Lichen: A comprehensive review on Lichens as a natural sources exploring nutritional and biopharmaceutical benefits

Main Article Content

Ajay Kumar Gautam
Dhananjay Yadav
Khem Chand Saini
Pramod Kumar Singh
Jun-O Jin

Keywords

Lichen, Fungi, photobiont, symbiosis, anticancer, antimicrobial, nutritional values

Abstract

Lichens are used as traditional medicines, nutritional value and have been described as a medicine in various pharmacopoeias throughout the world. Lichens are environmental biological indicators for human operations to change the ecosystem and also generate a range of distinctive secondary metabolites with varying biological potential. In addition to their prospective biological role as photoprotection, anticancer, anti-hepatotoxic, antidiabetic, allelopathic, immunomodulatory, etc. Over the past decade, interest in lichens as a source of novel bioactive molecules has been renewed and increasing. The role of secondary metabolites in lichen symbiosis and its medicinal impacts has not been well studied. This review summarizes the present status of characterization, nutritional values, and pharmaceutical properties of lichens and their applications.


 

Downloads

Download data is not yet available.
Abstract 16 | PDF Downloads 3

References

References
1. Gilbert O. Lichens: HarperCollins Publishers; 2000.
2. Anna V, Dymytrova L, Rai H, Upreti DK. Photobiont diversity of soil crust lichens along substrate ecology and altitudinal gradients in Himalayas: a case study from Garhwal Himalaya. Terricolous lichens in India: Springer; 2014. p. 73-87.
3. Brunauer G, Hager A, Grube M, Türk R, Stocker-Wörgötter E. Alterations in secondary metabolism of aposymbiotically grown mycobionts of Xanthoria elegans and cultured resynthesis stages. Plant Physiology and Biochemistry 2007; 45: 146-51.
4. Elix J, Stocker-Wörgötter E. Biochemistry and secondary metabolites. Lichen biology 1996; 1: 154-80.
5. Carlin G. On the use of chemical characters in lichen taxonomy. Graphis Scripta 1987; 1: 72-6.
6. Fehrer J, Slavíková‐Bayerová Š, Orange A. Large genetic divergence of new, morphologically similar species of sterile lichens from Europe (Lepraria, Stereocaulaceae, Ascomycota): concordance of DNA sequence data with secondary metabolites. Cladistics 2008; 24: 443-58.
7. Nelsen MP, Gargas A. Phylogenetic distribution and evolution of secondary metabolites in the lichenized fungal genus Lepraria (Lecanorales: Stereocaulaceae). Nova Hedwigia 2008; 86: 115-31.
8. Egan RS. Correlations and Non-Correlations of Chemical Variation Patterns with Lichen Morphology and Geography. The Bryologist 1986; 89: 99-110.
9. Zhou Q-M, Guo S-Y, Huang M-R, Wei J-C. A study of the genetic variability of Rhizoplaca chrysoleuca using DNA sequences and secondary metabolic substances. Mycologia 2006; 98: 57-67.
10. Gauslaa Y. Rain, dew, and humid air as drivers of morphology, function and spatial distribution in epiphytic lichens. The Lichenologist 2014; 46: 1-16.
11. Benítez Á, Prieto M, González Y, Aragón G. Effects of tropical montane forest disturbance on epiphytic macrolichens. Science of the Total Environment 2012; 441: 169-75.
12. Bates ST, Cropsey GW, Caporaso JG, Knight R, Fierer N. Bacterial communities associated with the lichen symbiosis. Appl Environ Microbiol 2011; 77: 1309-14.
13. Nash TH. Lichen biology: Cambridge University Press; 1996.
14. Kappen L. Some aspects of the great success of lichens in Antarctica. Antarctic Science 2000; 12: 314-24.
15. Schlensog M, Pannewitz S, Green T, Schroeter B. Metabolic recovery of continental antarctic cryptogams after winter. Polar biology 2004; 27: 399-408.
