Modification of the microbiota in obese individuals following a Very Low-Calorie Ketogenic Diet

Modification of the microbiota in obese individuals following a Very Low-Calorie Ketogenic Diet

Authors

  • Maria Casillo Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, Naples, Italy
  • Vincenzo Monda Department of Economics, Law, Cybersecurity, and Sports Sciences, University of Naples “Parthenope”, Naples, Italy
  • Rita Polito 3Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
  • Pierpaolo Limone Department of Phychology and Education, Pegaso Telemetic University, Naples, Italy
  • Anna Dipace Department of Phychology and Education, Pegaso Telemetic University, Naples, Italy
  • Ines Villano Department of Wellness, Nutrition and Sport, Telematic University Pegaso, Naples, Italy
  • Giovanni Messina Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, Naples, Italy
  • Sergio Chieffi Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, Naples, Italy
  • Antonietta Messina Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, Naples, Italy
  • Salvatore Allocca Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, Naples, Italy
  • Mariateresa Ricci Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, Naples, Italy
  • Fiorenzo Moscatelli Department of Wellness, Nutrition and Sport, Telematic University Pegaso, Naples, Italy
  • Antonietta Monda Department of Human Science and Promotion of Quality of Life, Telematic University San Raffaele, Rome, Italy
  • Marcellino Monda Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, Naples, Italy

Keywords:

VLCKD, gut microbiota, Diet, Obesity

Abstract

Background and aim: Recent studies have shed light on the efficacy of Very Low Carbohydrate Ketogenic Diets (VLCKDs) in combating obesity. This review aims to explore the mechanisms by which VLCKDs influence weight loss, particularly through their interaction with the gut microbiota and modulation of the Enteric Nervous System (ENS). The symbiotic relationship between the gut microbiota and its host is essential for maintaining physiological homeostasis, and disturbances in this relationship can lead to various health issues, including obesity.

Methods: This review synthesizes findings from various studies that examine the impact of VLCKDs on the gut microbiota and ENS, and their subsequent effects on obesity. It delves into the dynamics of gut microbiota-host interactions and how VLCKDs can lead to a beneficial remodeling of the gut microbial ecosystem.

Results: Evidence suggests that VLCKDs can significantly alter the composition of the gut microbiota, leading to a state that favors weight loss and metabolic health. The diet's ability to modify the gut microbiota and ENS interaction plays a critical role in its effectiveness in reducing obesity and potentially rectifying gut dysbiosis.

Conclusions: VLCKDs have been confirmed to be effective in reducing obesity through their significant therapeutic potential, which includes modulating the gut microbiota and the ENS. The restoration of a balanced gut microbiota is crucial for combating obesity and its associated pathologies. VLCKDs emerge as a promising therapeutic approach, suggesting a paradigm shift in the treatment of obesity and related conditions by leveraging dietary interventions to manipulate the gut ecosystem.

References

Vasileva L V., Marchev AS, Georgiev MI. Causes and solutions to “globesity”: The new fa(s)t alarming global epidemic. Food and Chemical Toxicology. 2018 Nov;121:173–93.

World Health Organization. Obesity and overweight fact sheet; 2018.

WHO European Regional Obesity Report 2022.

Jastreboff AM, Kotz CM, Kahan S, Kelly AS, Heymsfield SB. Obesity as a Disease: The Obesity Society 2018 Position Statement. Obesity. 2019 Jan 20;27(1):7–9.

Blüher M. Obesity: global epidemiology and pathogenesis. Nat Rev Endocrinol. 2019 May 27;15(5):288–98.

De Lorenzo A, Gratteri S, Gualtieri P, Cammarano A, Bertucci P, Di Renzo L. Why primary obesity is a disease? J Transl Med. 2019 Dec 22;17(1):169.

La Marra M, Messina A, Ilardi CR, Staiano M, Di Maio G, Messina G, et al. Factorial Model of Obese Adolescents: The Role of Body Image Concerns and Selective Depersonalization—A Pilot Study. Int J Environ Res Public Health. 2022;19(18).

Villano I, Ilardi CR, Arena S, Scuotto C, Gleijeses MG, Messina G, et al. Obese Subjects without Eating Disorders Experience Binge Episodes Also Independently of Emotional Eating and Personality Traits among University Students of Southern Italy. Brain Sci. 2021 Aug 29;11(9):1145.

