A prospective guide for clinical implementation of selected OGTT- derived surrogate indices for the evaluation of β- cell function and insulin sensitivity in patients with transfusion-dependent β- thalassaemia β-thalassemia and OGTT surrogate indices


Vincenzo De Sanctis https://orcid.org/0000-0002-6131-974X
Ashraf T Soliman
Shahina Daar
Ploutarchos Tzoulis
Mehran Karimi
Forough Saki
Salvatore Di Maio
Christos Kattamis


Transfusion dependent β-thalassemia, oral glucose tolerance test, insulin sensitivity, insulin secretion, disposition index, surrogate indices, recommendations.


The gold standard for the measurement of insulin secretion is the hyperglycemic clamp and for insulin sensitivity the hyperinsulinemic euglycemic clamp, respectively. A number of surrogate indices, derived from plasma glucose and insulin levels at a fasting state or after oral glucose load, have been proposed to estimate β-cell response, and the ability of β-cells to compensate for changes of insulin sensitivity by modulating insulin secretion (disposition index). Starting from the current recommendations for the annual screening of glucose dysregulation in patients with transfusion dependent β-thalassemia (β-TDT), this article summarizes the most frequently used indirect indices of insulin secretion and resistance derived from the oral glucose tolerance test (OGTT) and discusses the strengths and weaknesses of selected indices and the basic concepts underlying each method for the appropriate evaluation of glucose regulation. Basal indices for β-cell function and insulin sensitivity, albeit simple and cheap, have limited usefulness due to a high coefficient variation and the lack of data about response to glucose load. Therefore, measurement of indices during an OGTT, despite being costly and time-consuming, is suggested since it can detect, even subtle, dynamic changes in insulin secretion and glucose handling. In patients with β-TDT, the indices derived from OGTT may offer an additional factor to evaluate the efficiency of iron chelation therapy and detect patients who may need intensification of iron chelation therapy and/or pharmacological intervention.


Download data is not yet available.
Abstract 0 | PDF Downloads 0


1. De Sanctis V, Soliman A, Tzoulis P, Daar S, Fiscina B, Kattamis C. The Pancreatic changes affecting glucose homeostasis in transfusion dependent β-thalassemia (TDT): a short review. Acta Biomed. 2021; 92(3):e2021232. doi:10.23750/abm.v92i3.11685.

2. He LN, Chen W, Yang Y, et al. Elevated prevalence of abnormal glucose metabolism and other endocrine disorders in patients with β-thalassemia major: A meta- analysis. Biomed Res Int. 2019; 2019:6573497. doi:10.1155/2019/6573497.

3. De Sanctis V, Daar S, Soliman AT, Tzoulis P, Karimi M, Kattamis C. Evolution of glucose-insulin homeostasis in children with β- thalassemia major (β -TM): A twenty-year retrospective ICET- A observational analysis from early childhood to young adulthood. Acta Biomed. 2022; 93(3): e2022243. doi: 10.23750/ abm. v93i3.12643.

4. Soliman AT, el Banna N, alSalmi I, Asfour M. Insulin and glucagon responses to provocation with glucose and arginine in prepubertal children with thalassemia major before and after long-term blood transfusion. J Trop Pediatr. 1996;42:291–6. doi:101093/tropej/42.5.291.

5. Angelopoulos NG, Zervas A, Livadas S, et al. Reduced insulin secretion in normoglycaemic patients with beta-thalassaemia major. Diabet Med. 2006;23:1327–31.doi:10.1111/j.1464-5491.

6. Dmochowski K, Finegood DT, Francombe W, Tyler B, Zinman B. Factors determining glucose tolerance in patients with thalassemia major. J Clin Endocrinol Metab. 1993;77:478– 83.doi:10.1210/jcem. 77.2. 8345055.

7. Pappas S, Donohue SM, Denver AE, Mohamed-Ali V, Goubet S, Yudkin JS. Glucose intolerance in thalassemia major is related to insulin resistance and hepatic dysfunction. Metabolism. 1996;45:652–7.doi: 10.1016/s0026-0495(96)90038-4.

8. Cario H, Holl RW, Debatin KM, Kohne E. Insulin sensitivity and beta-cell secretion in thalassaemia major with secondary haemochromatosis: assessment by oral glucose tolerance test. Eur J Pediatr. 2003;162:139–46.doi:10.1007/s00431-002-1121-7.

