Fast and low cost biosynthesis of AgNPs with almond leaves: medical applications with biocompatible structures Fast and low cost biosynthesis of AgNPs

Main Article Content

Necmettin Aktepe
Ayşe Baran


AgNPs,, biocompatible, Antimicrobial effect, MIC,, TEM, Zeta potential


In this study, silver nanoparticles (AgNPs) were obtained in a low cost, easy and simple way by using the leaf extract of Prunus dulcis L. (almond tree) growing in the Mardin region. Characterization of AgNPs obtained by biosynthesis: Fourier Transform Infrared Spectroscopy (FTIR), X-Ray Diffractometer (XRD), UV-visible spectrophotometer (UV-Vis.), Scanning Electron Microscope (SEM), Transmission Electron Microscope(TEM), Zeta potential and Zeta size analysis was done through data. It was determined that AgNPs have maximum absorbance at 443 nm wavelength, they exhibit 14.67 crystal nano size, -19.9 mV zeta potential in spherical appearance. The Minimum Inhibition Concentration (MIC) of the obtained AgNPs was determined by using microdilution method on the growth of pathogen strains.


Download data is not yet available.
Abstract 10 | PDF Downloads 6


1. Baran MF. Green Synthesis of Silver Nanoparticles (AgNPs) Using Pistacia terebinthus Leaf Extract: Antimicrobial Effect And Characterization. Int. J. Math. Eng. Nat. Sci. 2018; 5(2): 67-75.
2. Rolim WR, Pelegrino MT, Lima BA et al. Green tea extract mediated biogenic synthesis of silver nanoparticles: Characterization, cytotoxicity evaluation and antibacterial activity. Appl. Surf. Sci. 2019; 463: 66-74.
3. Morais M, Teixeira AL, Dias F, Machado V, Medeiros R, Prior JAV. Cytotoxic Effect of Silver Nanoparticles Synthesized by Green Methods in Cancer. J. Med. Chem. 2020; 63(23):14308-14335.
4. Velmurugan P, Anbalagan K, Manosathyadevan M et al. Green synthesis of silver and gold nanoparticles using Zingiber officinale root extract and antibacterial activity of silver nanoparticles against food pathogens. Bioprocess Biosyst. Eng. 2014; 37(10): 1935-1943.
5. Thomas B, VithiYa BSM, Prasad TAA et al. Antioxidant and Photocatalytic Activity of Aqueous Leaf Extract Mediated Green Synthesis of Silver Nanoparticles Using Passiflora edulis f. flavicarpa. J. Nanosci. Nanotechnol. 2018; 19(5): 2640-2648.
6. Arroyo GV, Madrid AT,Gavilanes AF et al. Green synthesis of silver nanoparticles for application in cosmetics. J. Environ. Sci. Heal. - Part A Toxic/Hazardous Subst. Environ. Eng. 2020; 55(11): 1304-1320.
7. Rani R, Kumar V, Pal P, Singh A, Zhang W. Highly stable AgNPs prepared via a novel green approach for catalytic and photocatalytic removal of biological and non-biological pollutants. Environ. Int. 2020; 143: 105924.
8. Eren A, Baran MF, “Synthesis, Characterization and Investigation of Antimicrobial Activity of Silver Nanoparticles (AgNPs) from Peanut (Pistacia vera L.) Leaf. Turkey Agric. Res. J. 2019; 6(2): 165-173.
9. Keskin C, Atalar, MN, Baran MF, Baran A. Environmentally Friendly Rapid Synthesis of Gold Nanoparticles from Artemisia absinthium Plant Extract and Application of Antimicrobial Activities. J. Inst. Sci. Technol. 2021; 11(1): 365-375.
10. Doğaroğlu ZG, Eren A, Baran MF. Effects of ZnO Nanoparticles and Ethylenediamine- N , N ′ - Disuccinic Acid on Seed Germination of Four Different Plants. Glob. challanges 2019; 3(9): 1800111.
11. Asghar MA, Zahir E, Shahid SM et al. Iron, copper and silver nanoparticles: Green synthesis using green and black tea leaves extracts and evaluation of antibacterial, antifungal and aflatoxin B1adsorption activity. LWT - Food Sci. 2018; Technol. 90: 98-107.
