Effects of Liraglutide Combined with Low Fat Diet on Neural and Thermogenic Activities of 5' - AMPK in the Hypothalamus: Expectations

Main Article Content

Hayder Al-Domi
Raida Khalil
Nour Batarseh

Keywords

Keywords: liraglutide, glucagon like peptide-1 agonist, hypothalamus, Nuroprotective, 5'-AMP-activated protein kinase, thermogenesis, low fat diet, high fat diet, and obesity.

Abstract

Background: Medical nutrition therapy is essential in managing and preventing diseases. Liraglutide is among glucagon-like peptide-1(GLP-1) agonists’ play a critical role in managing weight as they could modulate the effectiveness of 5’ AMP-activated protein kinase (5'-AMPK) in the hypothalamus. Additionally, the neural activity of 5'-AMPK is negatively affected by high-fat diets; and it remains unclear how low-fat diets combined with liraglutide could counteract this effect. Objectives: To investigate the effects of a high-fat diet on the neural and thermogenic activities of 5’ –AMPK in the hypothalamus and the possible effects of combining a low-fat diet with a liraglutide regimen on 5’ –AMPK activity in the hypothalamus. Methods: We searched the available literature for articles published in PubMed, Science Direct, and ClinicaTrials.gov between November/2020 and January /2021, published in 6 years, and we included controlled clinical trials. Findings: A total 108 out of 230 articles included in our search, and findings revealed that high-fat diets negatively influence liraglutide and 5'-AMPK in the hypothalamus. In contrast, a low-fat diet could reverse this negative influence if combined with a dose of 1.8-3 mg/kg of liraglutide for up to 16 weeks. Conclusion: 5'-AMPK stimulates energy production in peripheral tissues, improves metabolic status, and liraglutide controls food intake in the hypothalamus, but high-fat diets counteract previously mentioned effects of liraglutide and 5'-AMPK. We found no adequate studies that adequately examined the effect of a low-fat diet on liraglutide and 5'-AMPK; hence, our concern was reviewing and predicting the possible effect of low-fat diets. 


 


 


 

Abstract 377 | PDF Downloads 249

References

1. Mallorquí-Bagué N, Lozano-Madrid M, Toledo E, et al. Type 2 diabetes and cognitive impairment in an older population with overweight or obesity and metabolic syndrome: baseline cross-sectional analysis of the PREDIMED-plus study. Sci Rep. 2018;8(1):16128. Published 2018 Oct 31. doi:10.1038/s41598-018-33843-8
2. Zhang Y, Hou LS, Tang WW, Xu F, Xu RH, Liu X, Liu Y, Liu JX, Yi YJ, Hu TS, Hu R, Wang TD, Huang XB. High. Prevalence of obesity-related hypertension among adults aged 40 to 79 years in Southwest China. Sci Rep. 2019.Nov 1; 9(1):15838. doi: 10.1038/s41598-019-52132-6. PMID: 31676873; PMCID: PMC6825242.
3. Wong MCS, Huang J, Wang J, et al. Global, regional and time-trend prevalence of central obesity: a systematic review and meta-analysis of 13.2 million subjects. Eur J Epidemiol. 2020;35(7):673-683. doi:10.1007/s10654-020-00650-3
4. Apovian CM. Obesity: definition, comorbidities, causes, and burden. Am J Manag Care. 2016;22(7 Suppl):s176-s185.
5. Silveira EA, de Souza Rosa LP, de Carvalho Santos ASEA, de Souza Cardoso CK, Noll M. Type 2 Diabetes Mellitus in Class II and III Obesity: Prevalence, Associated Factors, and Correlation between Glycemic Parameters and Body Mass Index. Int J Environ Res Public Health. 2020;17(11):3930. Published 2020 Jun 2. doi:10.3390/ijerph17113930.
6. Hoch D, Gauster M, Hauguel-de Mouzon S, Desoye G. Diabesity-associated oxidative and inflammatory stress signalling in the early human placenta. Mol Aspects Med. 2019;66:21-30. doi:10.1016/j.mam.2018.11.002.
