Advanced pharmacological therapies for neurofibromatosis type 1-related tumors

Main Article Content

Thomas Foiadelli
Matteo Naso
Amelia Licari
Alessandro Orsini
Mariasole Magistrali
Chiara Trabatti
Sabino Luzzi
Mario Mosconi
Salvatore Savasta
Gian Luigi Marseglia

Keywords

NF1; Malignant Peripheral Nerve Sheath Tumor; MPNST; Optic Pathway Glioma, Plexiform Neurofibroma, Selumetinib, Mtor Inhibitors

Abstract

Neurofibromatosis Type 1 (NF1) is an autosomal dominant tumor-predisposition disorder that is caused by a heterozygous loss of function variant in the NF1 gene, which encodes a protein called neurofibromin. The absence of neurofibromin causes increased activity in the Rat sarcoma protein (RAS) signalling pathway, which results in an increased growth and cell proliferation. As a result, both oncological and non-oncological comorbidities contribute to a high morbidity and mortality in these patients. Optic pathways gliomas, plexiform neurofibromas and malignant peripheral nerve sheath tumor (MPNST) are the most frequent NF1-associated tumors. The treatment of these complications is often challenging, since surgery may not be feasible due to the location, size, and infiltrative nature of these tumors, and standard chemotherapy or radiotherapy are burdened by significant toxicity and risk for secondary malignancies. For these reasons, following the novel discoveries of the pathophysiological mechanisms that lead to cell proliferation and tumorigenesis in NF1 patients, emerging drugs targeting specific signalling pathways (i.e. the MEK/ERK cascade), have been developed with promising results. 

Downloads

Download data is not yet available.
Abstract 448 | PDF Downloads 175

References

1. Williams VC, Lucas J, Babcock MA, Gutmann DH, Korf B, Maria BL. Neurofibromatosis type 1 revisited. Pediatrics. 2009;123(1): 124-133. https://doi.org/10.1542/peds.2007-3204.
2. Lammert M, Friedman JM, Kluwe L, Mautner VF. Prevalence of neurofibromatosis 1 in German children at elementary school enrollment. Arch Dermatol. 2005;141(1): 71-74. https://doi.org/10.1001/archderm.141.1.71.
3. Uusitalo E, Leppavirta J, Koffert A, et al. Incidence and mortality of neurofibromatosis: a total population study in Finland. J Invest Dermatol. 2015;135(3): 904-906. https://doi.org/10.1038/jid.2014.465.
4. Neurofibromatosis. Conference statement. National Institutes of Health Consensus Development Conference. Arch Neurol. 1988;45(5): 575-578.
5. Cimino PJ, Gutmann DH. Neurofibromatosis type 1. Handb Clin Neurol. 2018;148: 799-811. https://doi.org/10.1016/B978-0-444-64076-5.00051-X.
6. Duong TA, Sbidian E, Valeyrie-Allanore L, et al. Mortality associated with neurofibromatosis 1: a cohort study of 1895 patients in 1980-2006 in France. Orphanet J Rare Dis. 2011;6: 18. https://doi.org/10.1186/1750-1172-6-18.
7. Gutmann DH, Ferner RE, Listernick RH, Korf BR, Wolters PL, Johnson KJ. Neurofibromatosis type 1. Nat Rev Dis Primers. 2017;3: 17004. https://doi.org/10.1038/nrdp.2017.4.
8. Hirbe AC, Gutmann DH. Neurofibromatosis type 1: a multidisciplinary approach to care. Lancet Neurol. 2014;13(8): 834-843. https://doi.org/10.1016/s1474-4422(14)70063-8.
9. Rasmussen SA, Yang Q, Friedman JM. Mortality in neurofibromatosis 1: an analysis using U.S. death certificates. Am J Hum Genet. 2001;68(5): 1110-1118. https://doi.org/10.1086/320121.
10. Hannan F, Ho I, Tong JJ, Zhu Y, Nurnberg P, Zhong Y. Effect of neurofibromatosis type I mutations on a novel pathway for adenylyl cyclase activation requiring neurofibromin and Ras. Hum Mol Genet. 2006;15(7): 1087-1098. https://doi.org/10.1093/hmg/ddl023.
11. Luzzi S, Crovace AM, Del Maestro M, et al. The cell-based approach in neurosurgery: ongoing trends and future perspectives. Heliyon. 2019;5(11): e02818. https://doi.org/10.1016/j.heliyon.2019.e02818.
12. Philpott C, Tovell H, Frayling IM, Cooper DN, Upadhyaya M. The NF1 somatic mutational landscape in sporadic human cancers. Hum Genomics. 2017;11(1): 13. https://doi.org/10.1186/s40246-017-0109-3.
