Dual X-ray Absorbtiometry Can Predict Total and Regional Body Fat Percentage: A Comparative Study With Skinfold Thickness and Body Mass Index For Adult Women Dual X-ray Absorbtiometry Body Fat Percentage Skinfold Thickness BMI Adult Women

Main Article Content

Nigar Küçükkubaş
Feza Korkusuz

Keywords

Dual X Ray Absorbtiometry, women, body composition, skinfold thickness, regression equation

Abstract

Background and Purpose: Distribution and volume of total and regional fat and fat percentage is important to monitor diet and exercise in adult women. A prediction formula for adult women by examining Body Mass Index (BMI), quotas obtained from Skinfold Thickness (ST) sites and body composition compartments determined by using Dual X-ray Absorptiometry (DXA) was aimed. Participants and Method: Sixty female participants (average age 46.4 ± 3.2 years; Range 40 - 55 years) were assessed by using DXA (Lunar Model DPX) to determine body fat percentage (%BFDXA), Fat Mass (FMDXA), and Lean Body Mass (LBMDXA). Skinfold thickness sites were measured by using Skinfold Caliper (Holtain Caliper, UK). Results: A low positive correlation coefficients was found between %BF obtained from DXA and quota of suprailium ST (r=0.30 p<0.05). The highest correlation coefficient was between %BFDXA and BMI: r = 0.83 (p<0.001). Three different Regression Equations were derived to predict %BF: BMI Model %BF = 7.162 + 0.23 * BMI (R2=0.68 and SEE=2.892); Anthropometric 1, %BF = 7.346 + 0.835 * BMI + 0.169 * LEST (R2 = 0.80 and SEE = 2.341); Anthropometric 2, %BF = 8.179 + 0.714 * BMI + 0.167 * LEST + 0.114 * Chest ST (R2 = 0.80 and SEE = 2.341). Analysis of variance and confidence intervals and Bland & Altman Analysis were used to determine the validity. Intra Class Correlation (ICC) was used to determine reliability of the prediction equation. Discussion: The %BFDXA findings of the present study was 38.29 ± 5.09 and %BF by Generalized Equation was 35.69 ± 4.79, are like in underestimating those in the previous scientific studies. Anthropometry Model 1, has predictors of BMI, is more advantegous having the least ST sites (mid-thigh and medial calf) than anthropometry Model 2.  Otherwise BMI model is recommended.  Conclusion: BMI, LEST (sum of the medial calf and mid-thigh) and chest ST values but not other ST quotas were good predictors for prediction equations. Derived models in predicting %BF using DXA of BMI model, Anthropometric 1, Anthropometric 2 were moreover valid and reliable. While the Generalized Equation was valid, it is not reliable for the adult women population.

