Journal of Traditional, Complementary, and Alternative Medicines 2017; 14: 218-30.
41. Alarcon-Aguilar F, Hernandez-Galicia E, Campos-Sepulveda A et al. Evaluation of the hypoglycemic effect of Cucurbita ficifolia Bouché (Cucurbitaceae) in different experimental models. Journal of Ethnopharmacology 2002; 82: 185-9.
42. Fortis-Barrera Á, García-Macedo R, Almanza-Perez J et al. Cucurbita ficifolia (Cucurbitaceae) modulates inflammatory cytokines and IFN-γ in obese mice. Canadian journal of physiology and pharmacology 2016; 95: 170-7.
43. Jiang Z, Du Q. Glucose-lowering activity of novel tetrasaccharide glyceroglycolipids from the fruits of Cucurbita moschata. Bioorganic & Medicinal Chemistry Letters 2011; 21: 1001-3.
44. Yoshinari O, Sato H, Igarashi K. Anti-Diabetic Effects of Pumpkin and Its Components, Trigonelline and Nicotinic Acid, on Goto-Kakizaki Rats. Bioscience, Biotechnology, and Biochemistry 2009; 73: 1033-41.
45. Alvarado-Vazquez PA, Grosick RL, Moracho-Vilrriales C, Ward E, Threatt T, Romero-Sandoval EA. Cytokine production capabilities of human primary monocyte-derived macrophages from patients with diabetes mellitus type 2 with and without diabetic peripheral neuropathy. J Pain Res 2019; 12: 69-81.
46. Swaroop JJ, Rajarajeswari D, Naidu JN. Association of TNF-alpha with insulin resistance in type 2 diabetes mellitus. Indian J Med Res 2012; 135: 127-30.
47. Kanety H, Feinstein R, Papa MZ, Hemi R, Karasik A. Tumor necrosis factor alpha-induced phosphorylation of insulin receptor substrate-1 (IRS-1). Possible mechanism for suppression of insulin-stimulated tyrosine phosphorylation of IRS-1. J Biol Chem 1995; 270: 23780-4.
48. Alipourfard I, Datukishvili N, Mikeladze D. TNF-α downregulation modifies Insulin Receptor Substrate 1 (IRS-1) in metabolic signaling of diabetic insulin-resistant hepatocytes. Mediators of inflammation 2019; 2019.
49. AL-Ishaq RK, Abotaleb M, Kubatka P, Kajo K, Büsselberg D. Flavonoids and their anti-diabetic effects: cellular mechanisms and effects to improve blood sugar levels. Biomolecules 2019; 9: 430.
50. Schofield J, Ho J, Soran H. Cardiovascular Risk in Type 1 Diabetes Mellitus. Diabetes therapy : research, treatment and education of diabetes and related disorders 2019; 10: 773-89.
51. Einarson TR, Acs A, Ludwig C, Panton UH. Prevalence of cardiovascular disease in type 2 diabetes: a systematic literature review of scientific evidence from across the world in 2007-2017. Cardiovasc Diabetol 2018; 17: 83.
52. Mahmoodpoor A, Medghalchi M, Nazemiyeh H, Asgharian P, Shadvar K, Hamishehkar H. Effect of Cucurbita maxima on control of blood glucose in diabetic critically ill patients. Advanced pharmaceutical bulletin 2018; 8: 347.
53. Bayat A, Jamali Z, Hajianfar H, Beni MH. Effects of Cucurbita ficifolia intake on type 2 diabetes: Review of current evidences. Shiraz E-Medical Journal 2014; 15.
54. Joseph B, Jini D. Antidiabetic effects of Momordica charantia (bitter melon) and its medicinal potency. Asian Pacific Journal of Tropical Disease 2013; 3: 93-102.
55. Ogbonna S, Ezeani I, Okafor C, Chinenye S. Association between glycemic status and thyroid dysfunction in patients with type 2 diabetes mellitus. Diabetes, metabolic syndrome and obesity: targets and therapy 2019; 12: 1113.
56. Vargas E, Sepulveda MAC. Biochemistry, Insulin Metabolic Effects. StatPearls [Internet]: StatPearls Publishing; 2019.
57. Gossell-Williams M, Lyttle K, Clarke T, Gardner M, Simon O. Supplementation with pumpkin seed oil improves plasma lipid profile and cardiovascular outcomes of female non-ovariectomized and ovariectomized Sprague-Dawley rats. Phytother Res 2008; 22: 873-7.
58. Malviya N, Jain S, Malviya S. Antidiabetic potential of medicinal plants. Acta Pol Pharm 2010; 67: 113-8.
59. Gardner D, Schwartz L, Krista M, Merimee T. Dietary pectin and glycemic control in diabetes. Diabetes Care 1984; 7: 143-6.
60. Acosta-Patino J, Jimenez-Balderas E, Juarez-Oropeza M, Dıaz-Zagoya J. Hypoglycemic action of Cucurbita ficifolia on Type 2 diabetic patients with moderately high blood glucose levels. Journal of ethnopharmacology 2001; 77: 99-101.
61. Salehi B, Capanoglu E, Adrar N et al. Cucurbits plants: A key emphasis to its pharmacological potential. Molecules 2019; 24: 1854.
62. Perez-Gutierrez RM, Estrella-Mendoza MF, Estrada JF, Marure RL. Cucurbita argyrosperma seed extract ameliorating oxidative stress in H9c2 cardiomyocytes through suppression of intracellular reactive oxygen species production. Pharmacognosy Magazine 2019; 15: 327.
63. Grzybek M, Kukula-Koch W, Strachecka A et al. Evaluation of Anthelmintic Activity and Composition of Pumpkin (Cucurbita pepo L.) Seed Extracts-In Vitro and in Vivo Studies. International journal of molecular sciences 2016; 17: 1456.

Most read articles by the same author(s)

1 2 > >>