9. Patel S, Jinjuvadia R, Patel R, Liangpunsakul S. Insulin Resistance is associated with significant liver fibrosis in chronic hepatitis C patients: A systemic review and meta-analysis. J Clin Gastroenterol. 2016 ; 50(1):80-4. doi:10.1097/MCG.0000000000000400.

10. De Sanctis V, Daar S, Soliman AT, Tzoulis P, Yassin M, Kattamis C. The effects of excess weight on glucose homeostasis in young adult females with β-thalassemia major (β-TM): a preliminary retrospective study. Acta Biomed 2023; 94 (5): e2023225. doi: 10.23750/abm.v94i5.14909.

11. Fung EB, Gildengorin G, Talwar S, Hagar L, Lal A. Zinc status affects glucose homeostasis and insulin secretion in patients with thalassemia. Nutrients. 2015;7(6):4296-307. doi:10.3390/nu7064296.
12. Saudek CD, Hemm RM, Peterson CM. Abnormal glucose tolerance in β-thalassemia major. Metabolism. 1977; 26 (1):43-52. doi.org/10.1016/0026-0495(77)90126-3.

13. Farmakis D, Porter J, Taher A, Cappellini MD, Angastiniotis M, Eleftheriou A.. 2021 Thalassaemia International Federation Guidelines for the Management of Transfusion-dependent Thalassemia Hemasphere. 2022; 6(8):e732. doi: 10.1097/HS9.0000000000000732.

14. Meloni A, Nobile M, Keilberg P, et al. Pancreatic fatty replacement as risk marker for altered glucose metabolism and cardiac iron and complications in thalassemia majorEur Radiol. 2023; 33(10): 7215–25. doi: 10.1007/s00330-023-09630-z.

15. Matter RM, Allam KE, Sadony AM. Gradient-echo magnetic resonance imaging study of pancreatic iron overload in young Egyptian beta-thalassemia major patients and effect of splenectomy. Diabetol Metab Syndr. 2010;2:23. doi: 10.1186/1758-5996-2-23.

16. De Sanctis V, Soliman A, Daar S, et al. Insulin-Like Growth Factor-1 (IGF-1) and Glucose Dysregulation in Young Adult Patients with β-Thalassemia Major: Causality or Potential Link? Acta Biomed. 2022;93 (6): e2022331. doi: 10.23750/abm.v93i6.13288.

17. Fung EB, Pinal J, Leason M. Reduced physical activity patterns in patients with thalassemia compared to healthy controls. J Hematol Oncol Research. 2015 - 2(1):7-21. doi.org/10.14302/ issn.2372-6601.jhor-15-776.

18. Berdoukas V, Nord A, Carson S, et al. Tissue iron evaluation in chronically transfused children shows significant levels of iron loading at a very young age. Am J Hematol. 2013;88(E):283–5.doi:10.1002/ajh. 23545.

19. Bergman RN, Piccinini F, Kabir M, Kolka CM, Ader M. Hypothesis: role of reduced hepatic insulin clearance in the pathogenesis of type 2 diabetes. Diabetes. 2019;68 (9):1709-16. PIMD:31431441.23545.

20. Bonadonna RC, Boselli L, Dei Cas A, Trombetta M. Methods to assess in vivo insulin sensitivity and insulin secretion. In: Bonora E, DeFronzo R eds. Diabetes Epidemiology, Genetics, Pathogenesis, Diagnosis, Prevention, and Treatment. Endocrinology. Springer; 2018:pp.317-68.

21. Rijkelijkhuizen JM, Girman CJ, Mari A, et al. Classical and model-based estimates of beta-cell function during a mixed meal vs. an OGTT in a population-based cohort. Diabetes Res Clin Pract.2009; 83:280-8. doi:10.1016/j.diabres2008.11.017.

22. Defronzo RA. Lilly lecture 1987. The triumvirate: beta cell, muscle, liver. A collusion responsible for NIDDM. Diabetes.1988; 37(6): 667–87.doi:10.2337/diab.37.6.667.

23. De Sanctis V, Soliman AT, Daar S, Tzoulis P, Kattamis C. Can we predict incipient diabetes mellitus in patients with β-transfusion dependent thalassemia (β-TDT) referred with a history of prediabetes? Submitted for publication, 2023.

