Personalised Medicine: implication and perspectives in the field of occupational health Precision Medicine to promote Occupational Health

Main Article Content

Valentina Bollati
Luca Ferrari
Veruscka Leso
Ivo Iavicoli

Keywords

Precision Medicine, Occupational health, Individual variability, risk assesment

Abstract

“Personalised medicine” relies on identifying and integrating individual variability in genomic, biological, and physiological parameters, as well as in environmental and lifestyle factors, to define “individually” targeted disease prevention and treatment. Although innovative “omic” technologies supported the application of personalised medicine in clinical, oncological, and pharmacological settings, its role in occupational health practice and research is still in a developing phase. Occupational personalised approaches have been currently applied in experimental settings and in conditions of unpredictable risks, e.g.. war missions and space flights, where it is essential to avoid disease manifestations and therapy failure. However, a debate is necessary as to whether personalized medicine may be even more important to support a redefinition of the risk assessment processes taking into consideration the complex interaction between occupational and individual factors. Indeed, “omic” techniques can be helpful to understand the hazardous properties of the xenobiotics, dose-response relationships through a deeper elucidation of the exposure-disease pathways and internal doses of exposure. Overall, this may guide the adoption/implementation of primary preventive measures protective for the vast majority of the population, including most susceptible subgroups. However, the application of personalised medicine into occupational health requires overcoming some practical, ethical, legal, economical, and socio-political issues, particularly concerning the protection of privacy, and the risk of discrimination that the workers may experience. In this scenario, the concerted action of academic, industry, governmental, and stakeholder representatives should be encouraged to improve research aimed to guide effective and sustainable implementation of personalised medicine in occupational health fields.