16. Kappen L, Schroeter B, Scheidegger C, Sommerkorn M, Hestmark G. Cold resistance and metabolic activity of lichens below 0 C. Advances in Space Research 1996; 18: 119-28.
17. Richardson DH. Reflections on lichenology: achievements over the last 40 years and challenges for the future. Canadian Journal of Botany 2002; 80: 101-13.
18. Parasyri A, Papazi A, Stamatis N et al. Lichen as Micro-Ecosystem: Extremophilic Behavior with Astrobiotechnological Applications. Astrobiology 2018; 18: 1528-42.
19. Robinson SA, Wasley J, Tobin AK. Living on the edge–plants and global change in continental and maritime Antarctica. Global Change Biology 2003; 9: 1681-717.
20. Friedmann EI. Endolithic microorganisms in the Antarctic cold desert. Science 1982; 215: 1045-53.
21. Kappen L. Ecophysiological relationships in different climatic regions. Handbook of lichenology 1988; 2: 37-100.
22. Park CH, Hong SG, Elvebakk A. Psoroma antarcticum, a new lichen species from Antarctica and neighbouring areas. Polar Biology 2018; 41: 1083-90.
23. Kranner I, Zorn M, Turk B, Wornik S, Beckett RP, Batič F. Biochemical traits of lichens differing in relative desiccation tolerance. New Phytologist 2003; 160: 167-76.
24. Aubert S, Juge C, Boisson A-M, Gout E, Bligny R. Metabolic processes sustaining the reviviscence of lichen Xanthoria elegans (Link) in high mountain environments. Planta 2007; 226: 1287-97.
25. Weissman L, Garty J, Hochman A. Characterization of enzymatic antioxidants in the lichen Ramalina lacera and their response to rehydration. Appl Environ Microbiol 2005; 71: 6508-14.
26. Ascaso C, Brown D, Rapsch S. The ultrastructure of the phycobiont of desiccated and hydrated lichens. The Lichenologist 1986; 18: 37-46.
27. Zhang T, Wei J. Survival analyses of symbionts isolated from Endocarpon pusillum Hedwig to desiccation and starvation stress. Science China Life Sciences 2011; 54: 480-9.
28. Gasulla F, Jain R, Barreno E et al. The response of A sterochloris erici (A hmadjian) S kaloud et P eksa to desiccation: a proteomic approach. Plant, cell & environment 2013; 36: 1363-78.
29. Junttila S, Laiho A, Gyenesei A, Rudd S. Whole transcriptome characterization of the effects of dehydration and rehydration on Cladonia rangiferina, the grey reindeer lichen. BMC genomics 2013; 14: 870.
30. Wang Y, Zhang X, Zhou Q, Zhang X, Wei J. Comparative transcriptome analysis of the lichen-forming fungus Endocarpon pusillum elucidates its drought adaptation mechanisms. Science China Life Sciences 2015; 58: 89-100.
31. Kranner I. Glutathione status correlates with different degrees of desiccation tolerance in three lichens. New Phytologist 2002; 154: 451-60.
32. Li H, Wei J-C. Functional analysis of thioredoxin from the desert lichen-forming fungus, Endocarpon pusillum Hedwig, reveals its role in stress tolerance. Scientific reports 2016; 6: 27184.
33. Ingolfsdottir K. Usnic acid. Phytochemistry 2002; 61: 729-36.
34. Khanuja SPS, Tiruppadiripuliyur RSK, Gupta VK et al. Methyl-β-orcinolcarboxylate from lichen (everniastrum cirrhatum) for use for the treatment of fungal infections and cancer. Google Patents; 2004.
35. Vráblíková H, McEvoy M, Solhaug KA, Barták M, Gauslaa Y. Annual variation in photoacclimation and photoprotection of the photobiont in the foliose lichen Xanthoria parietina. Journal of Photochemistry and Photobiology B: Biology 2006; 83: 151-62.