13. Evans DG, Howard E, Giblin C, et al. Birth incidence and prevalence of tumor-prone syndromes: estimates from a UK family genetic register service. Am J Med Genet A. 2010;152A(2): 327-332. https://doi.org/10.1002/ajmg.a.33139.
14. Rad E, Tee AR. Neurofibromatosis type 1: Fundamental insights into cell signalling and cancer. Semin Cell Dev Biol. 2016;52: 39-46. https://doi.org/10.1016/j.semcdb.2016.02.007.
15. Ballester R, Marchuk D, Boguski M, et al. The NF1 locus encodes a protein functionally related to mammalian GAP and yeast IRA proteins. Cell. 1990;63(4): 851-859. https://doi.org/10.1016/0092-8674(90)90151-4.
16. Martin GA, Viskochil D, Bollag G, et al. The GAP-related domain of the neurofibromatosis type 1 gene product interacts with ras p21. Cell. 1990;63(4): 843-849. https://doi.org/10.1016/0092-8674(90)90150-d.
17. Ars E, Kruyer H, Morell M, et al. Recurrent mutations in the NF1 gene are common among neurofibromatosis type 1 patients. J Med Genet. 2003;40(6): e82. https://doi.org/10.1136/jmg.40.6.e82.
18. Xu GF, O'Connell P, Viskochil D, et al. The neurofibromatosis type 1 gene encodes a protein related to GAP. Cell. 1990;62(3): 599-608. https://doi.org/10.1016/0092-8674(90)90024-9.
19. Johannessen CM, Reczek EE, James MF, Brems H, Legius E, Cichowski K. The NF1 tumor suppressor critically regulates TSC2 and mTOR. Proc Natl Acad Sci U S A. 2005;102(24): 8573-8578. https://doi.org/10.1073/pnas.0503224102.
20. Dasgupta B, Yi Y, Chen DY, Weber JD, Gutmann DH. Proteomic analysis reveals hyperactivation of the mammalian target of rapamycin pathway in neurofibromatosis 1-associated human and mouse brain tumors. Cancer Res. 2005;65(7): 2755-2760. https://doi.org/10.1158/0008-5472.CAN-04-4058.
21. Karajannis MA, Ferner RE. Neurofibromatosis-related tumors: emerging biology and therapies. Curr Opin Pediatr. 2015;27(1): 26-33. https://doi.org/10.1097/MOP.0000000000000169.
22. Schulte A, Ewald F, Spyra M, et al. Combined Targeting of AKT and mTOR Inhibits Proliferation of Human NF1-Associated Malignant Peripheral Nerve Sheath Tumour Cells In Vitro but not in a Xenograft Mouse Model In Vivo. Int J Mol Sci. 2020;21(4). https://doi.org/10.3390/ijms21041548.
23. Anastasaki C, Gutmann DH. Neuronal NF1/RAS regulation of cyclic AMP requires atypical PKC activation. Hum Mol Genet. 2014;23(25): 6712-6721. https://doi.org/10.1093/hmg/ddu389.
24. DeClue JE, Cohen BD, Lowy DR. Identification and characterization of the neurofibromatosis type 1 protein product. Proc Natl Acad Sci U S A. 1991;88(22): 9914-9918. https://doi.org/10.1073/pnas.88.22.9914.
25. Gutmann DH, Wood DL, Collins FS. Identification of the neurofibromatosis type 1 gene product. Proc Natl Acad Sci U S A. 1991;88(21): 9658-9662. https://doi.org/10.1073/pnas.88.21.9658.
26. Walker JA, Upadhyaya M. Emerging therapeutic targets for neurofibromatosis type 1. Expert Opin Ther Targets. 2018;22(5): 419-437. https://doi.org/10.1080/14728222.2018.1465931.
27. Theos A, Korf BR. Pathophysiology of neurofibromatosis type 1. Ann Intern Med. 2006;144(11): 842-849. https://doi.org/10.7326/0003-4819-144-11-200606060-00010.
28. Basu TN, Gutmann DH, Fletcher JA, Glover TW, Collins FS, Downward J. Aberrant regulation of ras proteins in malignant tumour cells from type 1 neurofibromatosis patients. Nature. 1992;356(6371): 713-715. https://doi.org/10.1038/356713a0.
29. Bollag G, Clapp DW, Shih S, et al. Loss of NF1 results in activation of the Ras signaling pathway and leads to aberrant growth in haematopoietic cells. Nat Genet. 1996;12(2): 144-148. https://doi.org/10.1038/ng0296-144.
30. Verdijk RM, den Bakker MA, Dubbink HJ, Hop WC, Dinjens WN, Kros JM. TP53 mutation analysis of malignant peripheral nerve sheath tumors. J Neuropathol Exp Neurol. 2010;69(1): 16-26. https://doi.org/10.1097/NEN.0b013e3181c55d55.
