Synthesis, Characterization, and Antimicrobial Potential of Some Chlorinated Benzofuran Chalcones

Main Article Content

Demet Coskun
Semih Dalkilic
Lutfiye Kadioglu Dalkilic
Mehmet Fatih Coskun

Keywords

Benzofuran, chalcone, antimicrobial effects, Chloro-benzofuran chalcone hybrids

Abstract

Study Objectives: The reaction of 5-chlorosaliciylaldehyde with chloroacetone and potassium carbonate was used to prepare 1-(5-chloro-1-benzofuran-2-yl) ethanone (1) for starting reagent purposes. A new series of 1-(5-chloro-1-benzofuran-2-yl) ethanone-substituted chalcones 3a-i was synthesized using different substituted aromatic aldehydes in basic conditions by the Claisen–Schmidt condensation reaction. Materials and Methods: Structural analysis of the synthesized compounds was characterized by FT-IR and 1H-13C-NMR spectroscopy techniques. The antimicrobial properties of the chalcone derivatives (3a-i) were evaluated against the bacterial strains Escherichia coli ATCC 25322, Klebsiella pneumoniae ATCC70060, Bacillus megaterium, Staphylococcus aureus using the Agar well method. Results: New synthesized compounds demonstrated significant level antimicrobial activity against all bacteria. Conclusion: We described the synthesis of a new series of chloro-benzofuran chalcone hybrids as possible antibacterial agents in this paper.