36. Claes E, Srebnik M, Lev O et al. Utilization of natural pigments from lichens, cyanobacteria, fungi and plants for sun protection. Google Patents; 2005.
37. Cohen PA, Towers GN. The anthraquinones of Heterodermia obscurata. Phytochemistry 1995; 40: 911-5.
38. Müller K. Pharmaceutically relevant metabolites from lichens. Applied Microbiology and Biotechnology 2001; 56: 9-16.
39. Burja AM, Banaigs B, Abou-Mansour E, Burgess JG, Wright PC. Marine cyanobacteria—a prolific source of natural products. Tetrahedron 2001; 57: 9347-77.
40. Oksanen I, Jokela J, Fewer DP, Wahlsten M, Rikkinen J, Sivonen K. Discovery of rare and highly toxic microcystins from lichen-associated cyanobacterium Nostoc sp. strain IO-102-I. Appl Environ Microbiol 2004; 70: 5756-63.
41. Saini KC, Nayaka S, Bast F. Diversity of Lichen Photobionts: Their Coevolution and Bioprospecting Potential. Microbial Diversity in Ecosystem Sustainability and Biotechnological Applications: Springer; 2019. p. 307-23.
42. Culberson C. Chemical and Botanical Guide to Lichen Products, Univ. North Carolina Press Chapel Hill 1969; 1970: 85-93.
43. Jacobsen E, Skjenneberg S. Some results from feeding experiments with reindeer. Biol Pap Univ Alaska Spec Rep 1975.
44. Person SJ, White RG, Luick JR, editors. Determination of nutritive value of reindeer-caribou range. Proceedings of the Second International Reindeer/Caribou Symposium 17-21 September 1979, Roros, Norway; 1980: Direktoratet for vilt og ferskvannsfisk.
45. Olafsdottir ES, Ingólfsdottir K. Polysaccharides from lichens: structural characteristics and biological activity. Planta medica 2001; 67: 199-208.
46. Ananya AK, Ahmad IZ. Cyanobacteria" the blue green algae" and its novel applications: A brief review. International Journal of Innovation and Applied Studies 2014; 7: 251.
47. Teixeira AZ, Iacomini M, Gorin PA. Chemotypes of mannose-containing polysaccharides of lichen mycobionts: a possible aid in classification and identification. Carbohydrate research 1995; 2: 309-14.
48. Hauck M, Willenbruch K, Leuschner C. Lichen substances prevent lichens from nutrient deficiency. J Chem Ecol 2009; 35: 71-3.
49. Phillips PW. Traditional knowledge. Socio-Economic Considerations in Biotechnology Regulation: Springer; 2014. p. 159-75.
50. Malhotra S, Subban R, Singh A. Lichens-role in traditional medicine and drug discovery. The Internet Journal of Alternative Medicine 2008; 5: 1-5.
51. Sheng-Ji P. Ethnobotanical approaches of traditional medicine studies: some experiences from Asia. Pharmaceutical biology 2001; 39: 74-9.
52. Kumar S, Dobos GJ, Rampp T. The significance of Ayurvedic medicinal plants. Journal of evidence-based complementary & alternative medicine 2017; 22: 494-501.
53. Wang L-s, Narui T, Harada H, Culberson CF, Culberson WL. Ethnic uses of lichens in Yunnan, China. The Bryologist 2001; 104: 345-9.
54. Upreti DK, Divakar PK, Nayaka S. Commercial and ethnic use of lichens in India. Economic botany 2005; 59: 269.
55. Kunwar RM, Shrestha KP, Bussmann RW. Traditional herbal medicine in Far-west Nepal: a pharmacological appraisal. Journal of Ethnobiology and Ethnomedicine 2010; 6: 35.
56. Devkota S, Chaudhary RP, Werth S, Scheidegger C. Indigenous knowledge and use of lichens by the lichenophilic communities of the Nepal Himalaya. Journal of Ethnobiology and Ethnomedicine 2017; 13: 15.