24. Pacini G, Mari A. Methods for clinical assessment of insulin sensitivity and beta-cell function. Best Pract Res Clin Endocrinol Metab. 2003;17:305–22. doi:10.1016/S1521-690X(03)00042-3.

25. Muniyappa R, Lee S, Chen H, Quon MJ. Current approaches for assessing insulin sensitivity and resistance in vivo: advantages, limitations, and appropriate usage. Am J Physiol Endocrinol Metab. 2008; 294(1):E15–E26. doi.org/10.1152/ajpendo.00645.2007.

26. Muniyappa R, Ritu Madan R, Varghese RT. Assessing insulin sensitivity and resistance in humans. Endotext [Internet]. Last Update: August 9, 2021.

27. Otten J, Ahrén B, Olsson T. Surrogate measures of insulin sensitivity vs the hyperinsulinaemic–euglycaemic clamp: a meta-analysis. Diabetologia.2014;57:1781–8.doi:10.10.1007/s00125-014-3285-x.

28. Kahn SE, Chen YC, Esser N, et al. The β Cell in Diabetes: Integrating Biomarkers With Functional Measures. Endocrine Rev. 2021; 42 (5): 528–83. doi.org/10.1210/endrev/bnab021.

29. Singh B, Saxena A. Surrogate markers of insulin resistance: A review. World J Diabetes. 2010;1(2): 36–47. doi: 10.4239/wjd.v1.i2.36.

30. Placzkowska S, Pawlik-Sobecka L, Kokot I, Piwowar A. Indirect insulin resistance detection: Current clinical trends and laboratory limitations. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub. 2019; 163(3):187-99.doi:10.5507/bp.2019.021.

31. Ferrannini E, Wahren J, Faber OK, et al. Splanchnic and renal metabolism of insulin in human subjects: A dose-response study. Am J Physiol Metab. 1983;244: E517–E27.doi.10.1152/ajpendo.1983.244.6.E517.

32. Wood AC, Jensen ET, Bertoni AG, et al. Defining the relative role of insulin clearance in early dysglycemia in relation to insulin sensitivity and insulin secretion: The microbiome and insulin longitudinal evaluation Study (MILES). Metabolites. 2021;11(7):420; doi.org/10.3390/ metabo 11070420.

33. American Diabetes Association. Classification and Diagnosis of Diabetes: Standards of Medical Care in Diabetes - 2020. Diabetes Care. 2020; 43(Suppl.1): S14-S31.doi.org/10.2337/dc20-S002.

34. Klonoff DC. Hemoglobinopathies and hemoglobin A1c in diabetes mellitus. J Diabetes Sci Technol. 2020;14:3–7.doi:10.1177/1932296819841698.

35. De Sanctis V, Daar S, Soliman AT, Tzoulis P, Karimi M, Di Maio S, Kattamis C. Screening for glucose dysregulation in β-thalassemia major (β-TM): An update of current evidences and personal experience. Acta Biomed. 2022;93(1):e2022158. doi:10.23750/abm.v93i1.12802.

36. De Sanctis V, Soliman AT, Daar S, Tzoulis P,Di Maio S, Kattamis C. Oral glucose tolerance test: how to maximize its diagnostic value in children and adolescents. Acta Biomed. 2022; 93(5): e2022318. doi: 10. 23750/abm.v93i5.13615.

37. Soliman AT, Yasin M, El-Awwa A, De SanctisV. Detection of glycemic abnormalities in adolescents with beta thalassemia using continuous glucose monitoring and oral glucose tolerance in adolescents and young adults with β-thalassemia major: Pilot study. Indian J Endocrinol Metab. 2013; 17(3): 490–5. doi: 10. 4103/ 2230-8210.111647.

38. El-Samahy MH, Tantawy AA, Adly AA, Abdelmaksoud AA, Ismail EA, Salah NY. Evaluation of continuous glu¬cose monitoring system for detection of alterations in glu¬cose homeostasis in pediatric patients with β-thalassemia major. Pediatr Diabetes .2019;20:65-72. doi: 10.1111/pedi.12793.

39. Tzoulis P, Yavropoulou MP, Banchev A, Modeva I, Daar S, De Sanctis V. Recent advancements in glucose dysregulation and pharmacological management of osteoporosis in transfusion-dependent thalassemia (TDT): an update of ICET-A (International Network of Clinicians for Endocrinopathies in Thalassemia and Adolescence Medicine) : Glucose disorders and osteoporosis in thalassemia . Acta Biomed. 2023;;94(3):e2023178. doi:10.23750/abm.v94i3.14805.