7. Cheke LG, Bonnici HM, Clayton NS, Simons JS. Obesity and insulin resistance are associated with reduced activity in core memory regions of the brain. Neuropsychologia. 2017;96:137-149. doi:10.1016/j.neuropsychologia.2017.01.013
8. Castro JP, Wardelmann K, Grune T, Kleinridders A. Mitochondrial Chaperones in the Brain: Safeguarding Brain Health and Metabolism?. Front Endocrinol (Lausanne). 2018;9:196. Published 2018 Apr 26. doi:10.3389/fendo.2018.00196
9. Cardoso S, Moreira PI. Diabesity and brain disturbances: A metabolic perspective. Mol Aspects Med. 2019;66:71-79. doi:10.1016/j.mam.2018.10.002
10. Fatkhullina, A. R., Peshkova, I. O., & Koltsova, E. K. (2016). The Role of Cytokines in the Development of Atherosclerosis. Biochemistry. Biokhimiia, 81(11), 1358–1370. https://doi.org/10.1134/S0006297916110134
11. Wang M, Yang Y, Liao Z. Diabetes and cancer: Epidemiological and biological links. World J Diabetes. 2020;11(6):227-238. doi:10.4239/wjd.v11.i6.227
12. Akiyama S, Ogiwara T, Aoki T, Tsunekawa K, Araki O, Murakami M. Glucagon-like peptide-1 stimulates type 3 iodothyronine deiodinase expression in a mouse insulinoma cell line. Life Sci. 2014;115(1-2):22-28. doi:10.1016/j.lfs.2014.09.004
13. Hermayer KL, Dake A. Newer oral and noninsulin therapies to treat type 2 diabetes mellitus. Cleve Clin J Med. 2016;83(5 Suppl 1):S18-S26. doi:10.3949/ccjm.83.s1.04
14. Farr OM, Sofopoulos M, Tsoukas MA, et al. GLP-1 receptors exist in the parietal cortex, hypothalamus and medulla of human brains and the GLP-1 analogue liraglutide alters brain activity related to highly desirable food cues in individuals with diabetes: a crossover, randomised, placebo-controlled trial. Diabetologia. 2016;59(5):954-965. doi:10.1007/s00125-016-3874-y
15. Roth CL, Perez FA, Whitlock KB, et al. A phase 3 randomized clinical trial using a once-weekly glucagon-like peptide-1 receptor agonist in adolescents and young adults with hypothalamic obesity. Diabetes Obes Metab. 2021; 23(2):363-373. doi:10.1111/dom.14224
16. Beiroa D, Imbernon M, Gallego R, et al. GLP-1 agonism stimulates brown adipose tissue thermogenesis and browning through hypothalamic AMPK. Diabetes. 2014;63(10):3346-3358. doi:10.2337/db14-0302
17. Horowitz M, Aroda VR, Han J, Hardy E, Rayner CK. Upper and/or lower gastrointestinal adverse events with glucagon-like peptide-1 receptor agonists: Incidence and consequences. Diabetes Obes Metab. 2017; 19(5):672-681. doi:10.1111/dom.12872
18. Matikainen N, Söderlund S, Björnson E, et al. Liraglutide treatment improves postprandial lipid metabolism and cardiometabolic risk factors in humans with adequately controlled type 2 diabetes: A single-centre randomized controlled study. Diabetes Obes Metab. 2019; 21(1):84-94. doi:10.1111/dom.13487
19. Müller TD, Finan B, Bloom SR, et al. Glucagon-like peptide 1 (GLP-1). Mol Metab. 2019; 30: 72-130. doi:10.1016/j.molmet.2019.09.010
20. Overgaard RV, Lindberg SØ, Thielke D. Impact on HbA1c and body weight of switching from other GLP-1 receptor agonists to semaglutide: A model-based approach. Diabetes Obes Metab. 2019;21(1):43-51. doi:10.1111/dom.13479
