Polymorphism of tmprss2 (rs12329760) but not ace2 (rs4240157), tmprss11a (rs353163) and cd147 (rs8259) is associated with the severity of COVID-19 in the Ukrainian population

Polymorphism of tmprss2 (rs12329760) but not ace2 (rs4240157), tmprss11a (rs353163) and cd147 (rs8259) is associated with the severity of COVID-19 in the Ukrainian population

Authors

Keywords:

transmembrane serine proteases, cd147, angiotensin-converting enzyme 2, polymorphism, COVID-19, oxygen therapy, TMPRSS2, TMPRSS11A

Abstract

Background and aim:  Angiotensin-converting enzyme 2 (ACE2), transmembrane serine 2 and serine 11A proteases (TMPRSS2, TMPRSS11A), and a cell surface cluster of differentiation 147 (CD147) might be a gene candidate that exerts the susceptibility to and mortality from coronavirus disease 19 (COVID-19). The aim of this study was to investigate the associations between ace2, tmprss2, tmprss11a, and cd147 polymorphic variants and the severity of COVID-19 in the Ukrainian population. Methods: The study population consisted of the Ukrainian population with COVID-19: patients without oxygen therapy (n=62), with non-invasive (n=92) and invasive (n=35) oxygen therapy, as well as control subjects (n=92). Allelic polymorphisms of ace2 rs4240157, tmprss2 rs12329760, and tmprss11a rs353163 were determined by real-time PCR, and cd147 rs8259 polymorphism was detected by PCR with subsequent restrictase analysis. We compared investigated polymorphisms distribution with other populations by meta-analysis. Results: Our study is the first to obtain data about the distribution of investigated gene polymorphisms in the Ukrainian population: tmprss2 rs12329760 – CC 60.9%, CT 35.9%, TT 3.2%; tmprss11a rs353163 – CC 46.7%, CT 40.2%, TT 13.1%; ace2 rs4240157 – CC 7.6%, C 18.5%, CT 22.8%, TT 19.6%, T 31.5%; cd147 rs8259 – TT 60.9%, AT 32.6%, AA 6.5%. This distribution was similar to the Northern, Western and Southern European populations. There was a statistically significant difference in the frequency of tmprss2 polymorphic genotypes CC 57.1%, CT 28.6%, and TT 14.3% (P<0.05) in COVID-19 patients with invasive oxygen therapy in comparison with non-invasive oxygen therapy. This tmprss2 mutation occurs in the scavenger receptor cysteine-rich (SRCR) domain and might be important for protein-protein interaction in a calcium-dependent manner. Conclusions: Our study indicated the presence of an association between the tmprss2 rs12329760 polymorphism and the severity of COVID-19 in the Ukrainian population.

References

Mallah SI, Ghorab OK, Al-Salmi S, et al. COVID-19: breaking down a global health crisis. Ann Clin Microbiol Antimicrob. 2021;20(1):35. Published 2021 May 18. doi:10.1186/s12941-021-00438-7.

Hou Y, Zhao J, Martin W, et al. New insights into genetic susceptibility of COVID-19: an ACE2 and TMPRSS2 polymorphism analysis. BMC Med. 2020;18(1):216. Published 2020 Jul 15. doi:10.1186/s12916-020-01673-z.

Giudicessi JR, Roden DM, Wilde AAM, Ackerman MJ. Genetic susceptibility for COVID-19-associated sudden cardiac death in African Americans. Heart Rhythm. 2020;17(9):1487-1492. doi:10.1016/j.hrthm.2020.04.045.

Gemmati D, Bramanti B, Serino ML, Secchiero P, Zauli G, Tisato V. COVID-19 and Individual Genetic Susceptibility/Receptivity: Role of ACE1/ACE2 Genes, Immunity, Inflammation and Coagulation. Might the Double X-chromosome in Females Be Protective against SARS-CoV-2 Compared to the Single X-Chromosome in Males?. Int J Mol Sci. 2020;21(10):3474. Published 2020 May 14. doi:10.3390/ijms21103474.

Izmailova O, Shlykova O, Vatsenko A, et al. Allele С (rs5186) of at1r is associated with the severity of COVID-19 in the Ukrainian population. Infect Genet Evol. 2022;98:105227. doi:10.1016/j.meegid.2022.105227.

Kaidashev I, Shlykova O, Izmailova O, et al. Host gene variability and SARS-CoV-2 infection: A review article. Heliyon. 2021;7(8):e07863. doi:10.1016/j.heliyon.2021.e07863.