12. Ismail E, Khenfouch M, Dhlamini M, Dube S, Maaza M. Green palladium and palladium oxide nanoparticles synthesized via Aspalathus linearis natural extract. J. Alloys Compd. 2017; 695: 3632-3638.
13. Kumar, R., Ghoshal, G. Jain A, Goyal M. Rapid Green Synthesis of Silver Nanoparticles (AgNPs) Using (Prunus persica) Plants extract: Exploring its Antimicrobial and Catalytic Activities. J. Nanomed. Nanotechnol.,2017; 8(4): 1-8.
14. Solanki JN, Murthy ZVP. Controlled size silver nanoparticles synthesis with water-in-oil microemulsion method: A topical review. Ind. Eng. Chem. Res. 2011; 50(22):12311-12323.
15. Das G, Shin H, Kumar A, Vishnuprasad CN. Photo-mediated optimized synthesis of silver nanoparticles using the extracts of outer shell fibre of Cocos nucifera L . fruit and detection of its antioxidant , cytotoxicity and antibacterial potential. Saudi J. Biol. Sci. 2021; 28(1): 980-987.
16. Singh J, Mehta A, Rawat M, Basu S. Green synthesis of silver nanoparticles using sun dried tulsi leaves and its catalytic application for 4-Nitrophenol reduction. J. Environ. Chem. Eng. 2018; 6: 1468-1474.
17. Eren A, Baran MF. Green Synthesis , Characterization and Antimicrobial Activity of Silver Nanoparticles (AgNPs ) From Maize (Zea mays L .),” Applied Ecol. Envıronmental Res. 2019; 17(2): 4097-4105.
18. Luna C, Chávez VHG, Barriga-Castro ED, Nú NO, Mendoza-reséndez R. Biosynthesis of Silver Fine Particles and Particles Decorated with Nanoparticles Using the Extract of Illicium verum ( Star Anise ) Seeds. Spectrochim. ACTA PART A Mol. Biomol. Spectrosc. 2015; 141: 45-50.
19. Gopalu DK, Matheswaran K, Alexander J, Juan G, Antonio LT, Evgeny K. Rapid Biosynthesis of AgNPs Using Soil Bacterium Azotobacter vinelandii With Promising Antioxidant and Antibacterial Activities for Biomedical Applications,” J. Miner. Met. Mater. Soc., vol. 69, pp. 1206–1212, 2016, doi: 10.1007/s11837-016-2175-8.
20. Li G, He D, Qian Y, Guan B, Gao S, Cui Y. Fungus-Mediated Green Synthesis of Silver Nanoparticles Using Aspergillus terreus. Int. J. Mol. Sci. 2012; 13: 466-476.
21. Narayan S, Dipak S. Green synthesis of silver nanoparticles using fresh water green alga Pithophora oedogonia (Mont .) Wittrock and evaluation of their antibacterial activity. Appl. Nanosci. 2015; 5: 703-709.
22. Ojo O, Oyinloye OA, Ojo BE, Afolabi AB, Peters OB, Olaiya OA, Fadaka O, Jonathan A, Osunlana J. Green Synthesis of Silver Nanoparticles (AgNPs ) Using Talinum triangulare (Jacq .) Wild . Leaf Extract and Monitoring Their Antimicrobial Activity. J. Bionanoscience 2017; 11: 292-296.
23. Francis S, Joseph S, Koshy EP, Mathew B. Green synthesis and characterization of gold and silver nanoparticles using Mussaenda glabrata leaf extract and their environmental applications to dye degradation. Environ. Sci. Pollut. Res. 2017; 24: 17347-17357.
24. Karunakaran G, Jagathambal M, Venkatesh M et al. Hydrangea paniculata fl ower extract-mediated green synthesis of MgNPs and AgNPs for health care applications,” Powder Technol. 2017; 305: 488-494.
25. Kumar B, Smita K, Cumbal L, Debut A. Green synthesis of silver nanoparticles using Andean blackberry fruit extract. Saudi J. Biol. Sci. 2015; 24(1): 45-50.
26. Baran MF. Synthesis and Antimicrobial Applications of Silver Nanoparticles From Artemisia absinthium plant. Biol. Chem. Res. 2019; 6: 96-103.
27. Sudhakar C, Selvam K, Govarthanan M. Acorus calamus rhizome extract mediated biosynthesis of silver nanoparticles and their bactericidal activity against human pathogens. J. Genet. Eng. Biotechnol. 2015; 13(2): 93-99.