40. Sacks DB. Carbohydrates. Tietz textbook of clinical chemistry and molecular diagnostics. In: Burtis CA, Ash-wood ER, Bruns DE, editors. 4th ed. St. Louis: Elsevier Saunders; 2006. pp. 837–902.

41. Libman IM , Barinas-Mitchell E , Bartucci A , Robertson R , Arslanian S. Reproducibility of the oral glucose tolerance test in overweight children. J Clin Endocrinol Metab. 2008; 93: 4231–7.doi:10.1210/jc. 2008-0801.

42. Utzschneider KM, Prigeon RL, Tong J, et al. Within-subject variability of measures of beta cell function derived from a 2 h OGTT: implications for research studies. Diabetologia. 2007;50: 2516–25.doi.10.1007/ s00125-007-0819-5.

43. Kim W, Egan JM. The role of incretins in glucose homeostasis and diabetes treatment. Pharmacol Rev. 2008;60(4):470–512. doi: 10.1124/pr.108.000604.

44. Nauck MA, Homberger E, Siegel EG, et al. Incretin effects of increasing glucose loads in man calculated from venous insulin and C-peptide responses. J Clin Endocrinol Metab. 1986;63(2):492–8. doi: 10.1210/jcem-63-2-492.

45. Faerch K, Vaag A, Holst JJ, Glumer C, Pedersen O, Borch-Johnsen K. Impaired fasting glycaemia vs impaired glucose tolerance: similar impairment of pancreatic alpha and beta cell function but differential roles of incretin hormones and insulin action. Diabetologia. 2008;51(5):853–61. doi: 10.1007/s00125-008-0951-x .

46. Abdul-Ghani MA, Matsuda M, Balas B, DeFronzo RA. Muscle and liver insulin resistance indexes derived from the oral glucose tolerance test. Diabetes Care.2007; 30:89–94.doi.10.2337/dc06-1519.

47. Prystupa K, Renklint R, Chninou Y, et al. Comprehensive validation of fasting-based and oral glucose tolerance test–based indices of insulin secretion against gold standard measures. BMJ Open Diabetes Res Care. 2022; 10(5): e002909. doi: 10.1136/bmjdrc-2022-002909.

48. Hudak S, Huber P, Lamprinou A, et al. Reproducibility and discrimination of different indices of insulin sensitivity and insulin secretion. PLoS One. 2021; 16(10): e0258476. doi: 10.1371/journal.pone.0258476.

49. Chon S, Gautier JF. An update on the effect of incretin-based therapies on β-cell function and mass. Diabetes Metab J. 2016; 40(2):99-114.doi:10.4093/dmj.2016.40.2.99.

50. Luzi L, DeFronzo RA. Effect of loss of first-phase insulin secre¬tion on hepatic glucose production and tissue glucose disposal in humans. Am J Physiol. 1989;257(2 Pt 1):E241-6.doi:10.1152/ ajpendo.1989. 257. 2.E241.

51. Gerich JE. Is reduced first-phase insulin release the earliest detectable abnormality in individuals destined to develop type 2 diabetes? Diabetes. 2002;51(Supplement 1):S117–S21. doi: 10.2337/diabetes. 51.2007.S117.

52. Matsuda M, DeFronzo RA. Insulin sensitivity indices obtained from oral glucose tolerance testing: comparison with the euglycemic insulin clamp. Diabetes Care. 1999; 22(9): 1462–70, doi:10.2337/diaca¬re.22.9.1462.

53. Matthews DR, Hosker JP, Rudenski AS, et al. Homeostasis model asses¬sment: insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia. 1985; 28(7): 412–9, doi: 10.1007/bf00280883.

54. Seltzer HS, Allen EW, Herron AL Jr, Brennan MT. Insulin secretion in response to glycemic stimulus: relation of delayed initial release to carbohydrate intolerance in mild diabetes mellitus. J Clin Invest. 1967; 46(3):323-35. doi: 10.1172/JCI105534.

55. Sluiter WJ, Erkelens DW, Reitsma WD, Doorenbos H. Glucose tolerance and insulin release, a mathematical approach I. Assay of the beta-cell response after oral glucose loading. Diabetes.1976; 25 (4):241-4.doi.10.2337/diab.25.4.245.