Severe Covid-19 GWAS Group, Ellinghaus D, Degenhardt F, et al. Genomewide Association Study of Severe Covid-19 with Respiratory Failure. N Engl J Med. 2020;383(16):1522-1534. doi:10.1056/NEJMoa2020283.

Shen Z, Xiao Y, Kang L, et al. Genomic Diversity of Severe Acute Respiratory Syndrome-Coronavirus 2 in Patients With Coronavirus Disease 2019 [published correction appears in Clin Infect Dis. 2021 Dec 16;73(12):2374]. Clin Infect Dis. 2020;71(15):713-720. doi:10.1093/cid/ciaa203.

Tabibzadeh A, Zamani F, Laali A, et al. SARS-CoV-2 Molecular and Phylogenetic analysis in COVID-19 patients: A preliminary report from Iran. Infect Genet Evol. 2020;84:104387. doi:10.1016/j.meegid.2020.104387.

Hoffmann M, Kleine-Weber H, Schroeder S, et al. SARS-CoV-2 Cell Entry Depends on ACE2 and TMPRSS2 and Is Blocked by a Clinically Proven Protease Inhibitor. Cell. 2020;181(2):271-280.e8. doi:10.1016/j.cell.2020.02.052.

Iwata-Yoshikawa N, Okamura T, Shimizu Y, Hasegawa H, Takeda M, Nagata N. TMPRSS2 Contributes to Virus Spread and Immunopathology in the Airways of Murine Models after Coronavirus Infection. J Virol. 2019;93(6):e01815-18. Published 2019 Mar 5. doi:10.1128/JVI.01815-18.

Chen Z, Mi L, Xu J, et al. Function of HAb18G/CD147 in invasion of host cells by severe acute respiratory syndrome coronavirus. J Infect Dis. 2005;191(5):755-760. doi:10.1086/427811.

Vilella F, Wang W, Moreno I, Roson B, Quake SR, Simon C. Single-cell RNA sequencing of SARS-CoV-2 cell entry factors in the preconceptional human endometrium. Hum Reprod. 2021;36(10):2709-2719. doi:10.1093/humrep/deab183.

Taleghani N, Taghipour F. Diagnosis of COVID-19 for controlling the pandemic: A review of the state-of-the-art. Biosens Bioelectron. 2021;174:112830. doi:10.1016/j.bios.2020.112830.

Yan J, Mao Y, Wang C, Wang Z. Association Study between an SNP in CD147 and Its Expression With Acute Coronary Syndrome in a Jiangsu Chinese Population. Medicine (Baltimore). 2015;94(42):e1537. doi:10.1097/MD.0000000000001537.

https://www.ensembl.org/Homo_sapiens/Variation/Population?db=core;r=21:41480070-41481070;v=rs12329760;vdb=variation;vf=722896905#ncbialfa_anchor

Umar M, Upadhyay R, Kumar S, Ghoshal UC, Mittal B. Modification of risk, but not survival of esophageal cancer patients by esophageal cancer-related gene 1 Arg290Gln polymorphism: a case-control study and meta-analysis. J Gastroenterol Hepatol. 2013;28(11):1717-1724. doi:10.1111/jgh.12335.

Akbari MR, Malekzadeh R, Shakeri R, et al. Candidate gene association study of esophageal squamous cell carcinoma in a high-risk region in Iran. Cancer Res. 2009;69(20):7994-8000. doi:10.1158/0008-5472.CAN-09-1149.

https://www.ensembl.org/Homo_sapiens/Variation/Population?db=core;r=4:67918556-67919556;v=rs353163;vdb=variation;vf=90470389

https://www.ensembl.org/Homo_sapiens/Variation/Population?db=core;r=X:15568341-15569341;v=rs4240157;vdb=variation;vf=93325552

Łacina P, Butrym A, Mazur G, Bogunia-Kubik K. BSG and MCT1 Genetic Variants Influence Survival in Multiple Myeloma Patients. Genes (Basel). 2018;9(5):226. Published 2018 Apr 24. doi:10.3390/genes9050226.

Li MP, Hu XL, Yang YL, et al. Basigin rs8259 Polymorphism Confers Decreased Risk of Chronic Heart Failure in a Chinese Population. Int J Environ Res Public Health. 2017;14(2):211. Published 2017 Feb 21. doi:10.3390/ijerph14020211.