Downloads

Download data is not yet available.
Abstract 143 | PDF Downloads 138

References

1. 
Alvarellos ML, Sangkuhl K, Daneshjou R, Whirl-Carrillo M, Altman RB, Klein TE. PharmGKB summary: very important pharmacogene information for CYP4F2. Pharmacogenet Genomics. 2015;25(1):41-47. doi:10.1097/FPC.0000000000000100
2. 
Bell SC, Mall MA, Gutierrez H, et al. The future of cystic fibrosis care: a global perspective [published correction appears in Lancet Respir Med. 2019 Dec;7(12):e40]. Lancet Respir Med. 2020;8(1):65-124. doi:10.1016/S2213-2600(19)30337-6
3. 
Bell CJ, Dinwiddie DL, Miller NA, et al. Carrier testing for severe childhood recessive diseases by next-generation sequencing. Sci Transl Med. 2011;3(65):65ra4. doi:10.1126/scitranslmed.3001756
4. 
Bettaieb A, Paul C, Plenchette S, Shan J, Chouchane L, Ghiringhelli F. Precision medicine in breast cancer: reality or utopia?. J Transl Med. 2017;15(1):139. Published 2017 Jun 17. doi:10.1186/s12967-017-1239-z
5. 
Blumenthal GM, Mansfield E, Pazdur R. Next-Generation Sequencing in Oncology in the Era of Precision Medicine. JAMA Oncol. 2016;2(1):13-14. doi:10.1001/jamaoncol.2015.4503
6. 
Bollati V, Baccarelli A, Hou L, et al. Changes in DNA methylation patterns in subjects exposed to low-dose benzene. Cancer Res. 2007;67(3):876-880. doi: 10.1158/0008-5472.CAN-06-2995
7. 
Bowman P, Sulen Å, Barbetti F, et al. Effectiveness and safety of long-term treatment with sulfonylureas in patients with neonatal diabetes due to KCNJ11 mutations: an international cohort study [published correction appears in Lancet Diabetes Endocrinol. 2018 Sep;6(9):e17]. Lancet Diabetes Endocrinol. 2018;6(8):637-646. doi:10.1016/S2213-8587(18)30106-2
8. 
Bradburne C, Lewis JA. Personalizing Environmental Health: At the Intersection of Precision Medicine and Occupational Health in the Military. J Occup Environ Med. 2017;59(11):e209-e214. doi:10.1097/JOM.0000000000001116
9. 
Bradburne C, Graham D, Kingston HM, Brenner R, Pamuku M, Carruth L. Overview of ‘Omics Technologies for Military Occupational Health Surveillance and Medicine. Mil Med. 2015;180(10 Suppl):34-48. doi:10.7205/MILMED-D-15-00050
10. 
Buesen R, Chorley BN, da Silva Lima B, et al. Applying ‘omics technologies in chemicals risk assessment: Report of an ECETOC workshop. Regul Toxicol Pharmacol. 2017;91 Suppl 1(Suppl 1):S3-S13. doi:10.1016/j.yrtph.2017.09.002
11. 
Chanda S, Dasgupta UB, Guhamazumder D, et al. DNA hypermethylation of promoter of gene p53 and p16 in arsenic-exposed people with and without malignancy. Toxicol Sci. 2006;89(2):431-437. doi:10.1093/toxsci/kfj030
12. 
D’Adamo GL, Widdop JT, Giles EM. The future is now? Clinical and translational aspects of “Omics” technologies [published online ahead of print, 2020 Sep 13]. Immunol Cell Biol. 2020;10.1111/imcb.12404. doi:10.1111/imcb.12404
13. 
Dankovic DA, Naumann BD, Maier A, Dourson ML, Levy LS. The Scientific Basis of Uncertainty Factors Used in Setting Occupational Exposure Limits. J Occup Environ Hyg. 2015;12 Suppl 1(sup1):S55-S68. doi:10.1080/15459624.2015.1060325
14. 
French CE, Delon I, Dolling H, et al. Whole genome sequencing reveals that genetic conditions are frequent in intensively ill children. Intensive Care Med. 2019;45(5):627-636. doi:10.1007/s00134-019-05552-x
15. 
Galluzzi L, Humeau J, Buqué A, Zitvogel L, Kroemer G. Immunostimulation with chemotherapy in the era of immune checkpoint inhibitors. Nat Rev Clin Oncol. 2020;17(12):725-741. doi:10.1038/s41571-020-0413-z
16. 
Ginsburg GS, Phillips KA. Precision Medicine: From Science To Value. Health Aff (Millwood). 2018;37(5):694-701. doi:10.1377/hlthaff.2017.1624
17. 
Gloyn AL, Drucker DJ. Precision medicine in the management of type 2 diabetes. Lancet Diabetes Endocrinol. 2018;6(11):891-900. doi:10.1016/S2213-8587(18)30052-4
18. 