31. Korfhage J, Lombard DB. Malignant Peripheral Nerve Sheath Tumors: From Epigenome to Bedside. Mol Cancer Res. 2019;17(7): 1417-1428. https://doi.org/10.1158/1541-7786.MCR-19-0147.
32. DeBella K, Szudek J, Friedman JM. Use of the national institutes of health criteria for diagnosis of neurofibromatosis 1 in children. Pediatrics. 2000;105(3 Pt 1): 608-614. https://doi.org/10.1542/peds.105.3.608.
33. Parisi P, Vanacore N, Belcastro V, et al. Clinical guidelines in pediatric headache: evaluation of quality using the AGREE II instrument. J Headache Pain. 2014;15: 57. https://doi.org/10.1186/1129-2377-15-57.
34. Foiadelli T, Piccorossi A, Sacchi L, et al. Clinical characteristics of headache in Italian adolescents aged 11-16 years: a cross-sectional questionnaire school-based study. Ital J Pediatr. 2018;44(1): 44. https://doi.org/10.1186/s13052-018-0486-9.
35. Garone G, Reale A, Vanacore N, et al. Acute ataxia in paediatric emergency departments: a multicentre Italian study. Arch Dis Child. 2019;104(8): 768-774. https://doi.org/10.1136/archdischild-2018-315487.
36. Obringer AC, Meadows AT, Zackai EH. The diagnosis of neurofibromatosis-1 in the child under the age of 6 years. Am J Dis Child. 1989;143(6): 717-719. https://doi.org/10.1001/archpedi.1989.02150180099028.
37. Gutmann DH, Aylsworth A, Carey JC, et al. The diagnostic evaluation and multidisciplinary management of neurofibromatosis 1 and neurofibromatosis 2. Jama. 1997;278(1): 51-57.
38. Gutmann DH, Parada LF, Silva AJ, Ratner N. Neurofibromatosis type 1: modeling CNS dysfunction. J Neurosci. 2012;32(41): 14087-14093. https://doi.org/10.1523/JNEUROSCI.3242-12.2012.
39. Bornhorst M, Frappaz D, Packer RJ. Pilocytic astrocytomas. Handb Clin Neurol. 2016;134: 329-344. https://doi.org/10.1016/B978-0-12-802997-8.00020-7.
40. Listernick R, Darling C, Greenwald M, Strauss L, Charrow J. Optic pathway tumors in children: the effect of neurofibromatosis type 1 on clinical manifestations and natural history. J Pediatr. 1995;127(5): 718-722. https://doi.org/10.1016/s0022-3476(95)70159-1.
41. Guillamo JS, Creange A, Kalifa C, et al. Prognostic factors of CNS tumours in Neurofibromatosis 1 (NF1): a retrospective study of 104 patients. Brain. 2003;126(Pt 1): 152-160. https://doi.org/10.1093/brain/awg016.
42. Banerjee A, Jakacki RI, Onar-Thomas A, et al. A phase I trial of the MEK inhibitor selumetinib (AZD6244) in pediatric patients with recurrent or refractory low-grade glioma: a Pediatric Brain Tumor Consortium (PBTC) study. Neuro Oncol. 2017;19(8): 1135-1144. https://doi.org/10.1093/neuonc/now282.
43. Peltonen S, Kallionpaa RA, Rantanen M, et al. Pediatric malignancies in neurofibromatosis type 1: A population-based cohort study. Int J Cancer. 2019;145(11): 2926-2932. https://doi.org/10.1002/ijc.32187.
44. Campen CJ, Gutmann DH. Optic Pathway Gliomas in Neurofibromatosis Type 1. J Child Neurol. 2018;33(1): 73-81. https://doi.org/10.1177/0883073817739509.
45. Zeid JL, Charrow J, Sandu M, Goldman S, Listernick R. Orbital optic nerve gliomas in children with neurofibromatosis type 1. J AAPOS. 2006;10(6): 534-539. https://doi.org/10.1016/j.jaapos.2006.03.014.
46. Balcer LJ, Liu GT, Heller G, et al. Visual loss in children with neurofibromatosis type 1 and optic pathway gliomas: relation to tumor location by magnetic resonance imaging. Am J Ophthalmol. 2001;131(4): 442-445. https://doi.org/10.1016/s0002-9394(00)00852-7.
47. Palumbo P, Lombardi F, Augello FR, et al. NOS2 inhibitor 1400W Induces Autophagic Flux and Influences Extracellular Vesicle Profile in Human Glioblastoma U87MG Cell Line. Int J Mol Sci. 2019;20(12). https://doi.org/10.3390/ijms20123010.