21. Suganuma Y, Shimizu T, Sato T, et al. Magnitude of slowing gastric emptying by glucagon-like peptide-1 receptor agonists determines the amelioration of postprandial glucose excursion in Japanese patients with type 2 diabetes. J Diabetes Investig. 2020; 11(2):389-399. doi:10.1111/jdi.13115
22. Liu H, Xu Y, Hu F. AMPK in the Ventromedial Nucleus of the Hypothalamus: A Key Regulator for Thermogenesis. Front Endocrinol (Lausanne). 2020; 11:578830. Published 2020 Sep 23. doi:10.3389/fendo.2020.578830
23. Wu L, Zhang L, Li B, et al. AMP-Activated Protein Kinase (AMPK) Regulates Energy Metabolism through Modulating Thermogenesis in Adipose Tissue. Front Physiol. 2018; 9:122. Published 2018 Feb 21. doi:10.3389/fphys.2018.00122
24. Wang B, Cheng KK. Hypothalamic AMPK as a Mediator of Hormonal Regulation of Energy Balance. Int J Mol Sci. 2018; 19(11):3552. Published 2018 Nov 11. doi:10.3390/ijms19113552
25. Yang Y, Fang H, Xu G, et al. Liraglutide improves cognitive impairment via the AMPK and PI3K/Akt signaling pathways in type 2 diabetic rats. Mol Med Rep. 2018; 18(2):2449-2457. doi:10.3892/mmr.2018.9180
26. Andreozzi, F., Raciti, G.A., Nigro, C. et al. The GLP-1 receptor agonists exenatide and liraglutide activate Glucose transport by an AMPK-dependent mechanism. J Transl Med 14, 229 (2016). https://doi.org/10.1186/s12967-016-0985-7
27. Jojima T, Uchida K, Akimoto K, et al. Liraglutide, a GLP-1 receptor agonist, inhibits vascular smooth muscle cell proliferation by enhancing AMP-activated protein kinase and cell cycle regulation, and delays atherosclerosis in ApoE deficient mice. Atherosclerosis. 2017;261:44-51. doi:10.1016/j.atherosclerosis.2017.04.001
28. Xu F, Cao H, Chen Z, et al. Short-term GLP-1 receptor agonist exenatide ameliorates intramyocellular lipid deposition without weight loss in ob/ob mice. Int J Obes (Lond). 2020;44(4):937-947. doi:10.1038/s41366-019-0513-y
29. Hao T, Zhang H, Li S, Tian H. Glucagon-like peptide 1 receptor agonist ameliorates the insulin resistance function of islet β cells via the activation of PDX-1/JAK signaling transduction in C57/BL6 mice with high-fat diet-induced diabetes. Int J Mol Med. 2017;39(4):1029-1036. doi:10.3892/ijmm.2017.2910
30. Schönke M, Massart J, Zierath JR. Effects of high-fat diet and AMP-activated protein kinase modulation on the regulation of whole-body lipid metabolism. J Lipid Res. 2018;59(7):1276-1282. doi:10.1194/jlr.D082370
31. Institute of Medicine (US) Committee on Standards for Systematic Reviews of Comparative Effectiveness Research, Eden J, Levit L, Berg A, Morton S, eds. Finding What Works in Health Care: Standards for Systematic Reviews. Washington (DC): National Academies Press (US); 2011.
32. Maurer L, Mai K, Krude H, Haynes JD, Weygandt M, Spranger J. Interaction of circulating GLP-1 and the response of the dorsolateral prefrontal cortex to food-cues predicts body weight development. Mol Metab. 2019;29:136-144. doi:10.1016/j.molmet.2019.08.014
33. Weygandt M, Mai K, Dommes E, et al. Impulse control in the dorsolateral prefrontal cortex counteracts post-diet weight regain in obesity. Neuroimage. 2015;109:318-327. doi:10.1016/j.neuroimage.2014.12.073
34. Kahathuduwa CN, Davis T, O'Boyle M, et al. Effects of 3-week total meal replacement vs. typical food-based diet on human brain functional magnetic resonance imaging food-cue reactivity and functional connectivity in people with obesity. Appetite. 2018; 120:431-441. doi:10.1016/j.appet.2017.09.025