Abstract 711 | PDF Downloads 274

References

Zhuang CL, Zhang W, Sheng CQ, Zhang WN, Xing CG, Miao ZY. C3 amino-substituted chalcone derivative with selective adenosine rA1 receptor affinity in the micromolar range. Chem. Rev 2017; 117:7762-7810. https://doi.org/10.1021/acs.chemrev.7b00020.
2. Shah DR, Lakum HP, Chikhalia KH. Synthesis and in vitro antimicrobial evaluation of piperazine substituted quinazoline-based thiourea/thiazolidinone/chalcone hybrids. Russ. J. Bioorg. Chem 2015; 41-2: 209-222. https://doi.org/10.1134/S1068162015020132.
3. Rozmer Z, Perjesi P. Naturally occurring chalcones and their biological activities. Phytochem Rev 2016; 15:87-120. https://doi.org/10.1007/s11101-014-9387-8.
4. Bonakdar APS, Sadeghi A, Aghaei HR, Beheshtimaal K, Nazifi SMR, Massah AR. Convenient synthesis of novel chalcone and pyrazoline sulfonamide derivatives as potential antibacterial agents, Russ. J. Bioorg Chem 2020; 46-3:371-381. https://doi.org/10.1134/S1068162020030048.
5. Aly MRE, Ibrahim El-Sayed I, El Shahed FA, Soliman HA, Ibrahim ZS. Synthesis of some quinolinyl chalcone analogues and investigation of their anticancer and synergistic anticancer effect with doxorubicin. S.A.M., Russ. Bioorg Chem 2012; 38:428-434. https://doi.org/10.1134/S1068162012030119.
6. Twinkle AR, Leenaraj DR, Ratkovic Z, Arunsasi BS, Bright KC, Reshma R. Ferrocenyl chalcone derivative (E)-3-(2-methylpyrimidin-5-yl)-1-ferroceynlprop-2-en-1-one: Synthesis, Structural analysis, Docking study and their Antibacterial evaluation J Mol Struc 2020; 1210:128049. https://doi.org/10.1016/j.molstruc.2020.128049.
7. Zhou B, Xing C. Diverse molecular targets for chalcones with varied bioactivities Med Chem 2015; 5:388-404. https://doi.org/10.4172/2161-0444.1000291.
8. Ustabas R, Suleymanoglu N, Ozdemir N, Kahriman N, Bektas E. New Chalcone Derivative: Synthesis, Characterization, Computational Studies and Antioxidant Activity. Unver, Y. Lett Org Chem 2020; 17:46-53. https://doi.org/10.2174/1570178616666181130163115.
9. Venkatesh T, Bodke YD, Joy NM, Vinods BM, Shiralgi Y, Dhananjaya BL. Synthesis of Some Novel 5, 7-Disubstituted-2-phenyl-5H-[1, 3, 4] thiadiazolo [3, 2-a] pyrimidine Derivatives and Evaluation of Their Biological Activity. Lett. Org. Chem. 2016; 13:661-671. https://doi.org/ 10.1174/1570178613666161017113113.
10. Rao YK, Fang SH, Tzeng YM. Synthesis and biological evaluation of 3′, 4′, 5′-trimethoxychalcone analogues as inhibitors of nitric oxide production and tumor cell proliferation. Bioorg Med Chem 2009; 17:7909-7914. https://doi.org/10.1016/j.bmc.2009.10.022.
11. Katsori AM, Hadjipavlou-Litina D. Chalcones in cancer Curr Med Chem 2009; 16:1062-1081. https://doi.org/10.2174/092986709787581798.
12. Garcia TR, de Freitas TS, dos Santos HS, et al. Structural, vibrational and electrochemical analysis and antibiotic activity study of chalcone (2E)-1-(3ʹ,-methoxy-4ʹ,-hydroxyphenyl)-3-(3-nitrophenyl) prop-2-en-1-one J Mol Struc 2020; 1216:128358. https://doi.org/10.1016/j.molstruc.2020.128358.
13. Cushnie TPT, Lamb AJ. Recent Advances in Understanding the Antibacterial Properties of Flavonoids Int. J Antimicrob Agents 2011; 38:99-107. https://doi.org/10.1016/j.ijantimicag.2011.02.014.
14. Chu WC, Bai PY, Yang ZQ, et al. Synthesis and antibacterial evaluation of novel cationic chalcone derivatives possessing broad spectrum antibacterial activity. Eur J Med Chem 2018; 143:905-921. https://doi.org/10.1016/j.ejmech.2017.12.009.