Robinson E, Roberts C, Vainik U, Jones A. The psychology of obesity: An umbrella review and evidence-based map of the psychological correlates of heavier body weight. Neurosci Biobehav Rev. 2020 Dec;119:468–80.

La Marra M, Villano I, Ilardi CR, Carosella M, Staiano M, Iavarone A, et al. Executive Functions in Overweight and Obese Treatment-Seeking Patients: Cross-Sectional Data and Longitudinal Perspectives. Brain Sci. 2022;12(6).

La Marra M, Messina A, Ilardi CR, Verde G, Amato R, Esposito N, et al. The Neglected Factor in the Relationship between Executive Functioning and Obesity: The Role of Motor Control. Healthcare (Switzerland). 2022;10(9).

La Marra M, Ilardi CR, Villano I, Polito R, Sibillo MR, Franchetti M, et al. Higher general executive functions predicts lower body mass index by mitigating avoidance behaviors. Front Endocrinol (Lausanne). 2022;13.

La Marra M, Ilardi CR, Villano I, Carosella M, Staiano M, Iavarone A, et al. Functional Relationship between Inhibitory Control, Cognitive Flexibility, Psychomotor Speed and Obesity. Brain Sci. 2022;12(8).

Chieffi S, Iavarone A, La Marra M, Messina G, Villano I, Ranucci S, et al. Memory for proprioceptive targets in bulimia nervosa. African Journal of Psychiatry (South Africa). 2015;18(4).

Monda V, La Marra M, Perrella R, Caviglia G, Iavarone A, Chieffi S, et al. Obesity and brain illness: from cognitive and psychological evidences to obesity paradox. Diabetes Metab Syndr Obes. 2017 Nov;Volume 10:473–9.

Dye L, Boyle NB, Champ C, Lawton C. The relationship between obesity and cognitive health and decline. Proceedings of the Nutrition Society. 2017 Nov 11;76(4):443–54.

Bischof GN, Park DC. Obesity and Aging. Psychosom Med. 2015 Jul;77(6):697–709.

Raynor HA, Champagne CM. Position of the Academy of Nutrition and Dietetics: Interventions for the Treatment of Overweight and Obesity in Adults. J Acad Nutr Diet. 2016 Jan;116(1):129–47.

La Marra M, Caviglia G, Perrella R. Using Smartphones When Eating Increases Caloric Intake in Young People: An Overview of the Literature. Front Psychol. 2020 Dec 3;11.

Maio GD, Monda V, Messina A, Polito R, Monda M, Tartaglia N, et al. Physical activity and modification of lifestyle induce benefits on the health status. Acta Medica Mediterranea. 2020;36(3).

Gibson A, Sainsbury A. Strategies to Improve Adherence to Dietary Weight Loss Interventions in Research and Real-World Settings. Behavioral Sciences. 2017 Jul 11;7(3):44.

Koliaki C, Spinos T, Spinou Μ, Brinia ΜE, Mitsopoulou D, Katsilambros N. Defining the Optimal Dietary Approach for Safe, Effective and Sustainable Weight Loss in Overweight and Obese Adults. Healthcare. 2018 Jun 28;6(3):73.

Bray GA, Frühbeck G, Ryan DH, Wilding JPH. Management of obesity. The Lancet. 2016 May;387(10031):1947–56.

Brehm BJ, Seeley RJ, Daniels SR, D’Alessio DA. A Randomized Trial Comparing a Very Low Carbohydrate Diet and a Calorie-Restricted Low Fat Diet on Body Weight and Cardiovascular Risk Factors in Healthy Women. J Clin Endocrinol Metab. 2003 Apr;88(4):1617–23.

Ludwig DS, Hu FB, Tappy L, Brand-Miller J. Dietary carbohydrates: role of quality and quantity in chronic disease. BMJ. 2018 Jun 13;k2340.

Muscogiuri G, El Ghoch M, Colao A, Hassapidou M, Yumuk V, Busetto L. European Guidelines for Obesity Management in Adults with a Very Low-Calorie Ketogenic Diet: A Systematic Review and Meta-Analysis. Obes Facts. 2021;14(2):222–45.

