Analysis of blood pressure variability in lacunar and non-lacunar types acute ischemic strokes patients as a predictor of clinical outcomes

Analysis of blood pressure variability in lacunar and non-lacunar types acute ischemic strokes patients as a predictor of clinical outcomes

Authors

Keywords:

Blood Pressure Variability, Ischemic, Stroke

Abstract

Background and aim: Stroke is a well-known global health concern that causes significant mortality and morbidity, with ischemic stroke being the most prevalent kind. The pathogenesis and clinical consequences of various lacunar and non-lacunar subtypes vary from one another. A patient's clinical fate following an acute ischemic stroke may be predicted by elevated blood pressure variability (BPV). The aim of this study to investigate the association between BPV and functional outcomes in patients with acute ischemic stroke (lacunar and non-lacunar subtypes).

Methods: This prospective cohort study categorized patients with acute ischemic stroke as either lacunar or non-lacunar based on non-contrast CT scan results. BPV values were recorded at the onset and at 4 intervals daily for 3 continuous days after the patients were admitted. The modified Rankin Scale (mRS) was used for outcome assessments on the seventh day, classified into good (0-2) and poor outcomes (3-6). Predictive values were determined using ROC analysis.

Results: Out of 67 patients, 40.3% had poor outcomes, whereas the other 59.7% had good outcomes. Lacunar stroke was observed to occur more frequently in patients with positive results. The sensitivity and specificity of ROC analysis were disputed, and there was no discernible relationship between systolic and diastolic blood pressure and mRS scores.

Conclusions: BPV was not directly linked to functional outcomes, nor was a cut-off value that appears to work consistently established. Better functional outcomes were observed in patients with lacunar stroke, highlighting the prognostic value of using it in the treatment of ischemic stroke.

References

Han X, Qin Y, Mei C, Jiao F, Khademolqorani S, Nooshin Banitaba S. Current trends and future perspectives of stroke management through integrating health care team and nanodrug delivery strategy. Front Cell Neurosci. 2023;17:1266660. doi:10.3389/fncel.2023.1266660

Runtuwene IM, Akbar M, Bintang AK, Tammasse J, Muis A, Zainuddin AA. Effectivity of Repetitive Transcranial Magnetic Stimulation Improving Depressive Symptoms and Motoric Strength Ischemic Stroke. Nusant Med Sci J. 8(1):25-37.

Sacco RL, Kasner SE, Broderick JP, et al. An Updated Definition of Stroke for the 21st Century: A Statement for Healthcare Professionals From the American Heart Association/American Stroke Association. Stroke. 2013;44(7):2064-2089. doi:10.1161/STR.0b013e318296aeca

Donkor ES. Stroke in the 21st Century: A Snapshot of the Burden, Epidemiology, and Quality of Life. Stroke Res Treat. 2018;2018:3238165. doi:10.1155/2018/3238165

Tadi P, Lui F. Acute Stroke. In: StatPearls. StatPearls Publishing; 2024. Accessed November 29, 2024. http://www.ncbi.nlm.nih.gov/books/NBK535369/

Altmann M, Thommessen B, Rønning OM, Reichenbach AS, Fure B. Blood pressure differences between patients with lacunar and nonlacunar infarcts. Brain Behav. 2015;5(8):e00353. doi:10.1002/brb3.353

Guo ZN, Liu J, Xing Y, et al. Dynamic cerebral autoregulation is heterogeneous in different subtypes of acute ischemic stroke. PloS One. 2014;9(3):e93213. doi:10.1371/journal.pone.0093213

Wang CY, Cao LM, Shi J, et al. [A prospective cohort study on blood pressure control and risk of ischemic stroke in patients with hypertension]. Zhonghua Yu Fang Yi Xue Za Zhi. 2020;54(7):737-741. doi:10.3760/cma.j.cn112150-20191225-00958

Wajngarten M, Silva GS. Hypertension and Stroke: Update on Treatment. Eur Cardiol. 2019;14(2):111-115. doi:10.15420/ecr.2019.11.1

Darling H. Basics of statistics – 4: Sample size calculation (ii): A narrative review. Cancer Res Stat Treat. 2020;3(4):817. doi:10.4103/CRST.CRST_279_20

Verawaty A, Islam AA, Ihwan A, et al. Relationship of Serum S-100B Protein and Prognosis of Traumatic Brain Injury Patients: A cross-sectional study. Indones Surg J. 2(1):26-30.