35. Maejima Y, Kato S, Horita S, et al. The hypothalamus to brainstem circuit suppresses late-onset body weight gain. Sci Rep. 2019; 9(1):18360. Published 2019 Dec 4. doi:10.1038/s41598-019-54870-z
36. de Lartigue G. Role of the vagus nerve in the development and treatment of diet-induced obesity. J Physiol. 2016; 594(20):5791-5815. doi:10.1113/JP271538
37. Madsen, M., Holm, J. B., Pallejà, A., Wismann, P., Fabricius, K., Rigbolt, K., Mikkelsen, M., Sommer, M., Jelsing, J., Nielsen, H. B., Vrang, N., and Hansen, H. H. (2019). Metabolic and gut microbiome changes following GLP-1 or dual GLP-1/GLP-2 receptor agonist treatment in diet-induced obese mice. Scientific reports, 9(1), 15582. https://doi.org/10.1038/s41598-019-52103-x
38. Raider K, Ma D, Harris JL, et al. A high fat diet alters metabolic and bioenergetic function in the brain: A magnetic resonance spectroscopy study. Neurochem Int. 2016;97:172-180. doi:10.1016/j.neuint.2016.04.008
39. Kothari V, Luo Y, Tornabene T, et al. High fat diet induces brain insulin resistance and cognitive impairment in mice. Biochim Biophys Acta Mol Basis Dis. 2017; 1863(2):499-508. doi:10.1016/j.bbadis.2016.10.006
40. Cavaliere G, Viggiano E, Trinchese G, et al. Long Feeding High-Fat Diet Induces Hypothalamic Oxidative Stress and Inflammation, and Prolonged Hypothalamic AMPK Activation in Rat Animal Model. Front Physiol. 2018; 9: 818. Published 2018 Jul 6. doi:10.3389/fphys.2018.00818
41. Feillet-Coudray C, Fouret G, Vigor C, et al. Long-Term Measures of Dyslipidemia, Inflammation, and Oxidative Stress in Rats Fed a High-Fat/High-Fructose Diet. Lipids. 2019; 54(1):81-97. doi:10.1002/lipd.12128
42. Pakiet, A., Jakubiak, A., Czumaj, A. et al. The effect of western diet on mice brain lipid composition. Nutr Metab (Lond) 16, 81 (2019). https://doi.org/10.1186/s12986-019-0401-4
43. Labban RSM, Alfawaz H, Almnaizel AT, et al. High-fat diet-induced obesity and impairment of brain neurotransmitter pool. Transl Neurosci. 2020; 11(1):147-160. Published 2020 Jun 1. doi:10.1515/tnsci-2020-0099
44. Cavaliere G, Trinchese G, Penna E, et al. High-Fat Diet Induces Neuroinflammation and Mitochondrial Impairment in Mice Cerebral Cortex and Synaptic Fraction. Front Cell Neurosci. 2019; 13: 509. Published 2019 Nov 12. doi:10.3389/fncel.2019.00509
45. American Diabetes Association. Obesity management for the treatment of type 2 diabetes. Sec. 6. In Standards of Medical Care in Diabetes (2016). Diabetes Care, 39(1), 47–51. https://doi.org/10.2337/dc16-S009.
46. Drucker DJ. Mechanisms of Action and Therapeutic Application of Glucagon-like Peptide-1. Cell Metab. 2018; 27(4):740-756. doi:10.1016/j.cmet.2018.03.001
47. Wang L, Li P, Tang Z, Yan X, Feng B. Structural modulation of the gut microbiota and the relationship with body weight: compared evaluation of liraglutide and saxagliptin treatment. Sci Rep. 2016; 6: 33251. Published 2016 Sep 16. doi:10.1038/srep33251
48. Zhao L, Chen Y, Xia F, et al. A Glucagon-Like Peptide-1 Receptor Agonist Lowers Weight by Modulating the Structure of Gut Microbiota. Front Endocrinol (Lausanne). 2018; 9:233. Published 2018 May 17. doi:10.3389/fendo.2018.00233.
