Evaluation of the efficacy and absorption of a nutraceutical product: pilot study

Main Article Content

Laura Tomaino
Francesca Gori
Cinzia Dellanoce
Alessandra Piontini
Maria Rosaria Ingenito
Vittoria Di Donna
Filomena Napolitano
Vincenzo Soresi
Luisella Vigna
Andrea Fratter


antioxidant, aging, oxidative stress, skin aging, coenzyme Q10


Background and aim: Oxidative stress is a process involved in aging and numerous human pathologies. The aim of this study was to evaluate the safety and efficacy of MITOFAST® in increasing the levels of markers linked to oxidative stress in plasma and red blood cells of healthy subjects

Methods: Prospective pilot study conducted on 22 healthy adult subjects. All participants received two sachets/day for 30 days of a commercial supplement containing a blend of antioxidant micronutrients (Coenzyme Q10, resveratrol, vitamin C, folic acid, and N-acetylcysteine). At enrolment (T0) and after 4 weeks (T1), blood samples were taken to evaluate homocysteine, gluthatione, coenzyme Q10, cysteinylglycine, cysteine, vitamin C, and vitamin E. Furthermore, any side effects reported by the subjects were evaluated. P-value <0.05 was considered statistically significant.

Results: Vitamin E, coenzyme Q10, and total plasma gluthatione levels significantly increased, whereas vitamin C remained constant after treatment. Homocysteine concentration decreased due to folic acid content (p= 0.003).

Conclusions: The overall increase in the levels of antioxidant molecules measured, together with the reduction of cysteinylglycine and homocysteine, indicate an antioxidant activity of MITOFAST®