48. Palumbo P, Lombardi F, Siragusa G, et al. Involvement of NOS2 Activity on Human Glioma Cell Growth, Clonogenic Potential, and Neurosphere Generation. Int J Mol Sci. 2018;19(9). https://doi.org/10.3390/ijms19092801.
49. Raysi Dehcordi S, Ricci A, Di Vitantonio H, et al. Stemness Marker Detection in the Periphery of Glioblastoma and Ability of Glioblastoma to Generate Glioma Stem Cells: Clinical Correlations. World Neurosurg. 2017;105: 895-905. https://doi.org/10.1016/j.wneu.2017.05.099.
50. Antonosante A, Brandolini L, d'Angelo M, et al. Autocrine CXCL8-dependent invasiveness triggers modulation of actin cytoskeletal network and cell dynamics. Aging (Albany NY). 2020;12(2): 1928-1951. https://doi.org/10.18632/aging.102733.
51. Taleb FS, Guha A, Arnold PM, Fehlings MG, Massicotte EM. Surgical management of cervical spine manifestations of neurofibromatosis Type 1: long-term clinical and radiological follow-up in 22 cases. J Neurosurg Spine. 2011;14(3): 356-366. https://doi.org/10.3171/2010.9.SPINE09242.
52. Mautner VF, Asuagbor FA, Dombi E, et al. Assessment of benign tumor burden by whole-body MRI in patients with neurofibromatosis 1. Neuro Oncol. 2008;10(4): 593-598. https://doi.org/10.1215/15228517-2008-011.
53. Nguyen R, Kluwe L, Fuensterer C, Kentsch M, Friedrich RE, Mautner VF. Plexiform neurofibromas in children with neurofibromatosis type 1: frequency and associated clinical deficits. J Pediatr. 2011;159(4): 652-655 e652. https://doi.org/10.1016/j.jpeds.2011.04.008.
54. Pascual-Castroviejo I, Lopez-Pereira P, Savasta S, Lopez-Gutierrez JC, Lago CM, Cisternino M. Neurofibromatosis type 1 with external genitalia involvement presentation of 4 patients. J Pediatr Surg. 2008;43(11): 1998-2003. https://doi.org/10.1016/j.jpedsurg.2008.01.074.
55. Evans DG, Baser ME, McGaughran J, Sharif S, Howard E, Moran A. Malignant peripheral nerve sheath tumours in neurofibromatosis 1. J Med Genet. 2002;39(5): 311-314. https://doi.org/10.1136/jmg.39.5.311.
56. Uusitalo E, Rantanen M, Kallionpaa RA, et al. Distinctive Cancer Associations in Patients With Neurofibromatosis Type 1. J Clin Oncol. 2016;34(17): 1978-1986. https://doi.org/10.1200/JCO.2015.65.3576.
57. Higham CS, Dombi E, Rogiers A, et al. The characteristics of 76 atypical neurofibromas as precursors to neurofibromatosis 1 associated malignant peripheral nerve sheath tumors. Neuro Oncol. 2018;20(6): 818-825. https://doi.org/10.1093/neuonc/noy013.
58. Packer RJ, Rosser T. Therapy for plexiform neurofibromas in children with neurofibromatosis 1: an overview. J Child Neurol. 2002;17(8): 638-641; discussion 646-651. https://doi.org/10.1177/088307380201700816.
59. Needle MN, Cnaan A, Dattilo J, et al. Prognostic signs in the surgical management of plexiform neurofibroma: the Children's Hospital of Philadelphia experience, 1974-1994. J Pediatr. 1997;131(5): 678-682. https://doi.org/10.1016/s0022-3476(97)70092-1.
60. Stucky CC, Johnson KN, Gray RJ, et al. Malignant peripheral nerve sheath tumors (MPNST): the Mayo Clinic experience. Ann Surg Oncol. 2012;19(3): 878-885. https://doi.org/10.1245/s10434-011-1978-7.
61. Khu KJ, Midha R. Malignant Peripheral Nerve Sheath Tumors. World Neurosurg. 2016;94: 566-567. https://doi.org/10.1016/j.wneu.2016.07.054.
62. Valentin T, Le Cesne A, Ray-Coquard I, et al. Management and prognosis of malignant peripheral nerve sheath tumors: The experience of the French Sarcoma Group (GSF-GETO). Eur J Cancer. 2016;56: 77-84. https://doi.org/10.1016/j.ejca.2015.12.015.
63. Widemann BC. Current status of sporadic and neurofibromatosis type 1-associated malignant peripheral nerve sheath tumors. Curr Oncol Rep. 2009;11(4): 322-328. https://doi.org/10.1007/s11912-009-0045-z.
64. Yamanaka R, Hayano A. Radiation-Induced Malignant Peripheral Nerve Sheath Tumors: A Systematic Review. World Neurosurg. 2017;105: 961-970 e968. https://doi.org/10.1016/j.wneu.2017.06.010.