15. El Shehry MF, Ghorab MM, Abbas SY, Fayed EA, Shedid SA, Ammar YA. Quinoline derivatives bearing pyrazole moiety: synthesis and biological evaluation as possible antibacterial and antifungal agents. Eur J Med Chem 2018, 143:1463-1473. https://doi.org/10.1016/j.ejmech.2017.10.046.
16. Vazquez-Rodriguez S, Lopez RL, Matos MJ, et al. Design, synthesis and antibacterial study of new potent and selective coumarin–chalcone derivatives for the treatment of tenacibaculosis. Med Chem 2015; 23:7045-7052. https://doi.org/10.1016/j.bmc.2015.09.028.
17. Wei ZY, Chi KQ, Yu ZK, et al. Synthesis and biological evaluation of chalcone derivatives containing aminoguanidine or acylhydrazone moieties. Med Chem Lett 2016; 26:5920-5925. https://doi.org/10.1016/j.bmcl.2016.11.001.
18. Eren G, Uslu S, Nunez MT, et al. Synthesis, biological evaluation, and docking studies of novel heterocyclic diaryl compounds as selective COX-2 inhibitors. Bioorg Med Chem 2010; 18:6367-6376. https://doi.org/10.1016/j.bmc.2010.07.009.
19. Gordon EM, Barrett RW, Dower WJ, Fodor SPA, Gallop MA. Applications of Combinatorial Technologies to Drug Discovery. 2. Combinatorial Organic Synthesis J Med Chem 1994; 37:1385-1401. https://doi.org/10.1021/jm00036a001.
20. Kao CL, Chern JN. A convenient synthesis of naturally occurring benzofuran ailanthoidol. Tetrahedron Lett 2001; 42:1111-1113. https://doi.org/10.1016/S0040-4039(00)02163-8.
21. Spaniol M, Bracher R, Ha HR, Follath F, Krahenbuhl S. Toxicity of amiodarone and amiodarone analogues on isolated rat liver mitochondria. J Hepatol 2001; 35:628-636. https://doi.org/10.1016/S0168-8278(01)00189-1.
22. Narimatsu S, Takemi C, Kuramoto S, et al. Stereoselectivity in the oxidation of bufuralol, a chiral substrate, by human cytochrome P450s. Chirality 2003; 15:333-339. https://doi.org/10.1002/chir.10212.
23. Coskun D, Tekin S, Sandal S, Coskun MF. Synthesis, characterization, and anticancer activity of new benzofuran substituted chalcones J Chem 2016; 2016:1-8. https://doi.org/10.1155/2016/7678486.
24. Coskun D, Erkisa M, Ulukaya E, Coskun MF, Ari F. Novel 1-(7-ethoxy-1-benzofuran-2-yl) substituted chalcone derivatives: synthesis, characterization and anticancer activity. Eurp J Med Chem 2017; 136:212-222. https://doi.org/10.1016/j.ejmech.2017.05.017.
25. Wilcken R, Zimmermann MO, Lange A, Joerger AC, Boeckler FM. Principles and applications of halogen bonding in medicinal chemistry and chemical biology J Med Chem 2013; 56:1363-1388. https://doi.org/10.1021/jm3012068.
26. Zimmermann MO, Lange A, Wilcken R, et al. Halogen-enriched fragment libraries as chemical probes for harnessing halogen bonding in fragment-based lead discovery Future Med Chem 2014; 6:617-639. https://doi.org/10.4155/FMC.14.20.
27. Xu M, Wu PY, Shen F, Ji JY, Rakesh KP. Chalcone derivatives and their antibacterial activities: Current development. Bioorg Chem 2019; 91:103133. https://doi.org/10.1016/j.bioorg.2019.103133.
28. Park S, Magar TBT, Kadayat TM, et al. Rational design, synthesis, and evaluation of novel 2, 4-Chloro-and Hydroxy-Substituted diphenyl Benzofuro [3, 2-b] Pyridines: Non-intercalative catalytic topoisomerase I and II dual inhibitor. Eur J Med Chem 2017; 127:318-333. https://doi.org/10.1016/j.ejmech.2017.01.003.
29. Coskun D, Ahmedzade M, Kirbag S. 3-(Substituted aryl)-1-benzofuranyl-2-propenones: antimicrobial properties of some chalcones-type compounds and their 2-pyrazoline derivatives. E J Chem 2011; 8:1574-1581. https://doi.org/10.1155/2011/806854.