57. Crawford SD. Lichens used in traditional medicine. Lichen secondary metabolites: Springer; 2019. p. 31-97.
58. Saklani A, Upreti D. Folk uses of some lichens in Sikkim. Journal of ethnopharmacology 1992; 37: 229-33.
59. Shah N. Lichens of commercial importance in India. Scitech J 2014; 1: 32-6.
60. Llano GA. Economic uses of lichens. Economic Botany 1948; 2: 15.
61. Chandra S, Singh A. A lichen crude drug (chharila) from India. J Res Indian Med 1971; 6: 209-15.
62. Lal B, Upreti D, Kalakoti B. Ethnobotanical utilization of lichens by the tribals of Madhya Pradesh. Journal of Economic and Taxonomic Botany 1985; 7: 203-4.
63. Lal B. Traditional remedies for bone fracture among the tribals of Madhya Pradesh, India. Aryavaidyan 1988; 1: 190-5.
64. Pathak A, Shukla SK, Pandey A, Mishra RK, Kumar R, Dikshit A. In vitro antibacterial activity of ethno medicinally used lichens against three wound infecting genera of Enterobacteriaceae. Proceedings of the National Academy of Sciences, India Section B: Biological Sciences 2016; 86: 863-8.
65. Shah NC. Lichens of Economic Importance from the Hills of Uttar Pradesh, India. Journal of Herbs, Spices & Medicinal Plants 1998; 5: 69-76.
66. Lai B, Upreti D. Ethnobotanical notes on three Indian lichens. The Lichenologist 1995; 27: 77-9.
67. Upreti D, Negi H. Folk use of Thamnolia vermicularis (Swartz) Ach. Lata Village of Nanda Devi Biosphere Reserve Ethnobotany 1996; 8: 83-6.
68. Kaushal K, Upreti D. Parmelia spp.(lichens) in ancient medicinal plant lore of India. Economic Botany 2001; 55: 458.
69. Rai H, Khare R, Upreti DK. Lichenological studies in India with reference to terricolous lichens. Terricolous lichens in India: Springer; 2014. p. 1-20.
70. Vinayaka K, Krishnamurthy Y. Ethno-lichenological studies of Shimoga and Mysore districts, Karnataka, India. Advances in Plant Sciences 2012; 25: 265-7.
71. Kala CP. Indigenous knowledge of Bhotiya tribal community on wool dyeing and its present status in the Garhwal Himalaya, India. Current Science 2002; 83: 814-7.
72. Limbu D, Rai BK. Ethno-medicinal practices among the Limbu community in Limbuwan, Eastern Nepal. Global J Human Soc Sci 2013; 13: 6-29.
73. Ahmadjian V NS. Swedish lichens. American Swedish Historical Foundation. 1963: p. 38-47.
74. Londoño-Castañeda P, Buril M, Rego-Cunha I et al. Lichens used in the traditional medicine by the Pankararu Indigenous Community, Pernambuco-Brazil. Global Journal of Science Frontier Research: C Biological Science 2017; 17: 15-22.
75. Song WL GQ. Illustrated medicinal lichens of china. Huayu Nature Book Trade Co.Ltd, 176 pages. 2013.
76. Afolayan A, Grierson D, Kambizi L, Madamombe I, Masika P, Jäger A. In vitro antifungal activity of some South African medicinal plants. South African Journal of Botany 2002; 68: 72-6.
77. Yang Y, Bhosle SR, Yu YH et al. Tumidulin, a Lichen Secondary Metabolite, Decreases the Stemness Potential of Colorectal Cancer Cells. Molecules 2018; 23: 2968.
78. Nguyen HX, Nguyen NT, Nguyen MHK et al. Tyrosinase inhibitory activity of flavonoids from Artocarpus heterophyllous. Chemistry Central Journal 2016; 10: 1-6.
79. Fazio AT, Adler MT, Bertoni MD, Sepúlveda CS, Damonte EB, Maier MS. Lichen secondary metabolites from the cultured lichen mycobionts of Teloschistes chrysophthalmus and Ramalina celastri and their antiviral activities. Zeitschrift für Naturforschung C 2007; 62: 543-9.