Ni T, Chen M, Yang K, Shao J, Fu Y, Zhou W. Association of CD147 genetic polymorphisms with carotid atherosclerotic plaques in a Han Chinese population with cerebral infarction. Thromb Res. 2017;156:29-35.doi:10.1016/j.thromres.2017.05.027.

https://www.ensembl.org/Homo_sapiens/Variation/Population?db=core;r=19:582427-583427;v=rs8259;vdb=variation;vf=201683794.

Wulandari L, Hamidah B, Pakpahan C, et al. Initial study on TMPRSS2 p.Val160Met genetic variant in COVID-19 patients. Hum Genomics. 2021;15(1):29. Published 2021 May 17. doi:10.1186/s40246-021-00330-7.

Schönfelder K, Breuckmann K, Elsner C, et al. Transmembrane serine protease 2 Polymorphisms and Susceptibility to Severe Acute Respiratory Syndrome Coronavirus Type 2 Infection: A German Case-Control Study. Front Genet. 2021;12:667231. Published 2021 Apr 21. doi:10.3389/fgene.2021.667231.

Monticelli M, Hay Mele B, Benetti E, et al. Protective Role of a TMPRSS2 Variant on Severe COVID-19 Outcome in Young Males and Elderly Women. Genes (Basel). 2021;12(4):596. Published 2021 Apr 19. doi:10.3390/genes12040596.

Mir MM, Mir R, Alghamdi MAA, et al. Strong Association of Angiotensin Converting Enzyme-2 Gene Insertion/Deletion Polymorphism with Susceptibility to SARS-CoV-2, Hypertension, Coronary Artery Disease and COVID-19 Disease Mortality. J Pers Med. 2021;11(11):1098. Published 2021 Oct 27. doi:10.3390/jpm11111098.

Alexandre J, Cracowski JL, Richard V, Bouhanick B; 'Drugs, COVID-19' working group of the French Society of Pharmacology, Therapeutics. Renin-angiotensin-aldosterone system and COVID-19 infection. Ann Endocrinol (Paris). 2020;81(2-3):63-67. doi:10.1016/j.ando.2020.04.005.

Asselta R, Paraboschi EM, Mantovani A, Duga S. ACE2 and TMPRSS2 variants and expression as candidates to sex and country differences in COVID-19 severity in Italy. Aging (Albany NY). 2020;12(11):10087-10098. doi:10.18632/aging.103415.

Das R, Ghate D. Investigating the likely association between genetic ancestry and COVID-19 manifestations. doi: https://doi.org/10.1101/2020.04.05.20054627.

Lucas JM, Heinlein C, Kim T, et al. The androgen-regulated protease TMPRSS2 activates a proteolytic cascade involving components of the tumor microenvironment and promotes prostate cancer metastasis. Cancer Discov. 2014;4(11):1310-1325. doi:10.1158/2159-8290.CD-13-1010.

Al-Mulla F, Mohammad A, Al Madhoun A, et al. ACE2 and FURIN variants are potential predictors of SARS-CoV-2 outcome: A time to implement precision medicine against COVID-19. Heliyon. 2021;7(2):e06133. doi:10.1016/j.heliyon.2021.e06133.

Latini A, Agolini E, Novelli A, et al. COVID-19 and Genetic Variants of Protein Involved in the SARS-CoV-2 Entry into the Host Cells. Genes (Basel). 2020;11(9):1010. Published 2020 Aug 27. doi:10.3390/genes11091010.

Vargas-Alarcón G, Posadas-Sánchez R, Ramírez-Bello J. Variability in genes related to SARS-CoV-2 entry into host cells (ACE2, TMPRSS2, TMPRSS11A, ELANE, and CTSL) and its potential use in association studies. Life Sci. 2020;260:118313. doi:10.1016/j.lfs.2020.118313.

Hohenester E, Sasaki T, Timpl R. Crystal structure of a scavenger receptor cysteine-rich domain sheds light on an ancient superfamily. Nat Struct Biol. 1999;6(3):228-232. doi:10.1038/6669.

Jeon S, Blazyte A, Yoon C, et al. Regional TMPRSS2 V197M Allele Frequencies Are Correlated with COVID-19 Case Fatality Rates. Mol Cells. 2021;44(9):680-687. doi:10.14348/molcells.2021.2249.