28. Srikar SK, Giri DD, Pal DB, Mishra PK, Upadhyay SN. Green Synthesis of Silver Nanoparticles : A Review. Green Sustain. Chem. 2016; 6: 34-56.
29. Song JY, Kim BS. Rapid biological synthesis of silver nanoparticles using plant leaf extracts. Bioprocess Biosyst. Eng. 2009; 32(1):79-84.
30. Premkumar J, Sudhakar T, Dhakal A, Shrestha JB, Krishnakumar S, Balashanmugam P. Synthesis of silver nanoparticles (AgNPs) from cinnamon against bacterial pathogens. Biocatal. Agric. Biotechnol. 2018; 15: 311-316.
31. Satpathy S, Patra A, Ahirwar B, Hussain MD. Antioxidant and anticancer activities of green synthesized silver nanoparticles using aqueous extract of tubers of Pueraria tuberosa. Artif. Cells, Nanomedicine Biotechnol. 2018; 46 (Sup3): 71-85.
32. Al-ogaidi I, Salman MI, Mohammad FI et al. Antibacterial and Cytotoxicity of Silver Nanoparticles Synthesized in Green and Black Tea. World J. Exp. Biosci. 2017; 5(1): 39-45.
33. Gliga AR, Skoglund S, Wallinder IO, Fadeel B, Karlsson HL. Size-dependent cytotoxicity of silver nanoparticles in human lung cells: the role of cellular uptake, agglomeration and Ag release. Part. Fibre Toxicol. 2014; 11(1): 1-17.
34. Aina AD, Owolo O, Adeoye-Isijola M, Aina FO, Favour O, Adewumi AG. Almond leaves for the one-pot Biofabrication of silver nanoparticles: Characterization and larvicidal application. Int. J. Sci. Res. Publ. 2018; 8(11): 703-711.
35. Shao Y, Wu C, Wu T et al. Green synthesis of sodium alginate-silver nanoparticles and their antibacterial activity. Int. J. Biol. Macromol. 2018; 111: 1281-1292.
36. Emmanuel R, Palanisamy S, Chen S-M et al. Antimicrobial efficacy of green synthesized drug blended silver nanoparticles against dental caries and periodontal disease causing microorganisms. Mater. Sci. Eng. C 2015; 56: 374-379.
37. Remya RR, Rajasree SRR, Aranganathan L, Suman TY. An investigation on cytotoxic effect of bioactive AgNPs synthesized using Cassia fistula flower extract on breast cancer cell MCF-7. Biotechnol. Reports 2015; 8: 110-115.
38. Majeed S, Mohd SA, Gouri KD, Ansari MT, Nanda A. Biochemical synthesis of silver nanoprticles using filamentous fungi Penicillium decumbens (MTCC-2494) and its efficacy against A-549 lung cancer cell line. Chin. J. Nat. Med. 2016; 14(8): 615-620.
39. Khan AU, Yuan Q, Khan ZUH et al. An eco-benign synthesis of AgNPs using aqueous extract of Longan fruit peel: Antiproliferative response against human breast cancer cell line MCF-7, antioxidant and photocatalytic deprivation of methylene blue. J. Photochem. Photobiol. B Biol. 2018; 183: 367-373.
40. Rouhollah R, Marzieh H. Biosynthesis of silver nanoparticles using extract of olive leaf : synthesis and in vitro cytotoxic effect on MCF-7 cells. Int. J. of Breast Cancer 2015; 4: 112.
41. Baran MF, Saydut A. Gold nanomaterial synthesis and characterization. Dicle Univ. J. Eng. 2019; 10(3): 1033-1040.
42. Kumar V, Gundampati RK, Singh DK, Bano D, Jagannadham MV, Hasan SH. Photoinduced green synthesis of silver nanoparticles with highly effective antibacterial and hydrogen peroxide sensing properties. J. Photochem. Photobiol. B Biol. 2016; 162: 374-385.
43. Some S, Bulut O, Biswas K et al. Effect of feed supplementation with biosynthesized silver nanoparticles using leaf extract of Morus indica L. V1 on Bombyx mori L. (Lepidoptera: Bombycidae). Sci. Rep. 2019; 9(1): 1-13.
44. Baran MF. Synthesis , Characterization and Investigation Of Antimicrobial Activity of Silver Nanoparticles From Cydonia oblonga Leaf. Applied Ecol. Environmental Res. 2019; 17(2): 2583-2592.
