Jackknife Resampling Method for Estimation of Fuzzy Regression Parameters and Revised Tanaka Method

Main Article Content

Dervis Topuz


Jackknife OLS regression, Jackknife FLS regression, Anthropometric measurement, revised Tanaka method


Objective: In this paper, hierarchical ways of constructing a fuzzy regression model using the jackknife resampling technique were the basis of the study. Fuzzy techniques are based on blurring the coefficients, while the jackknife technique is based on the delete one and delete-d observations. Methods: This study aimed to estimate the deviation, standard error, and confidence interval of the regression coefficients calculated by the jackknife Revised Tanaka (JFLR) technique, and to compare the performance of the jackknife least squares (JOLSR) technique with the relevant estimates. Results: The calculation of estimates is presented with a clinical numerical example. The deviation of the Revised Tanaka FLR model, standard errors, and confidence intervals of regression coefficients were found to be significantly smaller than the estimated JOLSR standard errors. The value of MSE calculated by fuzzy jackknife regression based on Revised Tanaka FLR technique was found to be bigger than MSE calculated by JOLSR technique. Conclusion: Jackknife OLS and jackknife FLR regression methods can be used effectively for parameter estimation, and the jackknife revised Tanaka regression method gives more reliable and valid results.


Download data is not yet available.
Abstract 15 | PDF Downloads 17


1. Chen L, Hsueh C. Fuzzy regression models using the least-squares method based on the concept of distance, IEEE Transactions on Fuzzy Systems 2009; 17, 1259-1272. Doi: 10.1109/tfuzz.2009.2026891.
2. Zadeh LA. Fuzzy Sets, Information and Control 1965; 8, 338-353.

3. Yang MS, Liu HH. Fuzzy least-squares algorihms for interactive fuzzy linear regression models, Fuzzy Sets and Systems 2003; 135, 305-316. Doi: 10.1016/S0165-0114(02)00123-9

4. Danesh S. Fuzzy parameters estimation via hybrid methods, Hacettepe Journal of Mathematics and Statistics 2016; 47, 1605-1624. Doi: 10.15672/hjms.201614621831

5. Razzaghnia T. Regression parameters prediction in data set with outliers using neural network, Hacettepe Journal of Mathematics and Statistics, 2019; 48, 1170-1184. Doi: 10.15672/hujms.544496
6. Tanaka H, Uejima S, Asai K. Linear regression analysis with fuzzy model, IEEE Transactions on Systems, Man, and Cybernetics, 1982;12, 903 – 907. Doi: 10.1109/tsmc.1982.4308925
7. Celmins A. Least squares model fitting to fuzzy vector data, Fuzzy sets and Systems, 1987; 22, 245-269. Doi: 10.1016/0165-0114(87)90070-4
8. Diamond P. Least squares fitting of several fuzzy variables, Proc. of the Second IFSA Congress, Tokyo; July 20–25.1987; 1, 339-332
9. Diamond P. Fuzzy least squares, Information Science, 1988; 46, 141-157. Doi: 10.1016/0020-0255(88)90047-3

10. Savic D, Pdrycz W. Evaluation of fuzzy regression models, Fuzzy Sets and Systems, 1991; 391, 51-63. Doi: 10.1016/0165-0114(91)90065-X

11. Chang PT, Lee ES. Fuzzy least absolute deviations regression and the conflicting trends in fuzzy parameters, Computers and Mathematics with Applications, 1994; 285, 89-101. Doi: 10.1016/0898-1221(94)00143-X
12. Ming M, Friedman M, Kandel A. General fuzzy least squares, Fuzzy Sets and Systems, 1997; 88, 107-118. doi.10.1016/S0165-0114 (96)00051-6
13. Hong DH, Song JK, Young H. Fuzzy least-squares linear regression analysis using shape preserving operations, Information Sciences 2001; 138, 185-193.

14. D’Urso P, Gastaldi T. A least-squares approach to fuzzy linear regression analysis, Computational Statistics and Data Analysis, 2000; 34, 427-440. Doi: 10.1016/S0167-9473(99)00109-7

15. Quenouille MH. Approximate tests of correlation in time-series, Journal of the Royal Statistical Society. Series B, 1949; 11, 68–84. doi:10.1111/j.2517-6161.1949.tb00023.x.
16. Quenouille MH. Notes on bias in estimation, Biometrika, 1956; 43, 353-360. doi:10.1093/biomet/43.3-4.353
17. Lu X, Su L. Jackknife model averaging for quantile regressions, Journal of Econometrics 2015; 188, 40–58. Doi: 10.1016/j.jeconom.2014.11.005
18. Friedl H, Stampfer E. Jackknife resampling, Encyclopedia of Environmetrics, 2002; 2, 1089-1098. doi:10.1002/9780470057339.vaj001

19. Tukey J.W. Bias and confidence in not-Quite large sample, Annals of Mathematical Statistics, 1958; 29, 614-623. Doi: 10.1214/aoms/1177706647.