65. Higham CS, Steinberg SM, Dombi E, et al. SARC006: Phase II Trial of Chemotherapy in Sporadic and Neurofibromatosis Type 1 Associated Chemotherapy-Naive Malignant Peripheral Nerve Sheath Tumors. Sarcoma. 2017;2017: 8685638. https://doi.org/10.1155/2017/8685638.
66. Agaimy A, Vassos N, Croner RS. Gastrointestinal manifestations of neurofibromatosis type 1 (Recklinghausen's disease): clinicopathological spectrum with pathogenetic considerations. Int J Clin Exp Pathol. 2012;5(9): 852-862.
67. Salvi PF, Lorenzon L, Caterino S, Antolino L, Antonelli MS, Balducci G. Gastrointestinal stromal tumors associated with neurofibromatosis 1: a single centre experience and systematic review of the literature including 252 cases. Int J Surg Oncol. 2013;2013: 398570. https://doi.org/10.1155/2013/398570.
68. Popescu I, Andrei S. Gastrointestinal stromal tumors. Chirurgia (Bucur). 2008;103(2): 155-170.
69. Lee JL, Kim JY, Ryu MH, et al. Response to imatinib in KIT- and PDGFRA-wild type gastrointestinal stromal associated with neurofibromatosis type 1. Dig Dis Sci. 2006;51(6): 1043-1046. https://doi.org/10.1007/s10620-006-8003-1.
70. Wang JH, Lasota J, Miettinen M. Succinate Dehydrogenase Subunit B (SDHB) Is Expressed in Neurofibromatosis 1-Associated Gastrointestinal Stromal Tumors (Gists): Implications for the SDHB Expression Based Classification of Gists. J Cancer. 2011;2: 90-93. https://doi.org/10.7150/jca.2.90.
71. Nishida T, Blay JY, Hirota S, Kitagawa Y, Kang YK. The standard diagnosis, treatment, and follow-up of gastrointestinal stromal tumors based on guidelines. Gastric Cancer. 2016;19(1): 3-14. https://doi.org/10.1007/s10120-015-0526-8.
72. Gruber LM, Erickson D, Babovic-Vuksanovic D, Thompson GB, Young WF, Jr., Bancos I. Pheochromocytoma and paraganglioma in patients with neurofibromatosis type 1. Clin Endocrinol (Oxf). 2017;86(1): 141-149. https://doi.org/10.1111/cen.13163.
73. Santos P, Pimenta T, Taveira-Gomes A. Hereditary Pheochromocytoma. Int J Surg Pathol. 2014;22(5): 393-400. https://doi.org/10.1177/1066896914537683.
74. Lenders JW, Eisenhofer G, Mannelli M, Pacak K. Phaeochromocytoma. Lancet. 2005;366(9486): 665-675. https://doi.org/10.1016/s0140-6736(05)67139-5.
75. Lew JI, Jacome FJ, Solorzano CC. Neurofibromatosis-associated pheochromocytoma. J Am Coll Surg. 2006;202(3): 550-551. https://doi.org/10.1016/j.jamcollsurg.2005.09.028.
76. Tsirlin A, Oo Y, Sharma R, Kansara A, Gliwa A, Banerji MA. Pheochromocytoma: a review. Maturitas. 2014;77(3): 229-238. https://doi.org/10.1016/j.maturitas.2013.12.009.
77. Bausch B, Borozdin W, Neumann HP, European-American Pheochromocytoma Study G. Clinical and genetic characteristics of patients with neurofibromatosis type 1 and pheochromocytoma. N Engl J Med. 2006;354(25): 2729-2731. https://doi.org/10.1056/NEJMc066006.
78. Kumar N, Pandey AN, Kumari S, Kishore S. Breast Cancer Associated with Von Recklinghausen's Disease: Case Report and Review of Literature. Indian J Surg Oncol. 2014;5(3): 205-207. https://doi.org/10.1007/s13193-014-0327-2.
79. Khalil J, Afif M, Elkacemi H, Benoulaid M, Kebdani T, Benjaafar N. Breast cancer associated with neurofibromatosis type 1: a case series and review of the literature. J Med Case Rep. 2015;9: 61. https://doi.org/10.1186/s13256-015-0533-8.
80. Howell SJ, Hockenhull K, Salih Z, Evans DG. Increased risk of breast cancer in neurofibromatosis type 1: current insights. Breast Cancer (Dove Med Press). 2017;9: 531-536. https://doi.org/10.2147/BCTT.S111397.
81. Chaudhry US, Yang L, Askeland RW, Fajardo LL. Metaplastic breast cancer in a patient with neurofibromatosis. J Clin Imaging Sci. 2015;5: 17. https://doi.org/10.4103/2156-7514.154102.