Green RC, Lautenbach D, McGuire AL. GINA, genetic discrimination, and genomic medicine. N Engl J Med. 2015;372(5):397-399. doi:10.1056/NEJMp1404776
19. 
Haen SP, Löffler MW, Rammensee HG, Brossart P. Towards new horizons: characterization, classification and implications of the tumour antigenic repertoire. Nat Rev Clin Oncol. 2020;17(10):595-610. doi:10.1038/s41571-020-0387-x
20. 
Harris EER. Precision Medicine for Breast Cancer: The Paths to Truly Individualized Diagnosis and Treatment. Int J Breast Cancer. 2018;2018:4809183. Published 2018 May 9. doi:10.1155/2018/4809183
21. 
Harrison SM, Rehm HL. Is ‘likely pathogenic’ really 90% likely? Reclassification data in ClinVar. Genome Med. 2019;11(1):72. Published 2019 Nov 21. doi:10.1186/s13073-019-0688-9
22. 
Haslem DS, Van Norman SB, Fulde G, et al. A Retrospective Analysis of Precision Medicine Outcomes in Patients With Advanced Cancer Reveals Improved Progression-Free Survival Without Increased Health Care Costs. J Oncol Pract. 2017;13(2):e108-e119. doi:10.1200/JOP.2016.011486
23. 
Hawgood S, Hook-Barnard IG, O’Brien TC, Yamamoto KR. Precision medicine: Beyond the inflection point. Sci Transl Med. 2015;7(300):300ps17. doi:10.1126/scitranslmed.aaa9970
24. 
Ho D, Quake SR, McCabe ERB, et al. Enabling Technologies for Personalized and Precision Medicine. Trends Biotechnol. 2020;38(5):497-518. doi:10.1016/j.tibtech. 2019.12.021
25. 
Hwang WL, Pike LRG, Royce TJ, Mahal BA, Loeffler JS. Safety of combining radiotherapy with immune-checkpoint inhibition. Nat Rev Clin Oncol. 2018;15(8):477-494. doi:10.1038/s41571-018-0046-7
26. 
Jones DP. Redox theory of aging. Redox Biol. 2015;5:71-79. doi:10.1016/j.redox.2015.03.004
27. 
Joo WA, Sul D, Lee DY, Lee E, Kim CW. Proteomic analysis of plasma proteins of workers exposed to benzene. Mutat Res. 2004;558(1-2):35-44. doi:10.1016/j.mrgentox.2003.10.015
28. 
Kalra S, Das AK, Bajaj S, et al. Utility of Precision Medicine in the Management of Diabetes: Expert Opinion from an International Panel. Diabetes Ther. 2020;11(2):411-422. doi:10.1007/s13300-019-00753-5
29. 
Kaye JB, Schultz LE, Steiner HE, Kittles RA, Cavallari LH, Karnes JH. Warfarin Pharmacogenomics in Diverse Populations. Pharmacotherapy. 2017;37(9):1150-1163. doi:10.1002/phar.1982
30. 
Khoury MJ, Galea S. Will Precision Medicine Improve Population Health?. JAMA. 2016;316(13):1357-1358. doi:10.1001/jama.2016.12260
31. 
Khoury MJ, Iademarco MF, Riley WT. Precision Public Health for the Era of Precision Medicine. Am J Prev Med. 2016;50(3):398-401. doi:10.1016/j.amepre.2015.08.031
32. 
Kim C, Giaccone G. Precision oncology in non-small-cell lung cancer: opportunities and challenges. Nat Rev Clin Oncol. 2018 Jun;15(6):348-349. doi: 10.1038/s41571-018-0008-0. PMID: 29599475.
33. 
Kinkorová J, Topolčan O. Biobanks in Horizon 2020: sustainability and attractive perspectives. EPMA J. 2018; 9(4):345-353. Published 2018 Nov 23. doi:10.1007/s13167-018-0153-7
34. 
König IR, Fuchs O, Hansen G, von Mutius E, Kopp MV. What is precision medicine?. Eur Respir J. 2017;50(4):1700391. Published 2017 Oct 19. doi: 10.1183/13993003.00391-2017
35. 
Kronfol MM, Dozmorov MG, Huang R, Slattum PW, McClay JL. The role of epigenomics in personalized medicine. Expert Rev Precis Med Drug Dev. 2017; 2(1):33-45. doi:10.1080/23808993.2017.1284557
36. 
Lan Q, Zhang L, Li G, et al. Hematotoxicity in workers exposed to low levels of benzene. Science. 2004; 306(5702):1774-1776. doi:10.1126/science.1102443
37. 
Lan Q, Zhang L, Shen M, et al. Polymorphisms in cytokine and cellular adhesion molecule genes and susceptibility to hematotoxicity among workers exposed to benzene. Cancer Res. 2005;65(20):9574-9581. doi:10.1158/0008-5472.CAN-05-1419
38. 