80. Oh JM, Kim YJ, Gang H-S, Han J, Ha H-H, Kim H. Antimicrobial activity of divaricatic acid isolated from the lichen Evernia mesomorpha against Methicillin-Resistant Staphylococcus aureus. Molecules 2018; 23: 3068.
81. Ganesan A, Mahesh A, Sundararaj JP, Mani K, Ponnusamy P. Antihyperglycemic and anti-oxidant activity of various fraction of Parmotrema hababianum in streptozotocin-induced diabetic rat. Bangladesh Journal of Pharmacology 2016; 11: 935-9.
82. Goga M, Antreich SJ, Bačkor M, Weckwerth W, Lang I. Lichen secondary metabolites affect growth of Physcomitrella patens by allelopathy. Protoplasma 2017; 254: 1307-15.
83. Shukla I, Azmi L, Gupta SS, Upreti DK, Rao CV. Amelioration of anti-hepatotoxic effect by Lichen rangiferinus against alcohol induced liver damage in rats. Journal of Ayurveda and integrative medicine 2019; 10: 171-7.
84. Padhi S, Masi M, Panda SK et al. Antimicrobial secondary metabolites of an endolichenic Aspergillus niger isolated from lichen thallus of Parmotrema ravum. Natural product research 2018: 1-8.
85. Plaza C, Salazar C, Plaza R. In vitro analysis of antibacterial and antifungal potential of lichen species of Everniastrum cf vexans, Parmotrema blanquetianum, Parmotrema reticulatum and Peltigera laciniata. MOJ Drug Des Develop Ther 2018; 2: 126-35.
86. Siddiqi KS, Rashid M, Rahman A, Husen A, Rehman S. Biogenic fabrication and characterization of silver nanoparticles using aqueous-ethanolic extract of lichen (Usnea longissima) and their antimicrobial activity. Biomaterials research 2018; 22: 23.
87. Rafika B, Monia AA. Antibacterial Activity of the Chloroform, Acetone, Methanol and queous Extracts of Algerian Lichens. Jordan Journal of Pharmaceutical Sciences 2018; 11.
88. Shang J, Fang M, Zhang L et al. Purification and activity characterization of polysaccharides in the medicinal lichen Umbilicaria tornata from Taibai Mountain, China. Glycoconjugate journal 2018; 35: 107-17.
89. Šeklić DS, Obradović AD, Stanković MS et al. Proapoptotic and Antimigratory Effects of Pseudevernia furfuracea and Platismatia glauca on Colon Cancer Cell Lines. Food technology and biotechnology 2018; 56: 421-30.
90. Dixit A MM, Singh AN, Singh M. Antimicrobial and antifungal activity of indian lichen (usnea sps. and parmotrema sps.) against human pathogenic bacterial and fungal sps. World J Pharm and Pharm Sci 2018: 711-20.
91. Maurya IK, Singh S, Tewari R, Tripathi M, Upadhyay S, Joshi Y. Antimicrobial activity of Bulbothrix setschwanensis (Zahlbr.) Hale lichen by cell wall disruption of Staphylococcus aureus and Cryptococcus neoformans. Microbial pathogenesis 2018; 115: 12-8.
92. Aydin S, Kinalioğlu K, Sökmen BB. Antioxidant, anti-urease and anti-elastase activities of Usnea longissima Ach. Bangladesh Journal of Botany 2018; 47: 429-35.
93. Tatipamula VB, Vedula GS. Anti-inflammatory properties of Dirinaria consimilis extracts in albino rats. Journal of Biomedical Sciences 2017; 4: 3-8.
94. Aoussar N, Rhallabi N, Mhand RA et al. Seasonal variation of antioxidant activity and phenolic content of Pseudevernia furfuracea, Evernia prunastri and Ramalina farinacea from Morocco. Journal of the Saudi Society of Agricultural Sciences 2018.