49. Zhou JY, Poudel A, Welchko R, et al. Liraglutide improves insulin sensitivity in high fat diet induced diabetic mice through multiple pathways. Eur J Pharmacol. 2019; 861:172594. doi:10.1016/j.ejphar.2019.172594
50. Hayes MR, Leichner TM, Zhao S, et al. Intracellular signals mediating the food intake-suppressive effects of hindbrain glucagon-like peptide-1 receptor activation [published correction appears in Cell Metab. 2016 Apr 12;23(4):745]. Cell Metab. 2011; 13(3):320-330. doi:10.1016/j.cmet.2011.02.001
51. Ma D, Liu X, Liu J, et al. Long-term liraglutide ameliorates nigrostriatal impairment via regulating AMPK/PGC-1a signaling in diabetic mice. Brain Res. 2019; 1714:126-132. doi:10.1016/j.brainres.2019.02.030
52. Holt MK, Richards JE, Cook DR, et al. Preproglucagon Neurons in the Nucleus of the Solitary Tract Are the Main Source of Brain GLP-1, Mediate Stress-Induced Hypophagia, and Limit Unusually Large Intakes of Food. Diabetes. 2019; 68(1):21-33. doi:10.2337/db18-0729
53. Song Y, Koehler JA, Baggio LL, Powers AC, Sandoval DA, Drucker DJ. Gut-Proglucagon-Derived Peptides Are Essential for Regulating Glucose Homeostasis in Mice. Cell Metab. 2019;30(5):976-986.e3. doi:10.1016/j.cmet.2019.08.009
54. Kim SH, Abbasi F, Nachmanoff C, et al. Effect of the glucagon-like peptide-1 analogue liraglutide versus placebo treatment on circulating proglucagon-derived peptides that mediate improvements in body weight, insulin secretion and action: A randomized controlled trial. Diabetes Obes Metab. 2021; 23(2):489-498. doi:10.1111/dom.14242
55. Secher A, Jelsing J, Baquero AF, et al. The arcuate nucleus mediates GLP-1 receptor agonist liraglutide-dependent weight loss. J Clin Invest. 2014; 124(10):4473-4488. doi:10.1172/JCI75276
56. Swick, J., Alhadeff, A., Grill, H. et al. Parabrachial Nucleus Contributions to Glucagon-Like Peptide-1 Receptor Agonist-Induced Hypophagia. Neuropsychopharmacol 40, 2001–2014 (2015). https://doi.org/10.1038/npp.2015.50
57. Fortin SM, Chen J, Hayes MR. Hindbrain melanocortin 3/4 receptors modulate the food intake and body weight suppressive effects of the GLP-1 receptor agonist, liraglutide. Physiol Behav. 2020; 220:112870. doi:10.1016/j.physbeh.2020.112870
58. Barreto-Vianna AR, Aguila MB, Mandarim-de-Lacerda CA. Effects of liraglutide in hypothalamic arcuate nucleus of obese mice. Obesity (Silver Spring). 2016;24(3):626-633. doi:10.1002/oby.21387
59. Barreto-Vianna ARC, Aguila MB, Mandarim-de-Lacerda CA. Beneficial effects of liraglutide (GLP1 analog) in the hippocampal inflammation. Metab Brain Dis. 2017;32(5):1735-1745. doi:10.1007/s11011-017-0059-4
60. Li Y, Bader M, Tamargo I, et al. Liraglutide is neurotrophic and neuroprotective in neuronal cultures and mitigates mild traumatic brain injury in mice. J Neurochem. 2015;135(6):1203-1217. doi:10.1111/jnc.13169
61. Kaineder K, Birngruber T, Rauter G, et al. Chronic intrahypothalamic rather than subcutaneous liraglutide treatment reduces body weight gain and stimulates the melanocortin receptor system. Int J Obes (Lond). 2017; 41(8):1263-1270. doi:10.1038/ijo.2017.98
62. Babateen O, Korol SV, Jin Z, Bhandage AK, Ahemaiti A, Birnir B. Liraglutide modulates GABAergic signaling in rat hippocampal CA3 pyramidal neurons predominantly by presynaptic mechanism. BMC Pharmacol Toxicol. 2017;18(1):83. Published 2017 Dec 16. doi:10.1186/s40360-017-0191-0
63. Bao Y, Jiang L, Chen H, Zou J, Liu Z, Shi Y. The Neuroprotective Effect of Liraglutide is Mediated by Glucagon-Like Peptide 1 Receptor-Mediated Activation of cAMP/PKA/CREB Pathway. Cell Physiol Biochem. 2015;36(6):2366-2378. doi:10.1159/000430199