Lan Q, Zhang L, Shen M, et al. Large-scale evaluation of candidate genes identifies associations between DNA repair and genomic maintenance and development of benzene hematotoxicity. Carcinogenesis. 2009;30(1):50-58. doi:10.1093/carcin/bgn249
39. 
Jameson JL, Longo DL. Precision medicine--personalized, problematic, and promising. N Engl J Med. 2015; 372(23):2229-2234. doi:10.1056/NEJMsb1503104
40. 
Lemelman MB, Letourneau L, Greeley SAW. Neonatal Diabetes Mellitus: An Update on Diagnosis and Management. Clin Perinatol. 2018;45(1):41-59. doi:10.1016/j.clp.2017.10.006
41. 
Li X, Warner JL. A Review of Precision Oncology Knowledgebases for Determining the Clinical Actionability of Genetic Variants. Front Cell Dev Biol. 2020;8:48. Published 2020 Feb 11. doi:10.3389/fcell.2020.00048
42. 
 Lindeman NI, Cagle PT, Beasley MB, et al. Molecular testing guideline for selection of lung cancer patients for EGFR and ALK tyrosine kinase inhibitors: guideline from the College of American Pathologists, International Association for the Study of Lung Cancer, and Association for Molecular Pathology [published correction appears in J Mol Diagn. 2013 Sep;15(5):730]. J Mol Diagn. 2013;15(4):415-453. doi:10.1016/j.jmoldx.2013.03.001
43. 
Lindeman NI, Cagle PT, Beasley MB, et al. Molecular testing guideline for selection of lung cancer patients for EGFR and ALK tyrosine kinase inhibitors: guideline from the College of American Pathologists, International Association for the Study of Lung Cancer, and Association for Molecular Pathology [published correction appears in J Thorac Oncol. 2013 Oct;8(10):1343]. J Thorac Oncol. 2013;8(7):823-859. doi:10.1097/JTO.0b013e318290868f
44. 
McCarthy MI. Painting a new picture of personalised medicine for diabetes [published correction appears in Diabetologia. 2017 May;60(5):940]. Diabetologia. 2017;60(5):793-799. doi:10.1007/s00125-017-4210-x
45. 
Norton ME. Noninvasive prenatal testing to analyze the fetal genome. Proc Natl Acad Sci U S A. 2016; 113(50):14173-14175. doi:10.1073/pnas.1617112113
46. 
Patel H, Yacoub N, Mishra R, et al. Current Advances in the Treatment of BRAF-Mutant Melanoma. Cancers (Basel). 2020;12(2):482. Published 2020 Feb 19. doi:10.3390/cancers12020482
47. 
Pearson ER, Flechtner I, Njølstad PR, et al. Switching from insulin to oral sulfonylureas in patients with diabetes due to Kir6.2 mutations. N Engl J Med. 2006;355(5):467-477. doi:10.1056/NEJMoa061759
48. 
Peck RW. Precision Medicine Is Not Just Genomics: The Right Dose for Every Patient. Annu Rev Pharmacol Toxicol. 2018;58:105-122. doi:10.1146/annurev-pharmtox-010617-052446
49. 
Petrikin JE, Willig LK, Smith LD, Kingsmore SF. Rapid whole genome sequencing and precision neonatology. Semin Perinatol. 2015;39(8):623-631. doi:10.1053/j.semperi.2015.09.009
50. 
Ramaswami R, Bayer R, Galea S. Precision Medicine from a Public Health Perspective. Annu Rev Public Health. 2018;39:153-168. doi:10.1146/annurev-publhealth-040617-014158
51. 
Reed RD, Antonsen EL. Should NASA Collect Astronauts’ Genetic Information for Occupational Surveillance and Research?. AMA J Ethics. 2018;20(9):E849-E856. Published 2018 Sep 1. doi:10.1001/amajethics.2018.849
52. 
Scheen AJ. Precision medicine: The future in diabetes care?. Diabetes Res Clin Pract. 2016;117:12-21. doi: 10.1016/j.diabres.2016.04.033
53. 
Schmidt EV, Chisamore MJ, Chaney MF, et al. Assessment of Clinical Activity of PD-1 Checkpoint Inhibitor Combination Therapies Reported in Clinical Trials. JAMA Netw Open. 2020;3(2):e1920833. Published 2020 Feb 5. doi:10.1001/jamanetworkopen.2019.20833
54. 
Schulte PA, Whittaker C, Curran CP. Considerations for Using Genetic and Epigenetic Information in Occupational Health Risk Assessment and Standard Setting. J Occup Environ Hyg. 2015;12 Suppl 1(sup1):S69-S81. doi:10.1080/15459624.2015.1060323
55. 