56. Stumvoll M, Mitrakou A, Pimenta W, et al. Use of the oral glucose tolerance test to assess insulin release and insulin sensitivity. Diabetes Care. 2000;23(3):295-301.doi: 10.2337/diacare.23.3.295.

57. Stumvoll M, Haeften T V, Fritsche A, Gerich J. Oral glucose tolerance test indexes for insulin sensitivity and secretion based on various availabilities of sampling times. Diabetes Care. 2001;24(4):796-7. doi:10. 2337/diacare.24.4.796.

58. Zheng S, Zhou H, Han T, Li Y, Zhang Y, Liu W, Hu Y. Clinical characteristics and beta cell function in Chinese patients with newly diagnosed type 2 diabetes mellitus with different levels of serum triglyceride. BMC Endocr Disord. 2015;15:21. doi: 10.1186/s12902-015-0018-1.

59. Powe CE, Locascio JJ, Huston Gordesky L, Florez JC, Catalano PM. Oral Glucose Tolerance Test-based measures of insulin secretory response in pregnancy. J Clin Endocrinol Metab. 2022; 107(5): e1871–e8. doi:10.1210/clinem/dgac041.

60. Faulenbach MV, Wright LA, Lorenzo C, et al. Impact of differences in glucose tolerance on the prevalence of a negative insulinogenic index. J Diabetes Complications. 2013;27(2):158–61.doi: 10.1016/ j.jdiacomp.2012.09.011.

61. Faulenbach MV, Wright LA , Lorenzo C, et al. and American Diabetes Association GENNID Study Group. Impact of Differences in glucose tolerance on the prevalence of a negative insulinogenic index. J Diabetes Complications. 2013; 27(2):158–61. doi: 10.1016/ j.jdiacomp. 2012.09.011.

62. Saisho Y, Kou K, Tanaka K, et al. Postprandial serum C-peptide to plasma glucose ratio as a predictor of subsequent insulin treatment in patients with type 2 diabetes. Endocr J. 2011;58:315–22. doi: 10.1507/ endocrj.K10E-399.

63. Ascaso JF, Pardo S, Real JT, Lorente RI, Priego A, Carmena R. Diagnosing insulin resistance by simple quantitative methods in subjects with normal glucose metabolism. Diabetes Care. 2003; 26 (12):3320-5. doi. org/10.2337/diacare.26.12.3320.

64.Wallace TM, Levy JC, Matthews DR. Use and abuse of HOMA modeling. Diabetes Care. 2004;27(6): 1487–95.doi:102337/diacare.27.6.1487.

65. Katz A, Nambi SS, Mather K, et al. Quantitative insulin sensitivity check index: a simple, accurate method for assessing insulin sensitivity in humans. J Clin Endocrinol Metab. 2000;85:2402–10.doi: 10. 1210/jcem.85.7.6661.

66. Lee CH, Shih AZL, Woo YC, et al. Optimal cut-offs of homeostasis model assessment of insulin resistance (HOMA-IR) to identify dysglycemia and type 2 diabetes mellitus: A 15-year prospective study in Chinese. PLoS ONE 11(9): e0163424. doi:10.1371/journal. pone.0163424.

67. Levy JC, Matthews DR, Hermans MP. Correct homeostasis model assessment (HOMA) evaluation uses the computer program. Diabetes Care.1998;21(12):2191–2.doi:10.2337/diacare.21.12.2191.

68. Geloneze B, Vasques AC, Stabe CF, et al. HOMA1-IR and HOMA2-IR indexes in identifying insulin resistance and metabolic syndrome: Brazilian Metabolic Syndrome Study (BRAMS) Arq Bras Endocrinol Metabol. 2009;53(2):281–7.doi:10.1590/s0004-273020090002000,20.

69. Bonora E, Kiechl S, Willeit J, et al. Prevalence of insulin resistance in metabolic disorders: the Bruneck Study. Diabetes. 1998;47(10):1643–9.doi: doi:10.2337/ diabetes.47.10.1643.

70. Timoteo AT, Miranda F, Carmo MM, Ferreira RC. Optimal cut-off value for homeostasis model assessment (HOMA) index of insulin-resistance in a population of patients admitted electively in a Portuguese cardiology ward. Acta Med Port. 2014;27(4):473–9.doi:10.20344/amp.5180.