Weir CB, Jan A. BMI Classification Percentile And Cut Off Points. In: StatPearls. StatPearls Publishing; 2024. Accessed December 3, 2024. http://www.ncbi.nlm.nih.gov/books/NBK541070/

Ikeura T, Kato K, Takaoka M, et al. A body mass index ≥25 kg/m 2 is associated with a poor prognosis in patients with acute pancreatitis: a study of Japanese patients. Hepatobiliary Pancreat Dis Int. 2017;16(6):645-651. doi:10.1016/S1499-3872(17)60057-2

Ferdosian S, Orellana I, Nager G, et al. Patients with body mass index ≥25 kg/m2 as a target population for improvement of rate of follow-up duplex venous ultrasound examinations following initial incomplete examinations. J Vasc Surg Venous Lymphat Disord. 2023;11(4):774-782.e1. doi:10.1016/j.jvsv.2023.03.013

Fajar A, Warsinggih, Syarifuddin E, et al. The relationship between glycine levels in collagen in the anterior rectus sheath tissue and the onset of indirect inguinal hernia: A cross-sectional study. Ann Med Surg. 2022;73. doi:10.1016/j.amsu.2021.103166

Saver JL, Chaisinanunkul N, Campbell BCV, et al. Standardized Nomenclature for Modified Rankin Scale Global Disability Outcomes: Consensus Recommendations From Stroke Therapy Academic Industry Roundtable XI. Stroke. 2021;52(9):3054-3062. doi:10.1161/STROKEAHA.121.034480

Nimbvikar AA, Panchawagh S, Chavan AP, Ingole JR, Pargaonkar Y, Pai R. Modified rankin scale is a reliable tool for the rapid assessment of stroke severity and predicting disability outcomes. J Fam Med Prim Care. 2024;13(3):1085-1090. doi:10.4103/jfmpc.jfmpc_1431_23

Broderick JP, Adeoye O, Elm J. Evolution of the Modified Rankin Scale and Its Use in Future Stroke Trials. Stroke. 2017;48(7):2007-2012. doi:10.1161/STROKEAHA.117.017866

Unger T, Borghi C, Charchar F, et al. 2020 International Society of Hypertension Global Hypertension Practice Guidelines. Hypertens Dallas Tex 1979. 2020;75(6):1334-1357. doi:10.1161/HYPERTENSIONAHA.120.15026

Jeon JY, Ko SH, Kwon HS, et al. Prevalence of Diabetes and Prediabetes according to Fasting Plasma Glucose and HbA1c. Diabetes Metab J. 2013;37(5):349. doi:10.4093/dmj.2013.37.5.349

Rhee EJ. The evolution and future of diagnostic criteria for diabetes mellitus. J Korean Med Assoc. 2023;66(7):409-413. doi:10.5124/jkma.2023.66.7.409

Jacobsen AP, Whelton SP, Blumenthal RS, Mcevoy JW. Dyslipidemia. In: Hypertension. Elsevier; 2024:476-488. doi:10.1016/B978-0-323-88369-6.00042-6

Todo K. Blood pressure variability in acute ischemic stroke. Hypertens Res. 2024;47(3):679-680. doi:10.1038/s41440-023-01556-9

Zhu Y, Wu M, Wang H, et al. Daily blood pressure variability in relation to neurological functional outcomes after acute ischemic stroke. Front Neurol. 2023;13:958166. doi:10.3389/fneur.2022.958166