64. Que Q, Guo X, Zhan L, et al. The GLP-1 agonist, liraglutide, ameliorates inflammation through the activation of the PKA/CREB pathway in a rat model of knee osteoarthritis. J Inflamm (Lond). 2019; 16:13. Published 2019 Jun 6. doi:10.1186/s12950-019-0218-y
65. Gaykema RP, Newmyer BA, Ottolini M, et al. Activation of murine pre-proglucagon-producing neurons reduces food intake and body weight. J Clin Invest. 2017; 127(3):1031-1045. doi:10.1172/JCI81335
66. Liu J, Conde K, Zhang P, et al. Enhanced AMPA Receptor Trafficking Mediates the Anorexigenic Effect of Endogenous Glucagon-like Peptide-1 in the Paraventricular Hypothalamus. Neuron. 2017; 96(4):897-909.e5. doi:10.1016/j.neuron.2017.09.042
67. Adams JM, Pei H, Sandoval DA, et al. Liraglutide Modulates Appetite and Body Weight Through Glucagon-Like Peptide 1 Receptor-Expressing Glutamatergic Neurons. Diabetes. 2018; 67(8):1538-1548. doi:10.2337/db17-1385
68. López-Ferreras L, Richard JE, Noble EE, et al. Lateral hypothalamic GLP-1 receptors are critical for the control of food reinforcement, ingestive behavior and body weight. Mol Psychiatry. 2018; 23(5):1157-1168. doi:10.1038/mp.2017.187
69. Garcia D, Shaw RJ. AMPK: Mechanisms of Cellular Energy Sensing and Restoration of Metabolic Balance. Mol Cell. 2017; 66(6):789-800. doi:10.1016/j.molcel.2017.05.032
70. Okamoto S, Sato T, Tateyama M, et al. Activation of AMPK-Regulated CRH Neurons in the PVH is Sufficient and Necessary to Induce Dietary Preference for Carbohydrate over Fat. Cell Rep. 2018; 22(3):706-721. doi:10.1016/j.celrep.2017.11.102
71. Alvarez-Crespo M, Csikasz RI, Martínez-Sánchez N, et al. Essential role of UCP1 modulating the central effects of thyroid hormones on energy balance. Mol Metab. 2016;5(4):271-282. Published 2016 Feb 10. doi:10.1016/j.molmet.2016.01.008
72. Martínez-Sánchez N, Moreno-Navarrete JM, Contreras C, et al. Thyroid hormones induce browning of white fat. J Endocrinol. 2017; 232(2):351-362. doi:10.1530/JOE-16-0425
73. Oh TS, Cho H, Cho JH, Yu SW, Kim EK. Hypothalamic AMPK-induced autophagy increases food intake by regulating NPY and POMC expression. Autophagy. 2016; 12(11):2009-2025. doi:10.1080/15548627.2016.1215382
74. Lynch L, Hogan AE, Duquette D, et al. iNKT Cells Induce FGF21 for Thermogenesis and Are Required for Maximal Weight Loss in GLP1 Therapy. Cell Metab. 2016;24(3):510-519. doi:10.1016/j.cmet.2016.08.003
75. Lee SJ, Sanchez-Watts G, Krieger JP, et al. Loss of dorsomedial hypothalamic GLP-1 signaling reduces BAT thermogenesis and increases adiposity. Mol Metab. 2018;11:33-46. doi:10.1016/j.molmet.2018.03.008
76. Baggio LL, Drucker DJ. Glucagon-like peptide-1 receptors in the brain: controlling food intake and body weight. J Clin Invest. 2014;124(10):4223-4226. doi:10.1172/JCI78371
77. Li C, Navarrete J, Liang-Guallpa J, et al. Defined Paraventricular Hypothalamic Populations Exhibit Differential Responses to Food Contingent on Caloric State. Cell Metab. 2019;29(3):681-694.e5. doi:10.1016/j.cmet.2018.10.016
78. Worthington JJ. The intestinal immunoendocrine axis: novel cross-talk between enteroendocrine cells and the immune system during infection and inflammatory disease. Biochem Soc Trans. 2015;43(4):727-733. doi:10.1042/BST20150090
79. Davies MJ, Bergenstal R, Bode B, et al. Efficacy of Liraglutide for Weight Loss Among Patients With Type 2 Diabetes: The SCALE Diabetes Randomized Clinical Trial [published correction appears in JAMA. 2016 Jan 5;315(1):90]. JAMA. 2015; 314(7):687-699. doi:10.1001/jama.2015.9676