Ruberto M, Monda V, Precenzano F, Maio GD, Messina A, Lanzara V, et al. Physical activity, ketogenic diet, and epilepsy: A mini-review. Sport Mont. 2021;19(1).

Schwartz S, Friedberg I, Ivanov I V, Davidson LA, Goldsby JS, Dahl DB, et al. A metagenomic study of diet-dependent interaction between gut microbiota and host in infants reveals differences in immune response. Genome Biol. 2012;13(4):R32.

Boesten R, Schuren F, Ben Amor K, Haarman M, Knol J, de Vos WM. Bifidobacterium population analysis in the infant gut by direct mapping of genomic hybridization patterns: potential for monitoring temporal development and effects of dietary regimens. Microb Biotechnol. 2011 May 26;4(3):417–27.

Faith JJ, McNulty NP, Rey FE, Gordon JI. Predicting a Human Gut Microbiota’s Response to Diet in Gnotobiotic Mice. Science (1979). 2011 Jul;333(6038):101–4.

Biasucci G, Benenati B, Morelli L, Bessi E, Boehm G. Cesarean Delivery May Affect the Early Biodiversity of Intestinal Bacteria1,. J Nutr. 2008 Sep;138(9):1796S-1800S.

Lu K, Mahbub R, Fox JG. Xenobiotics: Interaction with the Intestinal Microflora. ILAR J. 2015 Aug 31;56(2):218–27.

Larsen N, Vogensen FK, van den Berg FWJ, Nielsen DS, Andreasen AS, Pedersen BK, et al. Gut Microbiota in Human Adults with Type 2 Diabetes Differs from Non-Diabetic Adults. PLoS One. 2010 Feb 5;5(2):e9085.

Koliada A, Syzenko G, Moseiko V, Budovska L, Puchkov K, Perederiy V, et al. Association between body mass index and Firmicutes/Bacteroidetes ratio in an adult Ukrainian population. BMC Microbiol. 2017 Dec 22;17(1):120.

Wheless JW. History of the ketogenic diet. Epilepsia. 2008 Nov 4;49(s8):3–5.

Krebs HA. The regulation of the release of ketone bodies by the liver. Adv Enzyme Regul. 1966 Jan;4:339–53.

Cahill GF. Fuel Metabolism in Starvation. Annu Rev Nutr. 2006 Aug 1;26(1):1–22.

Puchalska P, Crawford PA. Multi-dimensional Roles of Ketone Bodies in Fuel Metabolism, Signaling, and Therapeutics. Cell Metab. 2017 Feb;25(2):262–84.

Martin-McGill KJ, Bresnahan R, Levy RG, Cooper PN. Ketogenic diets for drug-resistant epilepsy. Cochrane Database of Systematic Reviews. 2020 Jun 24;2020(6).

Paoli A, Rubini A, Volek JS, Grimaldi KA. Beyond weight loss: a review of the therapeutic uses of very-low-carbohydrate (ketogenic) diets. Eur J Clin Nutr. 2013 Aug 26;67(8):789–96.

Trimboli P, Castellana M, Bellido D, Casanueva FF. Confusion in the nomenclature of ketogenic diets blurs evidence. Rev Endocr Metab Disord. 2020 Mar 21;21(1):1–3.

Bueno NB, de Melo ISV, de Oliveira SL, da Rocha Ataide T. Very-low-carbohydrate ketogenic diet v. low-fat diet for long-term weight loss: a meta-analysis of randomised controlled trials. British Journal of Nutrition. 2013 Oct 14;110(7):1178–87.

EFSA Panel on Dietetic Products, Nutrition and Allergies (NDA). Scientific opin-ion on the essential composition of total diet replacements for weight control.EFSA J 2015;13:3957.

Caprio M, Infante M, Moriconi E, Armani A, Fabbri A, Mantovani G, et al. Very-low-calorie ketogenic diet (VLCKD) in the management of metabolic diseases: systematic review and consensus statement from the Italian Society of Endocrinology (SIE). J Endocrinol Invest. 2019 Nov 20;42(11):1365–86.

Thursby E, Juge N. Introduction to the human gut microbiota. Biochemical Journal. 2017 Jun 1;474(11):1823–36.