71. Ziaee A, Esmailzadehha N, Oveisi S, Ghorbani A, Ghanei L. The threshold value of homeostasis model assessment for insulin resistance in Qazvin Metabolic Diseases Study (QMDS): assessment of metabolic syndrome. J Res Health Sci. 2015;15(2):94–100. PMID: 26175291.

72. Do HD, Lohsoonthorn V, Jiamjarasrangsi W, Lertmaharit S, Williams MA. Prevalence of insulin resistance and its relationship with cardiovascular disease risk factors among Thai adults over 35 years old. Diabetes Res Clin Pract. 2010;89(3):303–8. doi: 10.1016/j.diabres.2010.04.013.

73. Marques-Vidal P, Mazoyer E, Bongard V, et al. Prevalence of insulin resistance syndrome in southwestern France and its relationship with inflammatory and hemostatic markers. Diabetes Care. 2002;25(8):1371–7. doi.org/10.2337/diacare.25.8.1371.

74. Ascaso JF, Romero P, Real JT, Lorente RI, Martinez-Valls J, Carmena R. Abdominal obesity, insulin resistance, and metabolic syndrome in a southern European population. Eur J Intern Med. 2003;14(2):101–6. doi.org/10.1016/S0953-6205(03)00022-0.

75. Friedrich N, Thuesen B, Jorgensen T, et al. The association between IGF-I and insulin resistance: a general population study in Danish adults. Diabetes Care. 2012; 35(4):768–73. doi:10.2337/dc11-1833.

76. Gayoso-Diz P, Otero-González A, Rodriguez-Alvarez MX, et al. Insulin resistance (HOMA-IR) cut-off values and the metabolic syndrome in a general adult population: effect of gender and age: EPIRCE cross-sectional study. BMC Endocr Disord.2013;13: 47.doi.org/10.1186/1472-6823-13-47.

77. Bergman RN, Hucking K, Watanabe RM. International Textbook of Diabetes Mellitus. Measuring insulin ac78 . Kahn SE, Chen YC, Esser N, et al. The β Cell in Diabetes: Integrating biomarkers with functional measures. Endocr Rev. 2021;42 (5):528–83.doi.org/10.1210/endrev/bnab021.

78 . Kahn SE, Chen YC, Esser N, et al. The β Cell in Diabetes: Integrating biomarkers with functional measures. Endocr Rev. 2021;42 (5):528–83.doi.org/10.1210/endrev/bnab021.

79. Farkas GJ, Gordon PS, Trewick N, et al. Comparison of various indices in identifying insulin resistance and diabetes in chronic spinal cord injury. J Clin Med. 2021;10(23): 5591.doi:10.3390/jcm10235591.

80. Matsuda M, DeFronzo RA. Insulin sensitivity indices obtained from oral glucose tolerance testing. Diabetes Care.1999;22:1462-70.doi:10.2337/diacare.22.9.1462.

81. Utzschneider KM, Prigeon RL, Faulenbach MV, et al. Oral disposition index predicts the development of future diabetes above and beyond fasting and 2-h glucose levels. Diabetes Care.2009:32:335–41.doi:10. 233 /dc09-0729.

82. Mari A, Pacini G, Murphy E, Ludvik B, Nolan JJ. A model-based method for assessing insulin sensitivity from the oral glucose tolerance test. Diabetes Care. 2001;24:539-48.doi:10.2337/diacare.24.3.539.Erratum in: Diabetes Care.214;37(7)2063.PIMD.11289482.

83. Abdul-Ghani MA, Jenkinson CP, Richardson DK, Tripathy D, DeFronzo RA. Insulin secretion and action in subjects with impaired fasting glucose and impaired glucose tolerance: Results from the veterans administration genetic epidemiology study. Diabetes. 2006;55:1430-5.doi:10.2337/db05-1200.

84. Park SY, Gautier JF, Suk Chon S. Assessment of insulin secretion and insulin resistance in human. Diabetes Metab J. 202;45(5): 641–54. doi:10.4093/dmj.2021.0220.

85. Bergman RN, Ader M, Heucking K,Van Citters G. Accurate assessment of beta-cell function. The hyperbolic correction. Diabetes. 2002; 51 S212–S20.doi:10.2337/diabetes.512007.s212.