82. Relles D, Baek J, Witkiewicz A, Yeo CJ. Periampullary and duodenal neoplasms in neurofibromatosis type 1: two cases and an updated 20-year review of the literature yielding 76 cases. J Gastrointest Surg. 2010;14(6): 1052-1061. https://doi.org/10.1007/s11605-009-1123-0.
83. Burke AP, Sobin LH, Shekitka KM, Federspiel BH, Helwig EB. Somatostatin-producing duodenal carcinoids in patients with von Recklinghausen's neurofibromatosis. A predilection for black patients. Cancer. 1990;65(7): 1591-1595. https://doi.org/10.1002/1097-0142(19900401)65:7<1591::aid-cncr2820650723>3.0.co;2-n.
84. Abdessayed N, Gupta R, Mestiri S, Bdioui A, Trimech M, Mokni M. Rare triad of periampullary carcinoid, duodenal gastrointestinal stromal tumor and plexiform neurofibroma at hepatic hilum in neurofibromatosis type 1: a case report. BMC Cancer. 2017;17(1): 579. https://doi.org/10.1186/s12885-017-3567-z.
85. Hartel M, Wente MN, Sido B, Friess H, Buchler MW. Carcinoid of the ampulla of Vater. J Gastroenterol Hepatol. 2005;20(5): 676-681. https://doi.org/10.1111/j.1440-1746.2005.03744.x.
86. Laird AM, Libutti SK. Management of Other Gastric and Duodenal Neuroendocrine Tumors. Surg Oncol Clin N Am. 2020;29(2): 253-266. https://doi.org/10.1016/j.soc.2019.11.009.
87. Matsui I, Tanimura M, Kobayashi N, Sawada T, Nagahara N, Akatsuka J. Neurofibromatosis type 1 and childhood cancer. Cancer. 1993;72(9): 2746-2754. https://doi.org/10.1002/1097-0142(19931101)72:9<2746::aid-cncr2820720936>3.0.co;2-w.
88. Sung L, Anderson JR, Arndt C, Raney RB, Meyer WH, Pappo AS. Neurofibromatosis in children with Rhabdomyosarcoma: a report from the Intergroup Rhabdomyosarcoma study IV. J Pediatr. 2004;144(5): 666-668. https://doi.org/10.1016/j.jpeds.2004.02.026.
89. Shern JF, Chen L, Chmielecki J, et al. Comprehensive genomic analysis of rhabdomyosarcoma reveals a landscape of alterations affecting a common genetic axis in fusion-positive and fusion-negative tumors. Cancer Discov. 2014;4(2): 216-231. https://doi.org/10.1158/2159-8290.CD-13-0639.
90. Paulson V, Chandler G, Rakheja D, et al. High-resolution array CGH identifies common mechanisms that drive embryonal rhabdomyosarcoma pathogenesis. Genes Chromosomes Cancer. 2011;50(6): 397-408. https://doi.org/10.1002/gcc.20864.
91. Martinelli S, McDowell HP, Vigne SD, et al. RAS signaling dysregulation in human embryonal Rhabdomyosarcoma. Genes Chromosomes Cancer. 2009;48(11): 975-982. https://doi.org/10.1002/gcc.20702.
92. Shukla N, Ameur N, Yilmaz I, et al. Oncogene mutation profiling of pediatric solid tumors reveals significant subsets of embryonal rhabdomyosarcoma and neuroblastoma with mutated genes in growth signaling pathways. Clin Cancer Res. 2012;18(3): 748-757. https://doi.org/10.1158/1078-0432.CCR-11-2056.
93. Paulus S, Koronowska S, Folster-Holst R. Association Between Juvenile Myelomonocytic Leukemia, Juvenile Xanthogranulomas and Neurofibromatosis Type 1: Case Report and Review of the Literature. Pediatr Dermatol. 2017;34(2): 114-118. https://doi.org/10.1111/pde.13064.
94. Locatelli F, Niemeyer CM. How I treat juvenile myelomonocytic leukemia. Blood. 2015;125(7): 1083-1090. https://doi.org/10.1182/blood-2014-08-550483.
95. Niemeyer CM, Flotho C. Juvenile myelomonocytic leukemia: who's the driver at the wheel? Blood. 2019;133(10): 1060-1070. https://doi.org/10.1182/blood-2018-11-844688.
96. Listernick R, Ferner RE, Liu GT, Gutmann DH. Optic pathway gliomas in neurofibromatosis-1: controversies and recommendations. Ann Neurol. 2007;61(3): 189-198. https://doi.org/10.1002/ana.21107.