Zarubin A, Stepanov V, Markov A, et al. Structural Variability, Expression Profile, and Pharmacogenetic Properties of TMPRSS2 Gene as a Potential Target for COVID-19 Therapy. Genes (Basel). 2020;12(1):19. Published 2020 Dec 25. doi:10.3390/genes12010019.

de Leeuw AJM, Oude Luttikhuis MAM, Wellen AC, Müller C, Calkhoven CF. Obesity and its impact on COVID-19. J Mol Med (Berl). 2021;99(7):899-915. doi:10.1007/s00109-021-02072-4.

Tamara A, Tahapary DL. Obesity as a predictor for a poor prognosis of COVID-19: A systematic review. Diabetes Metab Syndr. 2020;14(4):655-659. doi:10.1016/j.dsx.2020.05.020.

Chen Y, Klein SL, Garibaldi BT, et al. Aging in COVID-19: Vulnerability, immunity and intervention. Ageing Res Rev. 2021;65:101205. doi:10.1016/j.arr.2020.101205.

Parohan M, Yaghoubi S, Seraji A, Javanbakht MH, Sarraf P, Djalali M. Risk factors for mortality in patients with Coronavirus disease 2019 (COVID-19) infection: a systematic review and meta-analysis of observational studies. Aging Male. 2020;23(5):1416-1424. doi:10.1080/13685538.2020.1774748.

Qian W, Kallergi M, Clarke LP, et al. Tree structured wavelet transform segmentation of microcalcifications in digital mammography. Med Phys. 1995;22(8):1247-1254. doi:10.1118/1.597562.

Zhang C, Zhang Y, Zhang S, et al. Intracellular autoactivation of TMPRSS11A, an airway epithelial transmembrane serine protease. J Biol Chem. 2020;295(36):12686-12696. doi:10.1074/jbc.RA120.014525.

Fernandez C, Burgos A, Morales D, et al. TMPRSS11a is a novel age-altered, tissue specific regulator of migration and wound healing. FASEB J. 2021;35(5):e21597. doi:10.1096/fj.202002253RRR.

Kuba K, Imai Y, Rao S, et al. A crucial role of angiotensin converting enzyme 2 (ACE2) in SARS coronavirus-induced lung injury. Nat Med. 2005;11(8):875-879. doi:10.1038/nm1267.

Tipnis SR, Hooper NM, Hyde R, Karran E, Christie G, Turner AJ. A human homolog of angiotensin-converting enzyme. Cloning and functional expression as a captopril-insensitive carboxypeptidase. J Biol Chem. 2000;275(43):33238-33243. doi:10.1074/jbc.M002615200.

Yi L, Gu YH, Wang XL, et al. Association of ACE, ACE2 and UTS2 polymorphisms with essential hypertension in Han and Dongxiang populations from north-western China. J Int Med Res. 2006;34(3):272-283. doi:10.1177/147323000603400306.

Patnaik M, Pati P, Swain SN, et al. Association of angiotensin-converting enzyme and angiotensin-converting enzyme-2 gene polymorphisms with essential hypertension in the population of Odisha, India. Ann Hum Biol. 2014;41(2):145-152. doi:10.3109/03014460.2013.837195.

Pinheiro DS, Santos RS, Jardim PCBV, et al. The combination of ACE I/D and ACE2 G8790A polymorphisms revels susceptibility to hypertension: A genetic association study in Brazilian patients. PLoS One. 2019;14(8):e0221248. Published 2019 Aug 20. doi:10.1371/journal.pone.0221248.

Zheng H, Cao JJ. Angiotensin-Converting Enzyme Gene Polymorphism and Severe Lung Injury in Patients with Coronavirus Disease 2019. Am J Pathol. 2020;190(10):2013-2017. doi:10.1016/j.ajpath.2020.07.009.

Yancy CW. COVID-19 and African Americans. JAMA. 2020;323(19):1891-1892. doi:10.1001/jama.2020.6548.

Aung AK, Aitken T, Teh BM, et al. Angiotensin converting enzyme genotypes and mortality from COVID-19: An ecological study. J Infect. 2020;81(6):961-965. doi:10.1016/j.jinf.2020.11.012.

Pan Y, Wang T, Li Y, et al. Association of ACE2 polymorphisms with susceptibility to essential hypertension and dyslipidemia in Xinjiang, China. Lipids Health Dis. 2018;17(1):241. Published 2018 Oct 20. doi:10.1186/s12944-018-0890-6.

Lu N, Yang Y, Wang Y, et al. ACE2 gene polymorphism and essential hypertension: an updated meta-analysis involving 11,051 subjects. Mol Biol Rep. 2012;39(6):6581-6589. doi:10.1007/s11033-012-1487-1.