Downloads

Download data is not yet available.
Abstract 44 | PDF Downloads 7

References

1. Atik, O. S., Gunal, I., & Korkusuz, F. (2006). Burden of osteoporosis. Clinical Orthopaedics and Related Research®, 443, 19-24.
2. Baumgartner, R. N. (1993). Body composition in elderly persons: a critical review of needs and methods. Progress in food & nutrition science, 17(3), 223-260.
3. Baumgartner, R. N., Stauber, P. M., McHugh, D., Koehler, K. M., & Garry, P. J. (1995). Cross-sectional age differences in body composition in persons 60+ years of age. The Journals of Gerontology Series A: Biological Sciences and Medical Sciences, 50(6), M307-M316.
4. Kyle, U. G., Genton, L., Slosman, D. O., & Pichard, C. (2001). Fat-free and fat mass percentiles in 5225 healthy subjects aged 15 to 98 years. Nutrition, 17(7-8), 534-541.
5. Sternfeld, B., Bhat, A. K., Wang, H., Sharp, T., & Charles P, Quesenberry, J. R. (2005). Menopause, physical activity, and body composition/fat distribution in midlife women. Medicine & Science in Sports & Exercise, 37(7), 1195-1202.
6. Sowers, M., Zheng, H., Tomey, K., Karvonen-Gutierrez, C., Jannausch, M., Li, X., ... & Symons, J. (2007). Changes in body composition in women over six years at midlife: ovarian and chronological aging. The Journal of Clinical Endocrinology & Metabolism, 92(3), 895-901.
7. Chandra Babu, G. & Shantharajah, S.P. Neural Comput & Applic (2019). Optimal body mass index cutoff point for cardiovascular disease and high blood pressure 31: 1585. https://doi.org/10.1007/s00521-018-3484-3
8. Xia, J. Y., Lloyd-Jones, D. M., & Khan, S. S. (2019). Association of body mass index with mortality in cardiovascular disease: New insights into the obesity paradox from multiple perspectives. Trends in cardiovascular medicine, 29(4), 220-225.
9. Pasquali, R., Casanueva, F., Haluzik, M., van Hulsteijn, L., Ledoux, S., Monteiro, M. P., ... & Dekkers, O. M. (2020). European Society of Endocrinology Clinical Practice Guideline: Endocrine work-up in obesity. European Journal of Endocrinology, 182(1), G1-G32.
10. Han, T.S., Al-Gindan, Y.Y., Govan, L. et al. Associations of BMI, waist circumference, body fat, and skeletal muscle with type 2 diabetes in adults. Acta Diabetol 56, 947–954 (2019) doi:10.1007/s00592-019-01328-3
11. Balagopal, P., Proctor, D., & Nair, K. S. (1997). Sarcopenia and hormonal changes. Endocrine, 7(1), 57-60.
12. Collins, B. C., Laakkonen, E. K., & Lowe, D. A. (2019). Aging of the musculoskeletal system: How the loss of estrogen impacts muscle strength. Bone, 123, 137-144.
13. Tomlinson, D. J., Erskine, R. M., Morse, C. I., & Onambélé, G. L. (2019). Body fat percentage, body mass index, fat mass index and the ageing bone: their singular and combined roles linked to physical activity and diet. Nutrients, 11(1), 195.; https://doi.org/10.3390/nu11010195
14. Ofori, E. K., Conde Alonso, S., Correas‐Gomez, L., Carnero, E. A., Zwygart, K., Hugues, H., ... & Amati, F. (2019). Thigh and abdominal adipose tissue depot associations with testosterone levels in postmenopausal females. Clinical endocrinology, 90(3), 433-439.
15. Marra, M., Sammarco, R., De Lorenzo, A., Iellamo, F., Siervo, M., Pietrobelli, A., ... & Contaldo, F. (2019). Assessment of Body Composition in Health and Disease Using Bioelectrical Impedance Analysis (BIA) and Dual Energy X-Ray Absorptiometry (DXA): A Critical Overview. Contrast Media & Molecular Imaging, 2019.
16. Svendsen, O. L., Hassager, C., & Christiansen, C. (1995). Age-and menopause-associated variations in body composition and fat distribution in healthy women as measured by dual-energy X-ray absorptiometry. Metabolism, 44(3), 369-373.
17. Greendale, G. A., Sternfeld, B., Huang, M., Han, W., Karvonen-Gutierrez, C., Ruppert, K., ... & Karlamangla, A. S. (2019). Changes in body composition and weight during the menopause transition. JCI insight, 4(5).
18. Irez, G. B., Ozdemir, R. A., Evin, R., Irez, S. G., & Korkusuz, F. (2011). Integrating Pilates exercise into an exercise program for 65+ year-old women to reduce falls. Journal of sports science & medicine, 10(1), 105-111.
19. Panis, C.; Herrera, A.; Aranome, A.M.F.; Victorino, V.J.; Michelleti, P.L.; Morimoto, H.K.; Cecchini, A.L.; Simao, A.N.C.; Cecchini, R. Clinical insights from adiponectin analysis in breast cancer patients reveal its anti-inflammatory properties in non-obese women. Mol. Cell. Endocrinol. 2014, 382, 190–196.
20. Wayne, D., Ojha, S., Budge, H., & Symonds, M. E. (2020). Origins of Adipose Tissue and Adipose Regulating Hormones. In Maternal-Fetal and Neonatal Endocrinology (pp. 663-672). Academic Press.
21. Legård, G. E., & Pedersen, B. K. (2019). Muscle as an endocrine organ. In Muscle and Exercise Physiology (pp. 285-307). Academic Press.
22. Abe, T., Bell, Z. W., Dankel, S. J., Wong, V., Spitz, R. W., & Loenneke, J. P. (2018). The Water-Fat Separation Method for Determining the Fat-free Component of Subcutaneous Adipose Tissue in Humans: A Brief Review. Journal of Clinical Densitometry. https://doi.org/10.1016/j.jocd.2018.12.007
23. Abe T, Dankel J, and Loenneke JP. Body fat loss automatically reduces lean mass by changing the fat‐free component of adipose tissue. Obesity, 2019; 27(3):357-358.
24. Glüer, C. C. (2017). 30 years of DXA technology innovations. Bone, 104, 7-12.
25. Lind, L., Kullberg, J., Ahlström, H., Michaëlsson, K., & Strand, R. (2019). Proof of principle study of a detailed whole-body image analysis technique, “Imiomics”, regarding adipose and lean tissue distribution. Scientific reports, 9(1), 7388.