97. Nicolin G, Parkin P, Mabbott D, et al. Natural history and outcome of optic pathway gliomas in children. Pediatr Blood Cancer. 2009;53(7): 1231-1237. https://doi.org/10.1002/pbc.22198.
98. Luzzi S, Giotta Lucifero A, Del Maestro M, et al. Anterolateral Approach for Retrostyloid Superior Parapharyngeal Space Schwannomas Involving the Jugular Foramen Area: A 20-Year Experience. World Neurosurg. 2019;132: e40-e52. https://doi.org/10.1016/j.wneu.2019.09.006.
99. Packer RJ, Lange B, Ater J, et al. Carboplatin and vincristine for recurrent and newly diagnosed low-grade gliomas of childhood. J Clin Oncol. 1993;11(5): 850-856. https://doi.org/10.1200/JCO.1993.11.5.850.
100. Terashima K. Chemotherapy of Intracranial Gliomas in Children. Prog Neurol Surg. 2018;31: 162-167. https://doi.org/10.1159/000467377.
101. Cappellano AM, Petrilli AS, da Silva NS, et al. Single agent vinorelbine in pediatric patients with progressive optic pathway glioma. J Neurooncol. 2015;121(2): 405-412. https://doi.org/10.1007/s11060-014-1652-6.
102. Gururangan S, Fisher MJ, Allen JC, et al. Temozolomide in children with progressive low-grade glioma. Neuro Oncol. 2007;9(2): 161-168. https://doi.org/10.1215/15228517-2006-030.
103. Gururangan S, Fangusaro J, Poussaint TY, et al. Efficacy of bevacizumab plus irinotecan in children with recurrent low-grade gliomas--a Pediatric Brain Tumor Consortium study. Neuro Oncol. 2014;16(2): 310-317. https://doi.org/10.1093/neuonc/not154.
104. Ater JL, Zhou T, Holmes E, et al. Randomized study of two chemotherapy regimens for treatment of low-grade glioma in young children: a report from the Children's Oncology Group. J Clin Oncol. 2012;30(21): 2641-2647. https://doi.org/10.1200/JCO.2011.36.6054.
105. Chadderton RD, West CG, Schuller S, Quirke DC, Gattamaneni R, Taylor R. Radiotherapy in the treatment of low-grade astrocytomas. II. The physical and cognitive sequelae. Childs Nerv Syst. 1995;11(8): 443-448. https://doi.org/10.1007/bf00334961.
106. Yeh TC, Marsh V, Bernat BA, et al. Biological characterization of ARRY-142886 (AZD6244), a potent, highly selective mitogen-activated protein kinase kinase 1/2 inhibitor. Clin Cancer Res. 2007;13(5): 1576-1583. https://doi.org/10.1158/1078-0432.CCR-06-1150.
107. Lauchle JO, Kim D, Le DT, et al. Response and resistance to MEK inhibition in leukaemias initiated by hyperactive Ras. Nature. 2009;461(7262): 411-414. https://doi.org/10.1038/nature08279.
108. Jessen WJ, Miller SJ, Jousma E, et al. MEK inhibition exhibits efficacy in human and mouse neurofibromatosis tumors. J Clin Invest. 2013;123(1): 340-347. https://doi.org/10.1172/JCI60578.
109. Dombi E, Baldwin A, Marcus LJ, et al. Activity of Selumetinib in Neurofibromatosis Type 1-Related Plexiform Neurofibromas. N Engl J Med. 2016;375(26): 2550-2560. https://doi.org/10.1056/NEJMoa1605943.
110. Fangusaro J, Onar-Thomas A, Young Poussaint T, et al. Selumetinib in paediatric patients with BRAF-aberrant or neurofibromatosis type 1-associated recurrent, refractory, or progressive low-grade glioma: a multicentre, phase 2 trial. Lancet Oncol. 2019;20(7): 1011-1022. https://doi.org/10.1016/s1470-2045(19)30277-3.
111. Bouffet E, Jakacki R, Goldman S, et al. Phase II study of weekly vinblastine in recurrent or refractory pediatric low-grade glioma. J Clin Oncol. 2012;30(12): 1358-1363. https://doi.org/10.1200/JCO.2011.34.5843.
112. Avery RA, Katowitz JA, Fisher MJ, et al. Orbital/Periorbital Plexiform Neurofibromas in Children with Neurofibromatosis Type 1: Multidisciplinary Recommendations for Care. Ophthalmology. 2017;124(1): 123-132. https://doi.org/10.1016/j.ophtha.2016.09.020.
113. Jakacki RI, Dombi E, Potter DM, et al. Phase I trial of pegylated interferon-alpha-2b in young patients with plexiform neurofibromas. Neurology. 2011;76(3): 265-272. https://doi.org/10.1212/WNL.0b013e318207b031.