45. Butola BS, Gupta A, Roy A. Multifunctional fi nishing of cellulosic fabric via facile , rapid in-situ green synthesis of AgNPs using pomegranate peel extract biomolecules. Sustain. Chem. Pharm. 2019; 12: 100135.
46. Baran MF. Synthesis of silver nanoparticles (AgNP) with Prunus avium cherry leaf extract and investigation of its antimicrobial effect. Dicle Univ. J. Eng. 2019; 10(1): 221-227.
47. Vastrad J, Goudar G. Green Synthesis and Characterization of Silver Nanoparticles Using Leaf Extract of Tridax Procumbens. Asian J. Pharm. Res. 2016; 32(3): 1525-1530.
48. Selvan DA, Mahendiran D, Kumar RS, Rahiman AK. Garlic, green tea and turmeric extracts-mediated green synthesis of silver nanoparticles: Phytochemical, antioxidant and in vitro cytotoxicity studies. J. Photochem. Photobiol. B Biol. 2018; 180: 243-252.
49. Alkhulaifi MM, Alshehri JH, Alwehaibi MA et al. Green synthesis of silver nanoparticles using Citrus limon peels and evaluation of their antibacterial and cytotoxic properties. Saudi J. Biol. Sci. 2020; 27(12): 3434-3441.
50. Ali M, Kim B, Belfield KD, Norman D, Brennan M, Ali GS. Green synthesis and characterization of silver nanoparticles using Artemisia absinthium aqueous extract - A comprehensive study. Mater. Sci. Eng. C 2016; 58: 359-365.
51. Patil MP, Singh RD, Koli PB et al. Antibacterial potential of silver nanoparticles synthesized using Madhuca longifolia flower extract as a green resource. Microb. Pathog. 2018; 121: 184-189.
52. Oliveira ACJ, de Araújo AR, Quelemes PV et al. Solvent-free production of phthalated cashew gum for green synthesis of antimicrobial silver nanoparticles. Carbohydr. Polym. 2019; 213: 176-183.
53. Ahmed KBA, Raman T, Veerappan A. Future prospects of antibacterial metal nanoparticles as enzyme inhibitor. Mater. Sci. Eng. C 2016; 68: 939-947.
54. Baran MF, Koç A, Uzan S. Synthesis, Characterization and Antimicrobial Applications of Silver Nanoparticle (Agnp) with Kenger (Gundelia tournefortii) Leaf. Int. J. Math. Eng. Nat. Sci. 2018; 5: 44-52.
55. Wongpreecha J, Polpanich D, Suteewong T, Kaewsaneha C, Tangboriboonrat P. One-pot, large-scale green synthesis of silver nanoparticles-chitosan with enhanced antibacterial activity and low cytotoxicity. Carbohydr. Polym. 2018; 199: 641-648.
56. Mohmed A, Hassan S, Fouda A, Elgamal M, Salem S. Extracellular Biosynthesis of Silver Nanoparticles Using Aspergillus sp. and Evaluation of their Antibacterial and Cytotoxicity,” J. Appl. Life Sci. Int. 2017; 11(2): 1-12, 2017.
57. Zein R, Alghoraibi I, Soukkarieh C, Salman A, Alahmad A. In-vitro anticancer activity against Caco-2 cell line of colloidal nano silver synthesized using aqueous extract of Eucalyptus Camaldulensis leaves,” Heliyon, vol. 6, no. 8, p. e04594, 2020
58. Fahrenholtz CD, Swanner J, Ramirez-Perez M, Singh RN. Heterogeneous Responses of Ovarian Cancer Cells to Silver Nanoparticles as a Single Agent and in Combination with Cisplatin. J. Nanomater. 2017; 5107485.
59. Zhang Y, Yang D, Kong Y, Wang X, Pandoli O. Gao G. Synergetic Antibacterial Effects of Silver Nanoparticles@Aloe Vera Prepared via a Green Method. Nano Biomed. Eng. 2010; 2(4): 252-257.
60. Swamy MK, Akhtar MS, Mohanty SK, Sinniah UR. Synthesis and characterization of silver nanoparticles using fruit extract of Momordica cymbalaria and assessment of their in vitro antimicrobial, antioxidant and cytotoxicity activities. Spectrochim. Acta - Part A Mol. Biomol. Spectrosc. 2015; 151: 939-944.