Webb AJS, Werring DJ. New Insights Into Cerebrovascular Pathophysiology and Hypertension. Stroke. 2022;53(4):1054-1064. doi:10.1161/STROKEAHA.121.035850

Silva AFR da, Cruz RC, Albuquerque NLS de, Silva VM da, Araujo TL de. Blood pressure variability in individuals with diabetes mellitus: a scoping review. Rev Bras Enferm. 2022;75(6):e20210804. doi:10.1590/0034-7167-2021-0804

Kaze AD, Yuyun MF, Erqou S, Fonarow GC, Echouffo-Tcheugui JB. Cardiac autonomic neuropathy and risk of incident heart failure among adults with type 2 diabetes. Eur J Heart Fail. 2022;24(4):634-641. doi:10.1002/ejhf.2432

Liu J ping, Dang W, Zhang J. Obesity Indexes Are Positively Correlated With Blood Pressure Variability in Patients With Essential Hypertension. Am J Hypertens. 2022;35(8):765-765. doi:10.1093/ajh/hpac023

Wyszyńska J, Łuszczki E, Sobek G, Mazur A, Dereń K. Association and Risk Factors for Hypertension and Dyslipidemia in Young Adults from Poland. Int J Environ Res Public Health. 2023;20(2):982. doi:10.3390/ijerph20020982

Yang C, Liu K, Song Y, et al. Day-by-Day Blood Pressure Variability Is Associated With Neurological Functional Outcome After Acute Ischemic Stroke. Front Neurol. 2020;11:566825. doi:10.3389/fneur.2020.566825

McAlister FA, Lethebe BC, Leung AA, Padwal RS, Williamson T. Visit-to-visit blood pressure variability is common in primary care patients: Retrospective cohort study of 221,803 adults. Brunner-La Rocca HP, ed. PLOS ONE. 2021;16(4):e0248362. doi:10.1371/journal.pone.0248362

Del Giorno R, Balestra L, Heiniger PS, Gabutti L. Blood pressure variability with different measurement methods: Reliability and predictors. A proof of concept cross sectional study in elderly hypertensive hospitalized patients. Medicine (Baltimore). 2019;98(28):e16347. doi:10.1097/MD.0000000000016347

Aldriweesh MA, Alluhidan WA, Al Bdah BA, et al. Prevalence and Clinical Characteristics of Lacunar Stroke: A Hospital-Based Study. Brain Sci. 2021;11(11):1466. doi:10.3390/brainsci11111466

Ningning W, Ying H, Shudong L, et al. Blood pressure variability related to early outcome of acute ischemia stroke in a prospective observational study. Medicine (Baltimore). 2022;101(38):e30780. doi:10.1097/MD.0000000000030780

Zhou X, Lu Y, Lin Y, Lin W, Deng J, Liu X. Association between blood pressure variability and clinical outcomes after successful thrombectomy in acute basilar artery occlusion stroke patients: A multicenter cohort study. J Stroke Cerebrovasc Dis Off J Natl Stroke Assoc. 2024;33(11):107893. doi:10.1016/j.jstrokecerebrovasdis.2024.107893

Naito H, Hosomi N, Kuzume D, et al. Increased blood pressure variability during the subacute phase of ischemic stroke is associated with poor functional outcomes at 3 months. Sci Rep. 2020;10(1):811. doi:10.1038/s41598-020-57661-z

Downloads

Published

12-12-2024

Issue

Section

ORIGINAL CLINICAL RESEARCH

How to Cite

1.
Maulida, Akbar M, Bahar A, Masadah R, Tammasse J, Kaelan C. Analysis of blood pressure variability in lacunar and non-lacunar types acute ischemic strokes patients as a predictor of clinical outcomes. Acta Biomed. 2024;95(6):e2024187. doi:10.23750/abm.v95i6.16635