20. Abdi H, Williams LJ. Jackknife. Encyclopedia of research design, 2010; 654-661. Thousand Oaks, Sage.

21. Xu G. Jackknife estimates and its application, Journal of Shandong Normal University, 2000; 15, 454–455.

22. Chang YHO, Ayyub BM. Fuzyy regression methotds-a comparative assessment, Fuzzy Sets and Systems, 2001; 119,187-203. Doi: 10.1016/s0165-0114(99)00091-3
23. He YQ, Chan L, Kand ML. Balancing productivity and consumer satisfaction for profitability: statistical and fuzzy regression analysis, European Journal of Operational Resarch, 2007: 176(1), 252-263
24. Kim B, Bishu RR. Evaluation of fuzzy linear regression models by comparison membership functions, Fuzzy Sets and Systems, 1998; 100, 343–352. Doi: 10.1016/S0165-0114(97)00100-0

25. Wang HF, Tsaur RC. Insight of a fuzzy regression model, Fuzzy Sets and Systems, 2000; 112, 355-69. doi:org/10.1016/S0165-0114 (97)00375-8
26. Tanaka H, Ishibuchi H. Possibilistic regression analysis based on linear programing; 1992.
27. Moskowitz H, Kim K. On assesing the H value in fuzzy linear regression, Fuzzy Sets and Systems, 1993; 58, 303-27. Doi: 10.1016/0165-0114(93)90505-C
28. Hojati M, Bector C.R, Smimou KA. Simple method for computation of fuzzy linear regression. European Journal of Operational Research 2005; 166, 172-184. doi:10.1016/j.ejor.2004.01.039
29. Efron B, Gong G. A Leisurely look at the bootstrap, the jackknife, and cross-validation, The American Statistician 1983; 37, 36-48. Doi: 10.1080/00031305.1983.10483087
30. Wu CFJ. Jackknife, bootstrap and other resampling methods in regression analysis, Annals of Statistics, 1986; 14, 1261-1295. Doi: 10.1214/aos/1176350142
31. Shao J, Tu D. Applications to time series and other dependent data, The Jackknife and Bootstrap. Springer Series in Statistics. Springer, New York, NY, 1995; 386-415. Doi: 10.1007/978-1-4612-0795-5_9
32. Sahinler S, Topuz D. Bootstrap and Jackknife resampling algorithms for estimation of regression parameters, Journal of Applied Quantitative Methods, 2007; 2, 188-199.

33. Fox J. Applied regression analysis, linear models, and related methods, 1997; Sage Publications.
34. Miller RG. The Jackknife–a review. Biometrika 1974; 61, 1–15. doi:10.1093/biomet/61.1.1
35. Efron B, The jackknife, the bootstrap and other resampling plans, Society for industrial and applied mathematics, 1982.
36. Friedl H, Stampfer E. Jackknife resampling. Encyclopedia of Environmetrics, 2, Eds.: A. El- Shaarawi, W. Piegorsch, Wiley: Chichester, 2002a; 1089-1098.

37. Tibshirani RJ, Efron B. An introduction to the bootstrap. Monographs on statistics and applied probability, 1993; 57, 1-436.

38. Friedl H, Stampfer E. Resampling methods. Encyclopedia of Environmetrics. 3, Eds. A. El- Shaarawi, W. Piegorsch, Wiley: Chichester, 2002b; 1768-1770.

39. Topuz D. Clinical Data Obtained for Prediction of the Weight of the Newborn Analysis with Classical and Fuzzy Linear Regression Models, Turkiye Klinikleri J Biostat, 2020; 12, 320-34. Doi: 10.5336/biostatic.2020-74850

40. Kliegman RM, Behrman RE, Jenson HB, Stanton BM. Nelson textbook of pediatrics e-book, Elsevier Health Sciences, 2007.
41. Daştan Gürler S, Boran P. Ebeveyn antropometrik ölçümlerinin çocuk baş çevresi üzerine etkisi, Çocuk Dergisi, 2018; 18, 113-120 . Doi: 10.5222/j.child.2018.04880.
42. Weaver DD, Christian JC. Familial variation of head size and adjustment for parental head circumference, The Journal of Pediatrics, 1980; 96, 990-994. Doi: 10.1016/S0022-3476(80)80623-8.
43. Sawada A, Ikeda H, Kimura-Ohba, Matsuzawa, Awaya T, Shiotani, et al. Head growth evaluation in early childhood, from the Japan Children's study, Pediatrics International, 2010; 52, 343-346. doi.org/10.1111/j.1442-200X.2009.03002.x
44. Christiane S, Holle G, Michael H. The association between weight, height and head circumference reconsidered, Pediatric Research, 2017; 81, 825-830. doi:10.1038/pr.2017.3
45. Adhiambo S, Makumı N, Odhıambo R, Orwa G. On jackknife confidence ıntervals assocıated with nonparametrıc regressıon estımators for a finite population total, East African Journal Of Statistics,2017;5,41-48.
46. Ariani D, Nasution Y.N, Yuniarti D. Perbandingan metode bootstrap dan jackknife resampling dalam menentukan nilai estimasi dan ınterval kontingensi parameter regresi, Jurnal Eksponensial, 2017; 8, 43-50.
47. Fernandes AAR, et al. Metode Statistika Multivariat Pemodelan Persamaan Struktural (SEM) Pendekatan WarpPLS. Universitas Brawijaya Press, 2017.