Frank DN, Pace NR. Gastrointestinal microbiology enters the metagenomics era. Curr Opin Gastroenterol. 2008 Jan;24(1):4–10.

Polito R, Scarinci A, Ambrosi A, Tartaglia N, Tafuri D, Monda M, et al. The beneficial effects of physical activity and weight loss on human colorectal carcinoma cell lines. Journal of Human Sport and Exercise. 2020;15(Proc2).

Ursell LK, Metcalf JL, Parfrey LW, Knight R. Defining the human microbiome. Nutr Rev. 2012 Aug;70:S38–44.

Kurokawa K, Itoh T, Kuwahara T, Oshima K, Toh H, Toyoda A, et al. Comparative Metagenomics Revealed Commonly Enriched Gene Sets in Human Gut Microbiomes. DNA Research. 2007;14(4):169–81.

Structure, function and diversity of the healthy human microbiome. Nature. 2012 Jun 13;486(7402):207–14.

Kramer P, Bressan P. Humans as Superorganisms. Perspectives on Psychological Science. 2015 Jul 14;10(4):464–81.

Nicholson JK, Holmes E, Kinross J, Burcelin R, Gibson G, Jia W, et al. Host-Gut Microbiota Metabolic Interactions. Science (1979). 2012 Jun 8;336(6086):1262–7.

Boscaini S, Leigh SJ, Lavelle A, García-Cabrerizo R, Lipuma T, Clarke G, et al. Microbiota and body weight control: Weight watchers within? Mol Metab. 2022 Mar;57:101427.

Altamirano Á, Saa PA, Garrido D. Inferring composition and function of the human gut microbiome in time and space: A review of genome-scale metabolic modelling tools. Comput Struct Biotechnol J. 2020;18:3897–904.

Cimmino F, Catapano A, Villano I, Di Maio G, Petrella L, Traina G, et al. Invited review: Human, cow, and donkey milk comparison: Focus on metabolic effects. J Dairy Sci. 2023;106(5).

Berni Canani R, Di Costanzo M, Leone L. The epigenetic effects of butyrate: potential therapeutic implications for clinical practice. Clin Epigenetics. 2012 Dec 27;4(1):4.

Ben-Amor K, Heilig H, Smidt H, Vaughan EE, Abee T, de Vos WM. Genetic Diversity of Viable, Injured, and Dead Fecal Bacteria Assessed by Fluorescence-Activated Cell Sorting and 16S rRNA Gene Analysis. Appl Environ Microbiol. 2005 Aug;71(8):4679–89.

Turnbaugh PJ, Quince C, Faith JJ, McHardy AC, Yatsunenko T, Niazi F, et al. Organismal, genetic, and transcriptional variation in the deeply sequenced gut microbiomes of identical twins. Proceedings of the National Academy of Sciences. 2010 Apr 20;107(16):7503–8.

Jiménez E, Marín ML, Martín R, Odriozola JM, Olivares M, Xaus J, et al. Is meconium from healthy newborns actually sterile? Res Microbiol. 2008 Apr;159(3):187–93.

Stewart CJ, Ajami NJ, O’Brien JL, Hutchinson DS, Smith DP, Wong MC, et al. Temporal development of the gut microbiome in early childhood from the TEDDY study. Nature. 2018 Oct 24;562(7728):583–8.

Biagi E, Nylund L, Candela M, Ostan R, Bucci L, Pini E, et al. Through Ageing, and Beyond: Gut Microbiota and Inflammatory Status in Seniors and Centenarians. PLoS One. 2010 May 17;5(5):e10667.

De Filippo C, Cavalieri D, Di Paola M, Ramazzotti M, Poullet JB, Massart S, et al. Impact of diet in shaping gut microbiota revealed by a comparative study in children from Europe and rural Africa. Proceedings of the National Academy of Sciences. 2010 Aug 17;107(33):14691–6.

Magne F, Gotteland M, Gauthier L, Zazueta A, Pesoa S, Navarrete P, et al. The Firmicutes/Bacteroidetes Ratio: A Relevant Marker of Gut Dysbiosis in Obese Patients? Nutrients. 2020 May 19;12(5):1474.

Turnbaugh PJ, Ley RE, Mahowald MA, Magrini V, Mardis ER, Gordon JI. An obesity-associated gut microbiome with increased capacity for energy harvest. Nature. 2006 Dec;444(7122):1027–31.