80. Clemmensen C, Finan B, Fischer K, et al. Dual melanocortin-4 receptor and GLP-1 receptor agonism amplifies metabolic benefits in diet-induced obese mice. EMBO Mol Med. 2015;7(3):288-298. doi:10.15252/emmm.201404508
81. Zhu E, Yang Y, Zhang J, et al. Liraglutide suppresses obesity and induces brown fat-like phenotype via Soluble Guanylyl Cyclase mediated pathway in vivo and in vitro. Oncotarget. 2016;7(49):81077-81089. doi:10.18632/oncotarget.13189
82. Oliveira, F.C.B., Ribeiro, C.M., Christ, C.G., Pereira, S.A., Beserra, B.T.S., da Costa Silva Viana, J., de Assis Rocha Neves, F., Coelho, M.S. and Amato, A.A. (2017), Liraglutide Promotes Browning of White Adipose Tissue in Mice with Diet Induced Obesity. The FASEB Journal, 31: 886.1-886.1. doi:10.1096/fasebj.31.1_supplement.886.1
83. van Can J, Sloth B, Jensen CB, Flint A, Blaak EE, Saris WH. Effects of the once-daily GLP-1 analog liraglutide on gastric emptying, glycemic parameters, appetite and energy metabolism in obese, non-diabetic adults. Int J Obes (Lond). 2014;38(6):784-793. doi:10.1038/ijo.2013.162
84. Heppner KM, Marks S, Holland J, et al. Contribution of brown adipose tissue activity to the control of energy balance by GLP-1 receptor signalling in mice. Diabetologia. 2015;58(9):2124-2132. doi:10.1007/s00125-015-3651-3
85. van Eyk HJ, Paiman EHM, Bizino MB, et al. Liraglutide decreases energy expenditure and does not affect the fat fraction of supraclavicular brown adipose tissue in patients with type 2 diabetes. Nutr Metab Cardiovasc Dis. 2020;30(4):616-624. doi:10.1016/j.numecd.2019.12.005
86. Li C, Xu MM, Wang K, Adler AJ, Vella AT, Zhou B. Macrophage polarization and meta-inflammation. Transl Res. 2018; 191: 29-44. doi:10.1016/j.trsl.2017.10.004
87. Wan S, Sun H. Glucagon-like peptide-1 modulates RAW264.7 macrophage polarization by interfering with the JNK/STAT3 signaling pathway. Exp Ther Med. 2019;17(5):3573-3579. doi:10.3892/etm.2019.7347
88. Lizarbe B, Soares AF, Larsson S, Duarte JMN. Neurochemical Modifications in the Hippocampus, Cortex and Hypothalamus of Mice Exposed to Long-Term High-Fat Diet. Front Neurosci. 2019; 12: 985. Published 2019 Jan 8. doi:10.3389/fnins.2018.00985
89. McLean, F.H., Campbell, F.M., Langston, R.F. et al. A high-fat diet induces rapid changes in the mouse hypothalamic proteome. Nutr Metab (Lond) 16, 26 (2019). https://doi.org/10.1186/s12986-019-0352-9
90. Vagena, E., Ryu, J.K., Baeza-Raja, B. et al. A high-fat diet promotes depression-like behavior in mice by suppressing hypothalamic PKA signaling. Transl Psychiatry 9, 141 (2019). https://doi.org/10.1038/s41398-019-0470-1
91. Linehan V, Fang LZ, Parsons MP, Hirasawa M. High-fat diet induces time-dependent synaptic plasticity of the lateral hypothalamus. Mol Metab. 2020; 36: 100977. doi:10.1016/j.molmet.2020.100977
92. Declèves AE, Zolkipli Z, Satriano J, et al. Regulation of lipid accumulation by AMP-activated kinase [corrected] in high fat diet-induced kidney injury [published correction appears in Kidney Int. 2014 Jun;85(6):1474] [published correction appears in Kidney Int. 2017 Sep;92(3):769]. Kidney Int. 2014;85(3):611-623. doi:10.1038/ki.2013.462
93. Shiwa M, Yoneda M, Okubo H, et al. Distinct Time Course of the Decrease in Hepatic AMP-Activated Protein Kinase and Akt Phosphorylation in Mice Fed a High Fat Diet. PLoS One. 2015;10(8):e0135554. Published 2015 Aug 12. doi:10.1371/journal.pone.0135554
94. Lizarbe, B., Cherix, A., Duarte, J.M.N. et al. High-fat diet consumption alters energy metabolism in the mouse hypothalamus. Int J Obes 43, 1295–1304 (2019). https://doi.org/10.1038/s41366-018-0224-9
