The Association between Glycemic Control with Oxidant Status Parameters in Type 2 Diabetic Patients: Glycemic Control and Oxidant Status Parameters

The Association between Glycemic Control with Oxidant Status Parameters in Type 2 Diabetic Patients

Glycemic Control and Oxidant Status Parameters

Authors

  • Maryam Saberi-Karimian Vascular and Endovascular Surgery Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
  • Abdolreza Norouzy

Keywords:

Type 2 diabetes mellitus; Prooxidant-antioxidant balance; Homocysteine; Oxidized LDL; Vitamin D

Abstract

Purpose: Glycemic control is important in order to avoid LDLs increased susceptibility to oxidation in diabetic patients. This study assess the relationship between diabetes control with serum prooxidant-antioxidant balance (PAB), oxidized LDL cholesterol (oxLDLc), homocysteine and vitamin D levels in patients with type 2 diabetes. Material and methods:  This was a cross-sectional study on three groups including 80 subjects as well (WGC) and poor (PGC) glycemic control and 40 healthy subjects. Presence of nephropathy and retinopathy were determined using IDF criteria. HbA1c level was determined with columnar chromatography using BioSystems kit. Serum PAB, homocysteine, oxLDLc and vitamin D levels were measured by the standard tests. Results: There was a significant association between PAB with PGC (P< 0.001), diabetic retinopathy (P< 0.01) and nephropathy (P< 0.01) in type 2 diabetic patients. Moreover, the results showed that vitamin D serum levels was significantly lower in PGC patients (P< 0.01), and diabetic patients with retinopathy (P< 0.01). Multiple linear regression analysis revealed that the vitamin D deficiency can predict the HbA1c variations by 77.7% (β=- 0.775) in subjects with type 2 diabetes mellitus (P<0.001). Conclusions: There was a significant association between prooxidant-antioxidant balance and vitamin D serum levels with diabetic complications.

References

Palanisamy Pasupathi JF, Palanisamy Chinnaswamy. Oxidant-antioxidant status, high sensitive C-reactive protein and homocysteine levels in type 2 diabetic patients with and without microalbuminuria. International Journal of Biological & Medical Research 2010; 1: 4-8.

International Diabetes Federation. IDF Diabetes Atlas. Global Burden. Epidemiology and Morbidity. Diabetes and Impaired Glucose Tolerance 2009; http://wwwdiabetesatlas.org/content/diabetes-and-glucose-tolerance Accessed 29 March 2010.

Choi SW, Benzie IF, Ma SW, Strain JJ, Hannigan BM. Acute hyperglycemia and oxidative stress: direct cause and effect? Free. Radic Biol Med 2008; 44: 1217-31.

Koubaa N, Nakbi A, Smaoui M, Abid N, Chaaba R, Abid M, et al.Hyperhomocysteinemia and elevated ox-LDL in Tunisian type 2 diabetic patients: role of genetic and dietary factors. Clin Biochem 2007; 40: 1007-14.

Liguori A, Abete P, Hayden JM, Cacciatore F, Rengo F, Ambrosio G, et al. Effect of glycaemic control and age on low-density lipoprotein susceptibility to oxidation in diabetes mellitus type 1. Eur Heart J 2001; 22:2075-84.

Outinen PA, Sood SK, Liaw PC, Sarge KD, Maeda N, Hirsh J, et al. Characterization of the stress-inducing effects of homocysteine. Biochem J 1998; 15: 213-21.

Olivares-Corichi IM, Medina-Santillan R, Fernandez del Valle-Laisequilla C, Alvarez P, Hicks-Gomez JJ. Increase of human plasma antioxidant capacity with a novel formulation of antioxidants. Proc West Pharmacol Soc 2003; 46: 45-7.

Telci A, Cakatay U, Kayali R, Erdogan C, Orhan Y, Sivas A, et al. Oxidative protein damage in plasma of type 2 diabetic patients. Horm Metab Res 2000; 32: 40-3.

Hamed S, Brenner B, Abassi Z, Aharon A, Daoud D, Roguin A. Hyperglycemia and oxidized-LDL exert a deleterious effect on endothelial progenitor cell migration in type 2 diabetes mellitus. Thromb Res 2010; 126:166-74.

Hsu RM, Devaraj S, Jialal I. Autoantibodies to oxidized low-density lipoprotein in patients with type 2 diabetes mellitus. Clin Chim Acta 2002;317: 145-50.

Agullo-Ortuno MT, Albaladejo MD, Parra S, Rodriguez-Manotas M, Fenollar M, Ruiz-Espejo F, et al. Plasmatic homocysteine concentration and its relationship with complications associated to diabetes mellitus. Clin Chim Acta 2002; 326: 105-12.

Smulders YM, Rakic M, Slaats EH, Treskes M, Sijbrands EJ, Odekerken DA et al. Fasting and post-methionine homocysteine levels in NIDDM. Determinants and correlations with retinopathy, albuminuria, and cardiovascular disease. Diabetes Care 1999; 22:125-32.

Mattila C, Knekt P, Mannisto S, Rissanen H, Laaksonen MA, Montonen J, et al. Serum 25-hydroxyvitamin D concentration and subsequent risk of type 2 diabetes. Diabetes Care 2007; 30: 2569-70.

Polidoro L, Properzi G, Marampon F, Gravina GL, Festuccia C, Di Cesare E, Scarsella L, Ciccarelli C, Zani BM, Ferri C. Vitamin D protects human endothelial cells from H 2 O 2 oxidant injury through the Mek/Erk-Sirt1 axis activation. Journal of cardiovascular translational research, 2013, 6.2: 221-231.‏

World Health Organization. Definition and diagnosis of diabetes mellitus and intermediate hyperglycemia. http://hoint/diabetes/publications/en/. Accessed 5 August 2008.