30. Abdel-Wahab BF, Abdel-Aziz HA, Ahmed EM. Synthesis and antimicrobial evaluation of 1-(benzofuran-2-yl)-4-nitro-3-arylbutan-1-ones and 3-(benzofuran-2-yl)-4, 5-dihydro-5-aryl-1-[4-(aryl)-1, 3-thiazol-2-yl]-1H-pyrazoles. Europ J Med Chem 2009; 44:2632-2635. https://doi.org/ 10.1016/j.ejmech.2008.09.029.
31. Balouiri M, Sadiki M, Ibnsouda SK. Methods for in vitro evaluating antimicrobial activity: A review J Pharm Analy 2016; 6:71-79. https://doi.org/10.1016/j.jpha.2015.11.005.
32. Collins CM, Lyne PM. Microbiological Methods Butter Morths & Co (Publishers) Ltd. London. 1987.
33. Dalkilic LK, Inci S, Dalkilic S, Kirbag S. (2020). Investigation Of Antimicrobial, Antioxidant And Anticancer Effects Of Traditional Spices Mıx. Feb Fresenius Environmental Bulletin, 8682.
34. Aytar M, Oryasin E, Basbulbul G, Bozdoğan B. Functional Redundancy between β1 and β3 Integrin in Activating the IR/Akt/mTORC1 Signaling Axis to Promote ErbB2-Driven Breast Cancer. Bartin Univ Inter J Natural and App Sci 2019; 2:138-145.
35. Guzeldag G, Kadioglu L, Mercimek A, Matyar F. Peliminary examination of herbal extracts on the inhibition of Helicobacter Pylori. Afr J Tradit Comp Altern Med 2014; 11:93-96. http://dx.doi.org/10.4314/ajtcam.v11i1.13.
36. Kakar M, Amin MU, Alghamdi S, Sahibzada MUK, Ahmad N, Ullah N. Antimicrobial, Cytotoxic, and Antioxidant Potential of a Novel Flavone “6, 7, 4′-Trimethyl Flavone” Isolated from Wulfenia amherstiana. Evidence-Based Comp Alter Med 2020; 2020:1-12. https://doi.org/10.1155/2020/3903682.
37. Arikan S. Current status of antifungal susceptibility testing methods. Med Mycol 2007; 45:569-87. https://doi.org/10.1080/13693780701436794
38. Dalkılıç S, Dalkılıç LK, Korkmaz İ. Geleneksel Kahvaltılık Zahterin Antimikrobiyal Etkisi.Gumushane Univ J Sci Tech 2020; 10:128-133. https://doi.org/10.17714/gumusfenbil.579489.
39. Venkatesh T, Bodke YD, Joy MN, Dhananjaya BL, Venkataraman S. Synthesis of Some Benzofuran Derivatives Containing Pyrimidine Moiety as Potent Antimicrobial Agents. Iranian journal of pharmaceutical research 2018; 17-1: 75–86.
40. Mostofi M, Mohammadi Ziarani G, Mahdavi M, Moradi A, Nadri H, Emami S, Alinezhad H, Foroumadi A, Shafiee A. Synthesis and structure-activity relationship study of benzofuran-based chalconoids bearing benzylpyridinium moiety as potent acetylcholinesterase inhibitors. Eur J Med Chem. 2015; 20:103-361-9. doi: 10.1016/j.ejmech.2015.08.061. Epub 2015 Sep 3. PMID: 26363872.
41. Abdel-Wahab BF, Abdel-Aziz HA, Ahmed EM. Synthesis and antimicrobial evaluation of 1-(benzofuran-2-yl)-4-nitro-3-arylbutan-1-ones and 3-(benzofuran-2-yl)-4,5-dihydro-5-aryl-1-[4-(aryl)-1,3-thiazol-2-yl]-1H-pyrazoles. Eur J Med Chem. 2009; 44:6-2632-5. doi: 10.1016/j.ejmech.2008.09.029. Epub 2008 Oct 2. PMID: 18995932.
42. Chundawat TS, Sharma N, Bhagat S. Microwave assisted synthesis and in vitro antimicrobial activities of fluorine containing 4-benzofuran-2-yl-6-phenyl-pyrimidin-2-ylamines. Med Chem. 2014; 10:409-17. doi: 10.2174/15734064113099990036. PMID: 23909289.
43. Tiwari KN, Monserrat JP, Hequet A, Ganem-Elbaz C, Cresteil T, Jaouen G, Vessières A, Hillard EA, Jolivalt C. In vitro inhibitory properties of ferrocene-substituted chalcones and aurones on bacterial and human cell cultures. Dalton Trans. 2012; 7:41-21-6451-7. doi: 10.1039/c2dt12180h. Epub 2012 Jan 12. PMID: 22240736.
44. Nassar E, El-Badry YA, El Kazaz H. Synthesis, in Vivo Anti-inflammatory, and in Vitro Antimicrobial Activity of New 5-Benzofuranyl Fused Pyrimidines. Chem Pharm Bull (Tokyo). 2016; 64:558-63. doi: 10.1248/cpb.c15-00922. PMID: 27250790.