95. Rey M, Kruse MS, Magrini-Huamán RN, Coirini H. High-Fat Diets and LXRs Expression in Rat Liver and Hypothalamus. Cell Mol Neurobiol. 2019; 39(7):963-974. doi:10.1007/s10571-019-00692-6
96. Desai M, Ferrini MG, Han G, Narwani K, Ross MG. Maternal High Fat Diet Programs Male Mice Offspring Hyperphagia and Obesity: Mechanism of Increased Appetite Neurons via Altered Neurogenic Factors and Nutrient Sensor AMPK. Nutrients. 2020;12(11):3326. Published 2020 Oct 29. doi:10.3390/nu12113326
97. Guo C, Huang T, Chen A, et al. Glucagon-like peptide 1 improves insulin resistance in vitro through anti-inflammation of macrophages. Braz J Med Biol Res. 2016;49(12):e5826. Published 2016 Nov 21. doi:10.1590/1414-431X20165826
98. Santilli F, Simeone PG, Guagnano MT, et al. Effects of Liraglutide on Weight Loss, Fat Distribution, and β-Cell Function in Obese Subjects With Prediabetes or Early Type 2 Diabetes. Diabetes Care. 2017;40(11):1556-1564. doi:10.2337/dc17-0589
99. Capristo E, Panunzi S, De Gaetano A, et al. Intensive lifestyle modifications with or without liraglutide 3mg vs. sleeve gastrectomy: A three-arm non-randomised, controlled, pilot study [published correction appears in Diabetes Metab. 2020 Apr;46(2):179]. Diabetes Metab. 2018;44(3):235-242. doi:10.1016/j.diabet.2017.12.007
100. Jensen SBK, Lundgren JR, Janus C, et al. Protocol for a randomised controlled trial of the combined effects of the GLP-1 receptor agonist liraglutide and exercise on maintenance of weight loss and health after a very low-calorie diet. BMJ Open. 2019;9(11):e031431. Published 2019 Nov 2. doi:10.1136/bmjopen-2019-031431
101. Hyde KM, Blonde GD, le Roux CW, Spector AC. Liraglutide suppression of caloric intake competes with the intake-promoting effects of a palatable cafeteria diet, but does not impact food or macronutrient selection. Physiol Behav. 2017;177:4-12. doi:10.1016/j.physbeh.2017.03.045
102. Kahleova H, Dort S, Holubkov R, Barnard ND. A Plant-Based High-Carbohydrate, Low-Fat Diet in Overweight Individuals in a 16-Week Randomized Clinical Trial: The Role of Carbohydrates. Nutrients. 2018;10(9):1302. Published 2018 Sep 14. doi:10.3390/nu10091302
103. Wang K, Sun Y, Lin P, et al. Liraglutide Activates AMPK Signaling and Partially Restores Normal Circadian Rhythm and Insulin Secretion in Pancreatic Islets in Diabetic Mice. Biol Pharm Bull. 2015;38(8):1142-1149. doi:10.1248/bpb.b15-00024
104. Lu R, Yang J, Wei R, et al. Synergistic anti-tumor effects of liraglutide with metformin on pancreatic cancer cells. PLoS One. 2018;13(6):e0198938. Published 2018 Jun 13. doi:10.1371/journal.pone.0198938
105. Zeng SS, Bai JJ, Jiang H, et al. Treatment With Liraglutide Exerts Neuroprotection After Hypoxic-Ischemic Brain Injury in Neonatal Rats via the PI3K/AKT/GSK3β Pathway. Front Cell Neurosci. 2020;13:585. Published 2020 Jan 30. doi:10.3389/fncel.2019.00585
106. He Y, Ao N, Yang J, Wang X, Jin S, Du J. The preventive effect of liraglutide on the lipotoxic liver injury via increasing autophagy. Ann Hepatol. 2020;19(1):44-52. doi:10.1016/j.aohep.2019.06.023
107. Ma G, Liu Y, Wang Y, et al. Liraglutide reduces hyperglycemia-induced cardiomyocyte death through activating glucagon-like peptide 1 receptor and targeting AMPK pathway. J Recept Signal Transduct Res. 2020;40(2):133-140. doi:10.1080/10799893.2020.1719517
108. Basolo A, Burkholder J, Osgood K, et al. Exenatide has a pronounced effect on energy intake but not energy expenditure in non-diabetic subjects with obesity: A randomized, double-blind, placebo-controlled trial. Metabolism. 2018;85:116-125. doi:10.1016/j.metabol.2018.03.017