Schwaederle M, Zhao M, Lee JJ, et al. Association of Biomarker-Based Treatment Strategies With Response Rates and Progression-Free Survival in Refractory Malignant Neoplasms: A Meta-analysis. JAMA Oncol. 2016;2(11):1452-1459. doi:10.1001/jamaoncol.2016.2129
56. 
Schwartzberg L, Kim ES, Liu D, Schrag D. Precision Oncology: Who, How, What, When, and When Not?. Am Soc Clin Oncol Educ Book. 2017;37:160-169. doi:10.1200/EDBK_174176
57. 
Sharma P, Allison JP. Immune checkpoint targeting in cancer therapy: toward combination strategies with curative potential. Cell. 2015;161(2):205-214. doi:10.1016/j.cell.2015.03.030
58. 
Shen M, Lan Q, Zhang L, et al. Polymorphisms in genes involved in DNA double-strand break repair pathway and susceptibility to benzene-induced hematotoxicity. Carcinogenesis. 2006;27(10):2083-2089. doi:10.1093/carcin/bgl061
59. 
Smith MT, Vermeulen R, Li G, et al. Use of ‘Omic’ technologies to study humans exposed to benzene. Chem Biol Interact. 2005;153-154:123-127. doi:10.1016/j.cbi.2005.03.017
60. 
Snyderman R, Meade C, Drake C. Value of Personalized Medicine. JAMA. 2016;315(6):613. doi:10.1001/jama.2015.17136
61. 
Sosman JA, Kim KB, Schuchter L, et al. Survival in BRAF V600-mutant advanced melanoma treated with vemurafenib. N Engl J Med. 2012;366(8):707-714. doi:10.1056/NEJMoa1112302
62. 
Stingl JC, Welker S, Hartmann G, Damann V, Gerzer R. Where Failure Is Not an Option -Personalized Medicine in Astronauts. PLoS One. 2015;10(10):e0140764. Published 2015 Oct 21. doi:10.1371/journal.pone.0140764
63. 
International Warfarin Pharmacogenetics Consortium, Klein TE, Altman RB, et al. Estimation of the warfarin dose with clinical and pharmacogenetic data [published correction appears in N Engl J Med. 2009 Oct 15;361(16):1613. Dosage error in article text]. N Engl J Med. 2009;360(8):753-764. doi:10.1056/NEJMoa0809329
64. 
Vinken M. The adverse outcome pathway concept: a pragmatic tool in toxicology. Toxicology. 2013;312:158-165. doi:10.1016/j.tox.2013.08.011
65. 
Vlaanderen J, Moore LE, Smith MT, et al. Application of OMICS technologies in occupational and environmental health research; current status and projections. Occup Environ Med. 2010;67(2):136-143. doi:10.1136/oem.2008.042788
66. 
Waldman AD, Fritz JM, Lenardo MJ. A guide to cancer immunotherapy: from T cell basic science to clinical practice. Nat Rev Immunol. 2020;20(11):651-668. doi:10.1038/s41577-020-0306-5
67. 
Walker DI, Mallon CT, Hopke PK, et al. Deployment-Associated Exposure Surveillance With High-Resolution Metabolomics. J Occup Environ Med. 2016;58(8 Suppl 1):S12-S21. doi:10.1097/JOM.0000000000000768
68. 
Wang Z, Maschera B, Lea S, et al. Airway host-microbiome interactions in chronic obstructive pulmonary disease. Respir Res. 2019;20(1):113. Published 2019 Jun 6. doi:10.1186/s12931-019-1085-z
69. 
Wu MM, Chiou HY, Ho IC, Chen CJ, Lee TC. Gene expression of inflammatory molecules in circulating lymphocytes from arsenic-exposed human subjects. Environ Health Perspect. 2003;111(11):1429-1438. doi:10.1289/ehp.6396
70. 
Xiang J, Yang J, Chen L, et al. Reinterpretation of common pathogenic variants in ClinVar revealed a high proportion of downgrades [correction appears in Sci Rep. 2020 Jul 9;10(1): 11593]. Sci Rep. 2020;10(1):331. Published 2020 Jan 15. doi:10.1038/s41598-019-57335-5
71. 
Zhai R, Su S, Lu X, et al. Proteomic profiling in the sera of workers occupationally exposed to arsenic and lead: identification of potential biomarkers. Biometals. 2005;18(6):603-613. doi:10.1007/s10534-005-3001-x
72. 
Zhang JY, Yan YY, Li JJ, Adhikari R, Fu LW. PD-1/PD-L1 Based Combinational Cancer Therapy: Icing on the Cake. Front Pharmacol. 2020;11:722. Published 2020 May 15. doi:10.3389/fphar.2020.00722
73. 
Zhang L, McHale CM, Rothman N, et al. Systems biology of human benzene exposure. Chem Biol Interact. 2010;184(1-2):86-93. doi:10.1016/j.cbi.2009.12.011