86. Retnakaran R, Shen S, Hanley AJ, Vuksan V, Hamilton JK, Zinman B. Hyperbolic relationship between insulin secretion and sensitivity on oral glucose tolerance test. Obesity (Silver Spring). 2008;16:1901–7. doi:10.1038/oby.2008.307.

87. De Sanctis V, Soliman A, Tzoulis P, Daar S, Pozzobon GC, Kattamis C. A study of isolated hyperglycemia (blood glucose ≥155 mg/dL) at 1-hour of oral glucose tolerance test (OGTT) in patients with β-transfusion dependent thalassemia (β-TDT) followed for 12 years. Acta Biomed. 2021; 92(4): e2021322. doi:10.23750/abm.v92i4.11105.

88. Karadas N, Yurekli B, Bayraktaroglu S, Aydinok Y. Insulin secretion-sensitivity index-2 could be a novel marker in the identification of the role of pancreatic iron deposition on beta-cell function in thalassemia major. Endocr J. 2019;66:1093–9.doi:10.1707/endocej.EJ19-0191.

89. Marku A, Galli A, Marciani P, Dule N, Perego C, Castagna M. Iron metabolism in pancreatic beta-cell function and dysfunction. Cells. 2021:10:2841.doi.org/10.3390/cells10112841.

90. Lenzen S. Oxidative Stress: The vulnerable beta-cell. Biochem Soc Trans. 2008;36: 343–7. doi.org/ 10.1042/BST0360343.

91. Newsholme P, Cruzat VF, Keane KN, Carlessi R, de Bittencourt PIH. Molecular mechanisms of ROS production and oxidative stress in diabetes. Biochem J. 2016;473:4527–50.doi:10.1042/BCJ2016050503C.

92. Rosli N, Kwon HJ, Lim J, Yoon YA. Measurement comparability of insulin assays using conventional immunoassay kits. J Clin Lab Anal.2022;36:e24521.doi.org/10.1002/jcla.24521.

93. Borai A, Livingstone C, Shafi S, Zarif H, Ferns G. Insulin sensitivity (Si) assessment in lean and overweight subjects using two different protocols and updated software. Scand J Clin Lab Invest. 2010; 70(2):98- 103. doi: 10.3109/00365510903544585.

94. Magkos F, Lee MH, Lim M, et al. Dynamic assessment of insulin secretion and insulin resistance in Asians with prediabetes. Metabolism.2022;128:154957. doi.org/10.1016/ j.metabol.2021.154957.

95.Gastaldelli, A. Measuring and estimating insulin resistance in clinical and research settings.Obesity (Siver Spring). 2022;20(8): 1549-63. doi.org/10.1002/oby.23503.

96. Mather KJ, Hunt AE, Steinberg HO, et al. Repeatability characteristics of simple indices of insulin resistance: implications for research applications. J Clin Endocrinol Metab. 2001;86:5457–64.doi:10. 1210/jcem.

97. Hudak S, Huber P, Lamprinou A, et al. Reproducibility and discrimination of different indices of insulin sensitivity and insulin secretion. PLoS One. 2021; 16(10): e0258476. doi: 10.1371/journal.pone.0258476.

98. Prystupa K, Renklint R, Chninou Y, et al. Comprehensive validation of fasting- and oral glucose tolerance test-based indices of insulin secretion against gold-standard measures. medRxiv. 2022. 04. 14. 22273491;doi:10.1101/2022.04.14.22273491.

99. Hauke J, Kossowski T, Comparison of values of Pearson’s and Spearman’s correlation coeficient on the same sets of data. Quaestiones Geographicae.2011; 30(2):87–93.doi: 10.2478/ v10117-011-0021-1.

100. Tabák AG, Jokela M, Akbaraly TN, Brunner EJ, Kivimäki M, Witte DR. Trajectories of glycemia, insulin sensitivity and insulin secretion preceding the diagnosis of type 2 diabetes: The Whitehall II study Lancet. 2009; 373(9682): 2215–21.doi: 10.1016/S0140-6736(09)60619-X.

101. Khalili D, Khayamzadeh M, Kohansal K, et al. Are HOMA-IR and HOMA-B good predictors for diabetes and pre-diabetes subtypes? BMC Endocr Disord. 2023; 23: 39. doi: 10.1186/s12902-023-01291-9

Most read articles by the same author(s)

1 2 3 4 5 6 7 8 9 10 11 12 > >>