95. Ma J, Cao B, Liu C et al. Actinofuranones DI from a Lichen-Associated Actinomycetes, Streptomyces gramineus, and Their Anti-Inflammatory Effects. Molecules 2018; 23: 2393.
96. Zhao L, Kim J-C, Paik M-J, Lee W, Hur J-S. A multifunctional and possible skin UV protectant,(3R)-5-hydroxymellein, produced by an endolichenic fungus isolated from Parmotrema austrosinense. Molecules 2017; 22: 26.
97. Millot M, Girardot M, Dutreix L, Mambu L, Imbert C. Antifungal and anti-biofilm activities of acetone lichen extracts against Candida albicans. Molecules 2017; 22: 651.
98. Zhou R, Yang Y, Park S-Y et al. The lichen secondary metabolite atranorin suppresses lung cancer cell motility and tumorigenesis. Scientific reports 2017; 7: 1-13.
99. Legouin B, Dévéhat L-L, Ferron S et al. Specialized metabolites of the lichen Vulpicida pinastri act as photoprotective agents. Molecules 2017; 22: 1162.
100. Hengameh P, Rashmi S, Rajkumar H. In vitro inhibitory activity of some lichen extracts against α-amylase enzyme. European Journal of Biomedical and Pharmaceutical Sciences 2016; 3: 315-8.
101. Yu X, Guo Q, Su G et al. Usnic acid derivatives with cytotoxic and antifungal activities from the lichen Usnea longissima. Journal of natural products 2016; 79: 1373-80.
102. Basile A, Rigano D, Loppi S et al. Antiproliferative, antibacterial and antifungal activity of the lichen Xanthoria parietina and its secondary metabolite parietin. International journal of molecular sciences 2015; 16: 7861-75.
103. Vu TH, Le Lamer A-C, Lalli C et al. Depsides: lichen metabolites active against hepatitis C virus. PloS one 2015; 10.
104. Goel M, Rani A, Dureja P, Uniyal P. Investigation of Allelopathic Potentiality of the Himalyan Lichen Parmelia reticulata Tayl. against Phalaris minor retz. APCBEE procedia 2014; 9: 140-4.
105. Zhang Y, Shi J, Zhao Y, Cui H, Cao C, Liu S. An investigation of the anti-diabetic effects of an extract from Cladonia humilis. Pakistan journal of pharmaceutical sciences 2012; 25: 509-12.
106. Peres MTLP, Mapeli AM, Faccenda O, Gomes AT, Honda NK. Allelopathic potential of orsellinic acid derivatives. Brazilian Archives of Biology and Technology 2009; 52: 1019-26.
107. Resende DI, Pereira-Terra P, Inácio ÂS et al. Lichen xanthones as models for new antifungal agents. Molecules 2018; 23: 2617.
108. Bate PNN, Orock AE, Nyongbela KD, Babiaka SB, Kukwah A, Ngemenya MN. In vitro activity against multi-drug resistant bacteria and cytotoxicity of lichens collected from Mount Cameroon. Journal of King Saud University - Science 2020; 32: 614-9.
109. Tozatti MG, Ferreira DS, Flauzino LGB et al. Activity of the Lichen Usnea steineri and its Major Metabolites against Gram–positive, Multidrug–resistant Bacteria. Natural product communications 2016; 11: 1934578X1601100419.
110. Briganti S, Camera E, Picardo M. Chemical and instrumental approaches to treat hyperpigmentation. Pigment cell research 2003; 16: 101-10.
111. Behera B, Adawadkar B, Makhija U. Tissue-culture of selected species of the Graphis lichen and their biological activities. Fitoterapia 2006; 77: 208-15.
112. Kim M-S, Cho H-B. Melanogenesis inhibitory effects of methanolic extracts of Umbilicaria esculenta and Usnea longissima. Journal of Microbiology (Seoul, Korea) 2007; 45: 578-82.