Turnbaugh PJ, Bäckhed F, Fulton L, Gordon JI. Diet-Induced Obesity Is Linked to Marked but Reversible Alterations in the Mouse Distal Gut Microbiome. Cell Host Microbe. 2008 Apr;3(4):213–23.

Villano I, La Marra M, Allocca S, Ilardi CR, Polito R, Porro C, et al. The Role of Nutraceutical Supplements, Monacolin K and Astaxanthin, and Diet in Blood Cholesterol Homeostasis in Patients with Myopathy. Biomolecules. 2022;12(8).

Villano I, La Marra M, Messina A, Di Maio G, Moscatelli F, Chieffi S, et al. Effects of vegetarian and vegan nutrition on body composition in competitive futsal athletes. Progress in Nutrition. 2021;23(2).

Villano I, Marra ML, Maio GD, Monda V, Chieffi S, Guatteo E, et al. Physiological Role of Orexinergic System for Health. Int J Environ Res Public Health. 2022;19(14).

Chieffi S, Villano I, Messina A, Monda V, La Marra M, Messina G, et al. Involvement of orexin in sleep disorders and neurodegenerative diseases. Curr Top Pept Protein Res. 2015;16:49–54.

Messina A, Monda V, Avola R, Moscatelli F, Valenzano AA, Villano I, et al. Role of the orexin system on arousal, attention, feeding behaviour and sleep disorders. Acta Medica Mediterranea. 2017;33(4):645–9.

Reddel S, Putignani L, Del Chierico F. The Impact of Low-FODMAPs, Gluten-Free, and Ketogenic Diets on Gut Microbiota Modulation in Pathological Conditions. Nutrients. 2019 Feb 12;11(2):373.

Beam A, Clinger E, Hao L. Effect of Diet and Dietary Components on the Composition of the Gut Microbiota. Nutrients. 2021 Aug 15;13(8):2795.

Messina G, Viggiano A, Chieffi S, La Marra M, Esposito T, De Luca V, et al. Interaction between leptin and fat and its relationship to menopause. Curr Top Pept Protein Res. 2011;12:77–81.

Yoo W, Zieba JK, Foegeding NJ, Torres TP, Shelton CD, Shealy NG, et al. High-fat diet–induced colonocyte dysfunction escalates microbiota-derived trimethylamine N -oxide. Science (1979). 2021 Aug 13;373(6556):813–8.

Schoeler M, Caesar R. Dietary lipids, gut microbiota and lipid metabolism. Rev Endocr Metab Disord. 2019 Dec 9;20(4):461–72.

Turnbaugh PJ, Hamady M, Yatsunenko T, Cantarel BL, Duncan A, Ley RE, et al. A core gut microbiome in obese and lean twins. Nature. 2009 Jan 30;457(7228):480–4.

Zou Y, Ju X, Chen W, Yuan J, Wang Z, Aluko RE, et al. Rice bran attenuated obesity via alleviating dyslipidemia, browning of white adipocytes and modulating gut microbiota in high-fat diet-induced obese mice. Food Funct. 2020;11(3):2406–17.

Chawla S, Tessarolo Silva F, Amaral Medeiros S, Mekary R, Radenkovic D. The Effect of Low-Fat and Low-Carbohydrate Diets on Weight Loss and Lipid Levels: A Systematic Review and Meta-Analysis. Nutrients. 2020 Dec 9;12(12):3774.

Paoli A. Ketogenic Diet for Obesity: Friend or Foe? Int J Environ Res Public Health. 2014 Feb 19;11(2):2092–107.

Polito R, Valenzano A, Monda V, Cibelli G, Monda M, Messina G, et al. Heart Rate Variability and Sympathetic Activity Is Modulated by Very Low-Calorie Ketogenic Diet. Int J Environ Res Public Health. 2022 Feb 16;19(4):2253.

Di Maio G, Alessio N, Demirsoy IH, Peluso G, Perrotta S, Monda M, et al. Evaluation of browning agents on the white adipogenesis of bone marrow mesenchymal stromal cells: A contribution to fighting obesity. Cells. 2021;10(2).