Patel SK, Wai B, Ord M, et al. Association of ACE2 genetic variants with blood pressure, left ventricular mass, and cardiac function in Caucasians with type 2 diabetes. Am J Hypertens. 2012;25(2):216-222. doi:10.1038/ajh.2011.188.

Wooster L, Nicholson CJ, Sigurslid HH, Cardenas CLL, Malhotra R. Polymorphisms in the ace2 locus associate with severity of COVID-19 infection [preprint]. MedRxiv. 2020.06.18.20135152; doi: https://doi.org/10.1101/2020.06.18.20135152.

Gwinn WM, Damsker JM, Falahati R, et al. Novel approach to inhibit asthma-mediated lung inflammation using anti-CD147 intervention. J Immunol. 2006;177(7):4870-4879. doi:10.4049/jimmunol.177.7.4870.

Schulz C, von Brühl ML, Barocke V, et al. EMMPRIN (CD147/basigin) mediates platelet-monocyte interactions in vivo and augments monocyte recruitment to the vascular wall. J Thromb Haemost. 2011;9(5):1007-1019. doi:10.1111/j.1538-7836.2011.04235.x.

Venkatesan B, Valente AJ, Prabhu SD, Shanmugam P, Delafontaine P, Chandrasekar B. EMMPRIN activates multiple transcription factors in cardiomyocytes, and induces interleukin-18 expression via Rac1-dependent PI3K/Akt/IKK/NF-kappaB andMKK7/JNK/AP-1 signaling. J Mol Cell Cardiol. 2010;49(4):655-663. doi:10.1016/j.yjmcc.2010.05.007.

Arshad AR, Bashir I, Ijaz F, et al. Is COVID-19 Fatality Rate Associated with Malaria Endemicity?. Discoveries (Craiova). 2020;8(4):e120. Published 2020 Dec 11. doi:10.15190/d.2020.17.

Wu LS, Li FF, Sun LD, et al. A miRNA-492 binding-site polymorphism in BSG (basigin) confers risk to psoriasis in central south Chinese population. Hum Genet. 2011;130(6):749-757. doi:10.1007/s00439-011-1026-5.

Mao Y, Yan J, Wang C, Wang Z, Liu P, Yuan W. Zhonghua Xin Xue Guan Bing Za Zhi. 2014;42(7):566-570.

Takeda M. Proteolytic activation of SARS-CoV-2 spike protein. Microbiol Immunol. 2022;66(1):15-23. doi:10.1111/1348-0421.12945.

Martínez VG, Moestrup SK, Holmskov U, Mollenhauer J, Lozano F. The conserved scavenger receptor cysteine-rich superfamily in therapy and diagnosis. Pharmacol Rev. 2011;63(4):967-1000. doi:10.1124/pr.111.004523.

Paoloni-Giacobino A, Chen H, Peitsch MC, Rossier C, Antonarakis SE. Cloning of the TMPRSS2 gene, which encodes a novel serine protease with transmembrane, LDLRA, and SRCR domains and maps to 21q22.3 [published correction appears in Genomics 2001 Sep;77(1-2):114]. Genomics. 1997;44(3):309-320. doi:10.1006/geno.1997.4845.

Lai AL, Millet JK, Daniel S, Freed JH, Whittaker GR. The SARS-CoV Fusion Peptide Forms an Extended Bipartite Fusion Platform that Perturbs Membrane Order in a Calcium-Dependent Manner. J Mol Biol. 2017;429(24):3875-3892. doi:10.1016/j.jmb.2017.10.017.

Cashman DP. Why the lower reported prevalence of asthma in patients diagnosed with COVID-19 validates repurposing EDTA solutions to prevent and manage treat COVID-19 disease. Med Hypotheses. 2020;144:110027. doi:10.1016/j.mehy.2020.110027.

Downloads

Published

13-02-2023

Issue

Section

COVID19

How to Cite

1.
Kaidashev I, Izmailova O, Shlykova O, Kabaliei A, Vatsenko A, Ivashchenko D, et al. Polymorphism of tmprss2 (rs12329760) but not ace2 (rs4240157), tmprss11a (rs353163) and cd147 (rs8259) is associated with the severity of COVID-19 in the Ukrainian population. Acta Biomed [Internet]. 2023 Feb. 13 [cited 2024 Jul. 18];94(1):e2023030. Available from: https://mattioli1885journals.com/index.php/actabiomedica/article/view/13543