113. Stamp N. Out of the quagmire of plant defense hypotheses. The Quarterly review of biology 2003; 78: 23-55.
114. Macias FA, Molinillo JM, Varela RM, Galindo JC. Allelopathy—a natural alternative for weed control. Pest Management Science: formerly Pesticide Science 2007; 63: 327-48.
115. Gazzano C, Favero-Longo SE, Iacomussi P, Piervittori R. Biocidal effect of lichen secondary metabolites against rock-dwelling microcolonial fungi, cyanobacteria and green algae. International Biodeterioration & Biodegradation 2013; 84: 300-6.
116. Pierfrancesco M, Chen H, Xing-Hua G, Gazzaniga G, Morganti G. Natural Ingredient for advanced neurocosmetics. Personal Care Europe 2013; 6: 19-24.
117. Clark A, Hessler JL. Skin Care. Facial Plast Surg Clin North Am 2015; 23: 285-95.
118. Heber U, Soni V, Strasser RJ. Photoprotection of reaction centers: thermal dissipation of absorbed light energy vs charge separation in lichens. Physiologia plantarum 2011; 142: 65-78.
119. O’Shea R, Dasarathy S, McCullough A. Practice Guideline Committee of the American Association for the Study of Liver D, Practice Parameters Committee of the American College of G. Alcoholic liver disease. Hepatology 2010; 51: 307-28.
120. Baraona E, Lieber CS. Effects of ethanol on lipid metabolism. Journal of lipid research 1979; 20: 289-315.
121. Scirpa P, Scambia G, Masciullo V et al. [A zinc sulfate and usnic acid preparation used as post-surgical adjuvant therapy in genital lesions by Human Papillomavirus]. Minerva Ginecol 1999; 51: 255-60.
122. Ingólfsdóttir K, Kook Lee S, Bhat KP et al. Evaluation of selected lichens from Iceland for cancer chemopreventive and cytotoxic activity. Pharmaceutical biology 2000; 38: 313-7.
123. Zeytinoglu H, Incesu Z, Tuylu BA, Turk A, Barutca B. Determination of genotoxic, antigenotoxic and cytotoxic potential of the extract from lichen Cetraria aculeata (Schreb.) Fr. in vitro. Phytotherapy Research: An International Journal Devoted to Pharmacological and Toxicological Evaluation of Natural Product Derivatives 2008; 22: 118-23.
124. Řezanka T, Dembitsky VM. The colleflaccinosides, two chiral bianthraquinone glycosides with antitumor activity from the lichen Collema flaccidum collected in Israel and Russia. Natural product research 2006; 20: 969-80.
125. Ranković B, Kosanić M, Stanojković T, Vasiljević P, Manojlović N. Biological activities of Toninia candida and Usnea barbata together with their norstictic acid and usnic acid constituents. International journal of molecular sciences 2012; 13: 14707-22.
126. Hong J-M, Suh S-S, Kim TK et al. Anti-cancer activity of lobaric acid and lobarstin extracted from the antarctic lichen Stereocaulon alpnum. Molecules 2018; 23: 658.
127. Bhutkar MA, Bhinge SD, Randive DS, Wadkar GH, Todkar SS. In vitro studies on alpha amylase inhibitory activity of some indigenous plants. Mod Appl Pharm Pharmacol 2018; 2018: 1-5.
128. Freysdottir J, Omarsdottir S, Ingólfsdóttir K, Vikingsson A, Olafsdottir E. In vitro and in vivo immunomodulating effects of traditionally prepared extract and purified compounds from Cetraria islandica. International immunopharmacology 2008; 8: 423-30.
129. Damonte EB, Coto CE. Treatment of arenavirus infections: from basic studies to the challenge of antiviral therapy. Adv Virus Res 2002; 58: 125-55.
130. Rotz LD, Khan AS, Lillibridge SR, Ostroff SM, Hughes JM. Public health assessment of potential biological terrorism agents. Emerging infectious diseases 2002; 8:

Most read articles by the same author(s)