26. Jackson, A. S., Pollock, M. L., & Ward, A. N. N. (1980). Generalized equations for predicting body density of women. Medicine and science in sports and exercise, 12(3), 175-181.
27. Furushima, T., Miyachi, M., Iemitsu, M., Murakami, H., Kawano, H., Gando, Y., ... & Sanada, K. (2017). Development of prediction equations for estimating appendicular skeletal muscle mass in Japanese men and women. Journal of physiological anthropology, 36(1), 34.
28. Tahara, Y., Yukawa, K., Tsunawake, N., Saeki, S., Nishiyama, K., Urata, H., ... & Moji, K. (1995). Body density assessment utilizing skinfold thickness and age in Japanese women. [Nihon koshu eisei zasshi] Japanese journal of public health, 42(2), 84-94.
29. Côté, K. D., & Adams, W. C. (1993). Effect of bone density on body composition estimates in young adult black and white women. Medicine and science in sports and exercise, 25(2), 290.
30. Clasey, J. L., Kanaley, J. A., Wideman, L., Heymsfield, S. B., Teates, C. D., Gutgesell, M. E., ... & Weltman, A. (1999). Validity of methods of body composition assessment in young and older men and women. Journal of Applied Physiology, 86(5), 1728-1738
31. Ling, C. H., de Craen, A. J., Slagboom, P. E., Gunn, D. A., Stokkel, M. P., Westendorp, R. G., & Maier, A. B. (2011). Accuracy of direct segmental multi-frequency bioimpedance analysis in the assessment of total body and segmental body composition in middle-aged adult population. Clinical Nutrition, 30, 610e615.
32. Brožek, J., & Kinzey, W. (1960). Age changes in skinfold compressibility. Journal of gerontology, 15(1), 45-51.
33. Duz, S., Kocak, M., & Korkusuz, F. (2009). Evaluation of body composition using three different methods compared to dual-energy X-ray absorptiometry. European Journal of Sport Science, 9(3), 181-190.
34. Eston, R., & Reilly, T. (2013). Kinanthropometry and exercise physiology laboratory manual: tests, procedures and data: volume two: physiology. Routledge 29-35pp.
35. Siri, W. E. (1956). Gross composition of the body. In. J.H. Laerence and C.A. Tobias (Eds.) Advance in Biological and Medical Physics IV. New York: Academic Press Inc.
36. Bland, J. M., & Altman, D. G. (1999). Measuring agreement in method comparison studies. Statistical methods in medical research, 8(2), 135-160.
37. Bottaro, M. F., Heyward, V. H., Bezerra, R. F., & Wagner, D. R. (2002). Skinfold method vs dual-energy x-ray absorptiometry to assess body composition in normal and obese women. J Exerc Physiol Online, 5(2), 11-8.
38. Mueller, W. H., & Stallones, L. (1981). Anatomical distribution of subcutaneous fat: Skinfold site choice and construction of indices. Human Biology, 321-335.
39. Rathnayake, N., Alwis, G., Lenora, J., & Lekamwasam, S. (2019). Development & cross-validation of anthropometric predictive models to estimate the appendicular skeletal muscle mass in middle-aged women in Sri Lanka. The Indian journal of medical research, 150(3), 297.
40. Küçükkubaş, N., & Korkusuz, F. (2019). What happens to bone mineral density, strength and body composition of ex-elite female volleyball players: A cross sectional study. Science & Sports, 34(4), e259-e269.
41. Young, C. M., Blondin, J., Tensuan, R., & Fryer, J. H. (1963). Body composition studies of “older” women, thirty to seventy years of age. Annals of the New York Academy of Sciences, 110(2), 589-607.
42. Korkusuz, F., Işıklı, S., Akın, S., Ungan, M., Şenköylü, A., & Aras, N. K. (2004). Precision of a dual energy X-ray absorptiometry device. Journal of radioanalytical and nuclear chemistry, 259(3), 365-368.
43. Diacinti, D., Acca, M., D'erasmo, E., Tomei, E., & Mazzuoli, G. F. (1995). Aging changes in vertebral morphometry. Calcified tissue international, 57(6), 426-429.
44. Hughes, V. A., Frontera, W. R., Roubenoff, R., Evans, W. J., & Singh, M. A. F. (2002). Longitudinal changes in body composition in older men and women: role of body weight change and physical activity. The American journal of clinical nutrition, 76(2), 473-481.
45. Seidell, J. C., & Visscher, T. L. (2000). Body weight and weight change and their health implications for the elderly. European journal of clinical nutrition, 54(3), S33-S39.
46. Barbosa, A. R., Santarem, J. M., Jacob, W. F., Meirelles, E. S., & Marucci, J. M. (2001). Comparison of body fat using anthropometry bioelectrical impedance and DEXA in elderly women. Archivos latinoamericanos de nutricion, 51(1), 49-56.
47. Cohn, S. H., Vartsky, D., Yasumura, S., Sawitsky, A., Zanzi, I., Vaswani, A., & Ellis, K. J. (1980). Compartmental body composition based on total-body nitrogen, potassium, and calcium. American Journal of Physiology-Endocrinology And Metabolism, 239(6), E524-E530.
48. Lunt, M., Felsenberg, D., Adams, J., Benevolenskaya, L., Cannata, J., Dequeker, J., ... & Masaryk, P. (1997). Population-based geographic variations in DXA bone density in Europe: the EVOS study. Osteoporosis international, 7(3), 175-189.
49. Zamboni, M., Armellini, F., Turcato, E., Todesco, T., Bissoli, L., Bergamo-Andreis, I. A., & Bosello, O. (1993). Effect of weight loss on regional body fat distribution in premenopausal women. The American journal of clinical nutrition, 58(1), 29-34.
50. Eston, R. G., Rowlands, A. V., Charlesworth, S., Davies, A., & Hoppitt, T. (2005). Prediction of DXA-determined whole body fat from skinfolds: importance of including skinfolds from the thigh and calf in young, healthy men and women. European journal of clinical nutrition, 59(5), 695.