Di Maio G, Alessio N, Peluso G, Perrotta S, Monda M, Di Bernardo G. Molecular and Physiological Effects of Browning Agents on White Adipocytes from Bone Marrow Mesenchymal Stromal Cells. Int J Mol Sci. 2022;23(20).

Catapano A, Trinchese G, Cimmino F, Petrella L, D’Angelo M, Di Maio G, et al. Impedance Analysis to Evaluate Nutritional Status in Physiological and Pathological Conditions. Nutrients. 2023;15(10).

Tagliabue A, Ferraris C, Uggeri F, Trentani C, Bertoli S, de Giorgis V, et al. Short-term impact of a classical ketogenic diet on gut microbiota in GLUT1 Deficiency Syndrome: A 3-month prospective observational study. Clin Nutr ESPEN. 2017 Feb;17:33–7.

Ma D, Wang AC, Parikh I, Green SJ, Hoffman JD, Chlipala G, et al. Ketogenic diet enhances neurovascular function with altered gut microbiome in young healthy mice. Sci Rep. 2018 Apr 27;8(1):6670.

Swidsinski A, Dörffel Y, Loening-Baucke V, Gille C, Göktas Ö, Reißhauer A, et al. Reduced Mass and Diversity of the Colonic Microbiome in Patients with Multiple Sclerosis and Their Improvement with Ketogenic Diet. Front Microbiol. 2017 Jun 28;8.

Olson CA, Vuong HE, Yano JM, Liang QY, Nusbaum DJ, Hsiao EY. The Gut Microbiota Mediates the Anti-Seizure Effects of the Ketogenic Diet. Cell. 2018 Jun;173(7):1728-1741.e13.

Ley RE, Turnbaugh PJ, Klein S, Gordon JI. Human gut microbes associated with obesity. Nature. 2006 Dec 21;444(7122):1022–3.

Attaye I, van Oppenraaij S, Warmbrunn M V., Nieuwdorp M. The Role of the Gut Microbiota on the Beneficial Effects of Ketogenic Diets. Nutrients. 2021 Dec 31;14(1):191.

Newell C, Bomhof MR, Reimer RA, Hittel DS, Rho JM, Shearer J. Ketogenic diet modifies the gut microbiota in a murine model of autism spectrum disorder. Mol Autism. 2016 Dec 1;7(1):37.

Gutiérrez‐Repiso C, Hernández‐García C, García‐Almeida JM, Bellido D, Martín‐Núñez GM, Sánchez‐Alcoholado L, et al. Effect of Synbiotic Supplementation in a Very‐Low‐Calorie Ketogenic Diet on Weight Loss Achievement and Gut Microbiota: A Randomized Controlled Pilot Study. Mol Nutr Food Res. 2019 Oct 29;63(19).

Basciani S, Camajani E, Contini S, Persichetti A, Risi R, Bertoldi L, et al. Very-Low-Calorie Ketogenic Diets With Whey, Vegetable, or Animal Protein in Patients With Obesity: A Randomized Pilot Study. J Clin Endocrinol Metab. 2020 Sep 1;105(9):2939–49.

Gutiérrez-Repiso C, Molina-Vega M, Bernal-López MR, Garrido-Sánchez L, García-Almeida JM, Sajoux I, et al. Different Weight Loss Intervention Approaches Reveal a Lack of a Common Pattern of Gut Microbiota Changes. J Pers Med. 2021 Feb 8;11(2):109.

Deledda A, Palmas V, Heidrich V, Fosci M, Lombardo M, Cambarau G, et al. Dynamics of Gut Microbiota and Clinical Variables after Ketogenic and Mediterranean Diets in Drug-Naïve Patients with Type 2 Diabetes Mellitus and Obesity. Metabolites. 2022 Nov 10;12(11):1092.

Downloads

Published

19-12-2024

Issue

Section

Reviews

How to Cite

1.
Casillo M, Monda V, Polito R, Limone P, Dipace A, Villano I, et al. Modification of the microbiota in obese individuals following a Very Low-Calorie Ketogenic Diet. Progr Nutr [Internet]. 2024 Dec. 19 [cited 2025 Apr. 7];26(3-4):e2024028. Available from: https://mattioli1885journals.com/index.php/progressinnutrition/article/view/15752