Maxwell CS, Wood RJ. Update on vitamin D and type 2 diabetes. Nutr Rev 2011; 69: 291-5.

Alamdari DH, Paletas K, Pegiou T, Sarigianni M, Befani C, Koliakos G. A novel assay for the evaluation of the prooxidant-antioxidant balance, before and after antioxidant vitamin administration in type II diabetes patients. Clin Biochem 2007; 40: 248-54.

Arjmand MH, Ahmad Shah F, Saleh Moghadam M, Tara F, Jalili A, Mosavi Bazaz M, et al. Prooxidant-antioxidant balance in umbilical cord blood of infants with meconium stained of amniotic fluid. Biochem Res Int. 2013;2013:270545. doi: 10.1155/2013/270545. Epub 2013 Nov 28.

Holick MF. Vitamin D deficiency. The New England Journal of Medicine 2007; 357(3): 266-81. doi: 10.1056/NEJMra070553.

International Diabetes Federation. IDF Diabetes Atlas. 6th ed. Brussels, Belgium: International Diabetes Federation; 2013. Available from: http://www.idf.org/sites/default/files/EN_6E_Atlas_Full_0.pdf. Accessed 2 September, 2014.

Asemi Z, Samimi M, Tabassi Z, Shakeri H, Esmaillzadeh A. Vitamin D supplementation affects serum high-sensitivity C-reactive protein, insulin resistance, and biomarkers of oxidative stress in pregnant women. Journal of Nutrition 2013;143(9):1432-8. doi: 10.3945/jn.113.177550. Epub 2013 Jul 24.

Daneshvar P, Hariri M, Ghiasvand R, Askari G, Darvishi L, Iraj B, et al. Dietary behaviors and nutritional assessment of young male isfahani wrestlers. Int J Prev Med 2013;4(Suppl 1):S48-52.

Bonakdaran Sh, Fakhraee F, Saberi Karimian M, Mirhafez SR, Roknie H, Mohebati M, et al. Association between Serum 25-hydroxyvitamin D concentrations and prevalence of metabolic syndrome. ADVMS. http://dx.doi.org/10.1016/j.advms.2016.01.002

Ryu OH, Lee S, Yu J, Choi MG, Yoo HJ, Mantero F. A prospective randomized controlled trial of the effects of vitamin D supplementation on long-term glycemic control in type 2 diabetes mellitus of Korea. Endocr J 2014;61:167-76.

Kampmann U, Mosekilde L, Juhl C, Moller N, Christensen B, Rejnmark L, et al. Effects of 12 weeks high dose vitamin D3 treatment on insulin sensitivity, betacell function, and metabolic markers in patients with type 2 diabetes and vitamin D insufficiency–a double-blind, randomized, placebo-controlled trial. Metabolism 2014;63:1115-24.

Calvo-Romero JM, Ramiro-Lozano JM. Metabolic effects of supplementation with vitamin D in type 2 diabetic patients with vitamin D deficiency. Diabetes Metab Syndr. 2015 Oct 9. pii: S1871-4021(15)30034-5. doi: 10.1016/j.dsx.2015.09.008.

Ahmadieh H, Azar ST, Lakkis N, Arabi A. Hypovitaminosis d in patients with type 2 diabetes mellitus: a relation to disease control and complications. ISRN Endocrinol 2013; doi: 10.1155/2013/641098. eCollection 2013

Oh J, Weng S, Felton SK, Bhandare S, Riek A, Butler B, et al. 1,25(OH)2 vitamin d inhibits foam cell formation and suppresses macrophage cholesterol uptake in patients with type 2 diabetes mellitus. Circulation 2009; 25: 687-98.

Suzuki A, Kotake M, Ono Y, Kato T, Oda N, Hayakawa N, et al. Hypovitaminosis D in type 2 diabetes mellitus: Association with microvascular complications and type of treatment. Endocr J 2006; 53: 503-10.

Kumawat M, Kharb S, Singh V, Singh N, Singh SK, Nada M. Plasma malondialdehyde (MDA) and anti-oxidant status in diabetic retinopathy. J Indian Med Assoc. 2014 ;112(1):29-32.

Oranje WA, Rondas-Colbers GJ, Swennen GN, Jansen H, Wolffenbuttel BH. Lack of effect on LDL oxidation and antioxidant status after improvement of metabolic control in type 2 diabetes. Diabetes Care 1999; 22: 2083-4.

Lopes-Virella MF, Hunt KJ, Baker NL, Lachin J, Nathan DM, Virella G. Levels of oxidized LDL and advanced glycation end products-modified LDL in circulating immune complexes are strongly associated with increased levels of carotid intima-media thickness and its progression in type 1 diabetes. Diabetes 2011; 60: 582-9.

Akalin A, Temiz G, Akcar N, Sensoy B. Short term effects of atorvastatin on endothelial functions and oxidized LDL levels in patients with type 2 diabetes. Endocr J 2008; 55: 861-6.

Timar A, Saberi-Karimian M, Ghazizadeh H, Reza Parizadeh SM, Sabbaghzadeh R, Emadzadeh M, Eshaghi F, Tavallaie S, Ferns GA, Ghayour-Mobarhan M. Evaluation of the serum prooxidant-antioxidant balance before and after vitamin D supplementation in adolescent Iranian girls. Adv Med Sci. 2019 Mar;64(1):174-180.

Downloads

Published

01-07-2021

Issue

Section

ORIGINAL ARTICLES

How to Cite

1.
Saberi-Karimian M, Norouzy A. The Association between Glycemic Control with Oxidant Status Parameters in Type 2 Diabetic Patients: Glycemic Control and Oxidant Status Parameters . Acta Biomed. 2021;92(3):e2021100. doi:10.23750/abm.v92i3.9505