114. Kebudi R, Cakir FB, Gorgun O. Interferon-alpha for unresectable progressive and symptomatic plexiform neurofibromas. J Pediatr Hematol Oncol. 2013;35(3): e115-117. https://doi.org/10.1097/MPH.0b013e318270cd24.
115. Gupta A, Cohen BH, Ruggieri P, Packer RJ, Phillips PC. Phase I study of thalidomide for the treatment of plexiform neurofibroma in neurofibromatosis 1. Neurology. 2003;60(1): 130-132. https://doi.org/10.1212/01.wnl.0000042321.94839.78.
116. Weiss B, Widemann BC, Wolters P, et al. Sirolimus for progressive neurofibromatosis type 1-associated plexiform neurofibromas: a neurofibromatosis Clinical Trials Consortium phase II study. Neuro Oncol. 2015;17(4): 596-603. https://doi.org/10.1093/neuonc/nou235.
117. Ferguson MJ, Rhodes SD, Jiang L, et al. Preclinical Evidence for the Use of Sunitinib Malate in the Treatment of Plexiform Neurofibromas. Pediatr Blood Cancer. 2016;63(2): 206-213. https://doi.org/10.1002/pbc.25763.
118. Kim A, Dombi E, Tepas K, et al. Phase I trial and pharmacokinetic study of sorafenib in children with neurofibromatosis type I and plexiform neurofibromas. Pediatr Blood Cancer. 2013;60(3): 396-401. https://doi.org/10.1002/pbc.24281.
119. Widemann BC, Babovic-Vuksanovic D, Dombi E, et al. Phase II trial of pirfenidone in children and young adults with neurofibromatosis type 1 and progressive plexiform neurofibromas. Pediatr Blood Cancer. 2014;61(9): 1598-1602. https://doi.org/10.1002/pbc.25041.
120. Widemann BC, Dombi E, Gillespie A, et al. Phase 2 randomized, flexible crossover, double-blinded, placebo-controlled trial of the farnesyltransferase inhibitor tipifarnib in children and young adults with neurofibromatosis type 1 and progressive plexiform neurofibromas. Neuro Oncol. 2014;16(5): 707-718. https://doi.org/10.1093/neuonc/nou004.
121. Untch BR, Dos Anjos V, Garcia-Rendueles MER, et al. Tipifarnib Inhibits HRAS-Driven Dedifferentiated Thyroid Cancers. Cancer Res. 2018;78(16): 4642-4657. https://doi.org/10.1158/0008-5472.CAN-17-1925.
122. Robertson KA, Nalepa G, Yang FC, et al. Imatinib mesylate for plexiform neurofibromas in patients with neurofibromatosis type 1: a phase 2 trial. Lancet Oncol. 2012;13(12): 1218-1224. https://doi.org/10.1016/s1470-2045(12)70414-x.
123. Balagula Y, Barth Huston K, Busam KJ, Lacouture ME, Chapman PB, Myskowski PL. Dermatologic side effects associated with the MEK 1/2 inhibitor selumetinib (AZD6244, ARRY-142886). Invest New Drugs. 2011;29(5): 1114-1121. https://doi.org/10.1007/s10637-010-9567-3.
124. Gross AM, Wolters PL, Dombi E, et al. Selumetinib in Children with Inoperable Plexiform Neurofibromas. N Engl J Med. 2020;382(15): 1430-1442. https://doi.org/10.1056/NEJMoa1912735.
125. Perreault S, Larouche V, Tabori U, et al. A phase 2 study of trametinib for patients with pediatric glioma or plexiform neurofibroma with refractory tumor and activation of the MAPK/ERK pathway: TRAM-01. BMC Cancer. 2019;19(1): 1250. https://doi.org/10.1186/s12885-019-6442-2.
126. Kim A, Lu Y, Okuno SH, et al. Targeting Refractory Sarcomas and Malignant Peripheral Nerve Sheath Tumors in a Phase I/II Study of Sirolimus in Combination with Ganetespib (SARC023). Sarcoma. 2020;2020: 5784876. https://doi.org/10.1155/2020/5784876.
127. Patwardhan PP, Surriga O, Beckman MJ, et al. Sustained inhibition of receptor tyrosine kinases and macrophage depletion by PLX3397 and rapamycin as a potential new approach for the treatment of MPNSTs. Clin Cancer Res. 2014;20(12): 3146-3158. https://doi.org/10.1158/1078-0432.CCR-13-2576.
128. Cooper JM, Patel AJ, Chen Z, et al. Overcoming BET Inhibitor Resistance in Malignant Peripheral Nerve Sheath Tumors. Clin Cancer Res. 2019;25(11): 3404-3416. https://doi.org/10.1158/1078-0432.CCR-18-2437.

Most read articles by the same author(s)

1 2 3 4 5 6 7 > >>