Abstract 99 | PDF Downloads 38


1. Turrens JF. Mitochondrial formation of reactive oxygen species. J Physiol. 2003;552(Pt 2):335-44. doi: 10.1113/jphysiol.2003.049478
2. Li X, Fang P, Mai J, Choi ET, Wang H, Yang XF. Targeting mitochondrial reactive oxygen species as novel therapy for inflammatory diseases and cancers. J Hematol Oncol. 2013;6:19. doi: 10.1186/1756-8722-6-19
3. Cadenas E, Davies KJ. Mitochondrial free radical generation, oxidative stress, and aging. Free Radic Biol Med. 2000;29(3-4):222-30. doi: 10.1016/s0891-5849(00)00317-8
4. Hrycay EG, Bandiera SM. Involvement of Cytochrome P450 in Reactive Oxygen Species Formation and Cancer. Adv Pharmacol. 2015;74:35-84. doi: 10.1016/bs.apha.2015.03.003
5. de Roos B, Duthie GG. Role of dietary pro-oxidants in the maintenance of health and resilience to oxidative stress. Mol Nutr Food Res. 2015 Jul;59(7):1229-48. doi: 10.1002/mnfr.201400568
6. Das SK, Vasudevan DM. Alcohol-induced oxidative stress. Life Sci. 2007;81(3):177-87. doi: 10.1016/j.lfs.2007.05.005
7. Bailey SM, Pietsch EC, Cunningham CC. Ethanol stimulates the production of reactive oxygen species at mitochondrial complexes I and III. Free Radic Biol Med. 1999;27(7-8):891-900. doi: 10.1016/s0891-5849(99)00138-0
8. van der Vaart H, Postma DS, Timens W, ten Hacken NH. Acute effects of cigarette smoke on inflammation and oxidative stress: a review. Thorax. 2004;59(8):713-21. doi: 10.1136/thx.2003.012468
9. Prasad A, Pospíšil P. Ultraweak photon emission induced by visible light and ultraviolet A radiation via photoactivated skin chromophores: in vivo charge coupled device imaging. J Biomed Opt. 2012;17(8):085004. doi: 10.1117/1.JBO.17.8.085004
10. Rinnerthaler M, Bischof J, Streubel MK, Trost A, Richter K. Oxidative stress in aging human skin. Biomolecules. 2015;5(2):545-89. doi: 10.3390/biom5020545
11. Berneburg M, Gattermann N, Stege H, et al. Chronically ultraviolet-exposed human skin shows a higher mutation frequency of mitochondrial DNA as compared to unexposed skin and the hematopoietic system. Photochem Photobiol. 1997;66(2):271-5. doi:10.1111/j.1751-1097.1997.tb08654.x
12. Bickers DR, Athar M. Oxidative stress in the pathogenesis of skin disease. J Invest Dermatol. 2006;126(12):2565-75. doi: 10.1038/sj.jid.5700340
13. Dröge W. Free radicals in the physiological control of cell function. Physiol Rev. 2002;82(1):47-95. doi: 10.1152/physrev.00018.2001
14. Pham-Huy LA, He H, Pham-Huy C. Free radicals, antioxidants in disease and health. Int J Biomed Sci. 2008;4(2):89-96
15. Bhardwaj RL, Pandey S. Juice blends--a way of utilization of under-utilized fruits, vegetables, and spices: a review. Crit Rev Food Sci Nutr. 2011;51(6):563-70. doi: 10.1080/10408391003710654
16. Milisav I, Ribarič S, Poljsak B. Antioxidant Vitamins and Ageing. Subcell Biochem. 2018; 90: 1-23. doi: 10.1007/978-981-13-2835-0_1
17. Koushki M, Lakzaei M, Khodabandehloo H, Hosseini H, Meshkani R, Panahi G. Therapeutic effect of resveratrol supplementation on oxidative stress: a systematic review and meta-analysis of randomised controlled trials. Postgrad Med J. 2020; 96(1134): 197-205. doi: 10.1136/postgradmedj-2019-136415
18. Asbaghi O, Ghanavati M, Ashtary-Larky D, et al. Effects of Folic Acid Supplementation on Oxidative Stress Markers: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Antioxidants (Basel). 2021; 10(6): 871. doi: 10.3390/antiox10060871
19. Aaseth J, Alexander J, Alehagen U. Coenzyme Q10 supplementation - In ageing and disease. Mech Ageing Dev. 2021 Jul;197:111521. doi: 10.1016/j.mad.2021.111521
20. Raghu G, Berk M, Campochiaro PA, et al. The Multifaceted Therapeutic Role of N-Acetylcysteine (NAC) in Disorders Characterized by Oxidative Stress. Curr Neuropharmacol. 2021; 19(8): 1202-1224. doi: 10.2174/1570159X19666201230144109
21. Prior RL, Cao G. Antioxidant phytochemicals in fruits and vegetables: dietary and health implications. Hortic Sci. 2000;35:588-592
22. Paganaga G, Miller N, Rice-Evans CA. The polypohenolic content of fruit and vegetables and their antioxidant activities: what does a serving constitute? Free Radic Res. 1999;30:153-162
23. Halvorsen BL, Holte K, Myhrstad MC, et al. A systematic screening of total antioxidants in dietary plants. J Nutr. 2002;132:461-471
24. Wild AC, Mulcahy RT. Regulation of gamma-glutamylcysteine synthetase subunit gene expression: insights into transcriptional control of antioxidant defenses. Free Radic Res. 2000;32:281-301.
25. Hayes JD, McLellan LI. Glutathione and glutathione dependent enzymes represent a coordinately regulated defense against oxidative stress. Free Radic Res. 1999;31:273-300.
26. Sen CK, Packer L. Antioxidant and redox regulation of gene transcription. FASEB J. 1996;10:709-720.
27. Talalay P. Chemoprotection against cancer by induction of phase 2 enzymes. Biofactors. 2000;12:5-11.
28. Festi D, Colecchia A, Pini S, et al. Development and application of a simple and powerful tool for nutrition and lifestyle education for the Italian general population by general practitioners and family paediatricians. MJNM. 2009;2:139-144
29. Vigna L, Cassinelli L, Tirelli AS, et al. 25(OH)D Levels in Relation to Gender, Overweight, Insulin Resistance, and Inflammation in a Cross-Sectional Cohort of Northern Italian Workers: Evidence in Support of Preventive Health Care Programs. J Am Coll Nutr. 2017; 36(4): 253-260. doi: 10.1080/07315724.2016.1264280
30. Dellanoce C, Cozzi L, Zuddas S, Pratali L, Accinni R. Determination of different forms of aminothiols in red blood cells without washing erythrocytes. Biomed Chromatogr. 2014; 28(3): 327-31. doi: 10.1002/bmc.3056
31. Svardal AM, Mansoor MA, Ueland PM. Determination of reduced, oxidized, and protein-bound glutathione in human plasma with precolumn derivatization with monobromobimane and liquid chromatography. Anal Biochem. 1990; 184(2): 338-46. doi: 10.1016/0003-2697(90)90691-2
32. Serra-Majem L, Tomaino L, Dernini S, et al. Updating the Mediterranean Diet Pyramid towards Sustainability: Focus on Environmental Concerns. Int J Environ Res Public Health. 2020;17(23):8758. doi: 10.3390/ijerph17238758
33. Ganguly P, Alam SF. Role of homocysteine in the development of cardiovascular disease. Nutr J. 2015;14:6. doi: 10.1186/1475-2891-14-6
34. Wu X, Zhang L, Miao Y, et al. Homocysteine causes vascular endothelial dysfunction by disrupting endoplasmic reticulum redox homeostasis. Redox Biol. 2019;20:46-59. doi: 10.1016/j.redox.2018.09.021
35. Balint B, Jepchumba VK, Guéant JL, Guéant-Rodriguez RM. Mechanisms of homocysteine-induced damage to the endothelial, medial and adventitial layers of the arterial wall. Biochimie. 2020;173:100-106. doi: 10.1016/j.biochi.2020.02.012
36. Yang Q, He GW. Imbalance of Homocysteine and H2S: Significance, Mechanisms, and Therapeutic Promise in Vascular Injury. Oxid Med Cell Longev. 2019;2019:7629673. doi: 10.1155/2019/7629673
37. Lim U, Cassano PA. Homocysteine and blood pressure in the Third National Health and Nutrition Examination Survey, 1988-1994. Am J Epidemiol. 2002;156(12):1105-13. doi: 10.1093/aje/kwf157
38. Gori F, Tirelli AS, Piontini A, et al. Metabolic Syndrome, Homocysteine and Uric Acid in Patients with Obesity; Experience from Obesity and Work Centre. Mediterranean Journal of Nutrition and Metabolism. 2021: 277-288
39. Zaric BL, Obradovic M, Bajic V, Haidara MA, Jovanovic M, Isenovic ER. Homocysteine and Hyperhomocysteinaemia. Curr Med Chem. 2019;26(16):2948- 2961. doi: 10.2174/0929867325666180313105949
40. Bhagavan HN, Chopra RK. Coenzyme Q10: absorption, tissue uptake, metabolism and pharmacokinetics. Free Radic Res. 2006;40(5):445-53. doi: 10.1080/10715760600617843
41. Bhagavan HN, Chopra RK. Plasma coenzyme Q10 response to oral ingestion of coenzyme Q10 formulations. Mitochondrion. 2007;7 Suppl:S78-88. doi: 10.1016/j.mito.2007.03.003
42. Judy WV. The Single-dose Absorption and Steady-state Bioavailability of Different Coenzyme Q10 Formulations. Integr Med (Encinitas). 2022;21(1):28-34
43. Saini R. Coenzyme Q10: The essential nutrient. J Pharm Bioallied Sci. 2011;3(3):466-7. doi: 10.4103/0975-7406.84471
44. Aberg F, Appelkvist EL, Dallner G, Ernster L. Distribution and redox state of ubiquinones in rat and human tissues. Arch Biochem Biophys 1992;295:230–234
45. Crane FL. Biochemical functions of coenzyme Q10. J Am Coll Nutr. 2001;20(6):591-8. doi: 10.1080/07315724.2001.10719063
46. Gutierrez-Mariscal FM, Arenas-de Larriva AP, Limia-Perez L, Romero-Cabrera JL, Yubero-Serrano EM, López-Miranda J. Coenzyme Q10 Supplementation for the Reduction of Oxidative Stress: Clinical Implications in the Treatment of Chronic Diseases. Int J Mol Sci. 2020;21(21):7870. doi: 10.3390/ijms21217870
47. Arenas-Jal M, Suñé-Negre JM, García-Montoya E. Coenzyme Q10 supplementation: Efficacy, safety, and formulation challenges. Compr Rev Food Sci Food Saf. 2020;19(2):574-594. doi: 10.1111/1541-4337.12539
48. Langsjoen PH, Langsjoen AM. Overview of the use of CoQ10 in cardiovascular disease. Biofactors. 1999;9(2-4):273-84. doi: 10.1002/biof.5520090224
49. Akbari A, Mobini GR, Agah S, et al. Coenzyme Q10 supplementation and oxidative stress parameters: a systematic review and meta-analysis of clinical trials. Eur J Clin Pharmacol. 2020; 76(11): 1483-1499. doi: 10.1007/s00228-020-02919-8
50. Sangsefidi ZS, Yaghoubi F, Hajiahmadi S, Hosseinzadeh M. The effect of coenzyme Q10 supplementation on oxidative stress: A systematic review and meta-analysis of randomized controlled clinical trials. Food Sci Nutr. 2020; 8(4): 1766-1776. doi: 10.1002/fsn3.1492
51. Ouchi A, Nagaoka S, Mukai K. Tunneling effect in regeneration reaction of vitamin E by ubiquinol. J Phys Chem B. 2010;114(19):6601-7. doi: 10.1021/jp910856m
52. Huang A, Vita JA, Venema RC, Keaney JF Jr. Ascorbic acid enhances endothelial nitric-oxide synthase activity by increasing intracellular tetrahydrobiopterin. J Biol Chem. 2000 Jun 9;275(23):17399-406. doi: 10.1074/jbc.M002248200
53. Askari M, Faryabi R, Mozaffari H, Darooghegi Mofrad M. The effects of N-Acetylcysteine on serum level of inflammatory biomarkers in adults. Findings from a systematic review and meta-analysis of randomized clinical trials. Cytokine. 2020; 135: 155239. doi: 10.1016/j.cyto.2020.155239
54. Rushworth GF, Megson IL. Existing and potential therapeutic uses for N- acetylcysteine: the need for conversion to intracellular glutathione for antioxidant benefits. Pharmacol Ther. 2014;141(2):150-9. doi: 10.1016/j.pharmthera.2013.09.006
55. Raftos JE, Whillier S, Kuchel PW. Glutathione synthesis and turnover in the human erythrocyte: alignment of a model based on detailed enzyme kinetics with experimental data. J Biol Chem. 2010;285(31):23557-67. doi: 10.1074/jbc.M109.067017
56. Rifkind JM, Mohanty JG, Nagababu E. The pathophysiology of extracellular hemoglobin associated with enhanced oxidative reactions. Front Physiol. 2015;5:500. doi: 10.3389/fphys.2014.00500

Most read articles by the same author(s)