Research on the formation of Pseudomonas aeruginosa biofilms as a factor in the development of antibiotic resistance in fatal pneumonias
Keywords:
pneumonia, antibiotic resistance, isolates of Pseudomonas aeruginosa, biofilmsAbstract
Background and aim: Antibiotic resistance of community-acquired pneumonias pathogens and emergence of multiresistant bacteria is a problem of global importance. Therefore, determining the ability to form biofilms will provide an opportunity to develop new ways to overcome bacterial resistance to antimicrobial drugs. Thus, the purpose of this study was to determine Pseudomonas aeruginosa isolates antibiotic resistance and to study the architecture of its biofilms. Methods: Study of the causes of fatal cases of secondary pneumonia against with underlying gunshot trauma for the period from 2022 to 2023. Isolation and identification of pure culture was provided using Micro-la-test kits. The sensitivity to antimicrobial drugs was studied using «SENSILAtest G-I, G-II» and Kirby-Bauer Disk Diffusion Susceptibility Test. To form biofilms bacteria was grown on the surface of coverslips in the 35 mm Petri dishes for 24 h. Biofilm formation was assessed by laser scanning confocal microscopy and scanning electron microscopy.
Results: Examination of biological samples revealed 22 strains of microorganisms. Gram-negative microorganisms predominated among pathogens (63.6 %), and Pseudomonas aeruginosa isolates were 50 %. Determining of the sensitivity established that panresistantance to antimicrobial drugs took place in 71.4 % of cases (5 strains), and polyresistantance was found in 28.6 % of cases (2 strains). Conclusions: the study of structural and functional features of biofilms formation showed that biofilms were formed according to classical stages. Dense biofilms determined the phenotypic variability of Pseudomonas aeruginosa with the development of antibiotic resistance to antimicrobial drugs, that is a barrier for the use of antimicrobial therapy.
References
Мaharath A, Ahmed MS. Bacterial Etiology of Bloodstream Infections and Antimicrobial Resistance Patterns from a Tertiary Care Hospital in Male, Maldives. International Journal of Microbiology. 2021 Oct;18:2021:3088202. doi: 10.1155/2021/3088202.
Bengtsson-palme J, Kristiansson E, Larsson DGJ. Environmental factors influencing the development and spread of antibiotic resistance. FEMS Microbiology Reviews. 2018; 42(1):68–80. doi: 10.1093/femsre/fux053.
Vitomska-Melnyk AO, Trikhlib VI. Manifestations of pneumonia in the wounded during a full-scale invasion of Ukraine in 2022 according to the data of instrumental examination methods (stand report) UDC 616.9. Ukrainian Military Medical Academy, Kyiv, Ukraine Abstracts of the medical forum "Infectious diseases — today's challenges.2023 Jun; 19(3):193-213. doi: https://doi.org/10.22141/2224- 0586.19.3.2023.1581
Torres A, Cilloniz C, Niederman MS et al. Pneumonia. Nature Reviews Disease Primers. 2021;7(25):1-28.
Boyer S, Hérissant L, Sherlock G. Adaptation is influenced by the complexity of environmental change during evolution in a dynamic environment. PLoS Genetics. 2021 Jan; 25:17(1):e1009314.
Muluneh A. Multi-drug resistant gram-negative bacterial pneumonia: etiology, risk factors, and drug resistance patterns. Pneumonia. 2022;14(4):3-12.
Moura-Alves P, Puyskens A, Stinn A et al. Host monitoring of quorum sensing during Pseudomonas aeruginosa infection. Science 2019 Dec;20:366(6472):eaaw1629. doi: 10.1126/science.aaw1629.
Lee J, Zhang L. The hierarchy quorum sensing network in Pseudomonas aeruginosa. Protein Cell. 2015 Jan;6(1):26-41. doi: 10.1007/s13238-014-0100-x.
Moradali MF, Ghods S, Rehm BH. Pseudomonas aeruginosa Lifestyle: A Paradigm for Adaptation, Survival and Persistence. Front Cell Infect Microbiol. 2017 Feb; 15:7(39). doi: 10.3389/fcimb.2017.00039.
Yang D, Hao S, Zhao L, et al. Paeonol attenuates quorum-sensing regulated virulence and biofilm formation in Pseudomonas aeruginosa. Front Microbiol. 2021 Aug; 4(12):692474. doi: 10.3389/fmicb.2021.692474.
Ventola CL. The antibiotic resistance crisis: Part 1: Causes and threats. Pharm Ther. 2015 Apr;40(4):277-83.
Rutherford ST, Bassler BL. Bacterial quorum sensing: its role in virulence and possibilities for its control. Cold Spring Harb. Perspect Med. 2012 Nov;2(11):a012427.doi: 10.1101/cshperspect.a012427.
Paterson DL, Bonomo RA. Extended-spectrum beta-lactamases: a clinical update. Clin Microbiol Rev. 2005 Oct;18(4):657-86. doi: 10.1128/CMR.18.4.657-686.2005.
Poirel L, La Rosa JMO, Kieffer N, et al. Acquisition of extended-spectrum beta-lactamase GES-6 leading to resistance to ceftolozane-tazobactam combination in Pseudomonas aeruginosa. Antimicrob Agents Chemother. 2018 Dec 21;63(1):e01809-18. doi: 10.1128/AAC.01809-18.
Subedi D,Vijay AK, Willcox M. Overview of mechanisms of antibiotic resistance in Pseudomonas aeruginosa: an ocular perspective. Clin Exp Optom. 2018 Mar;101(2):162-171. doi: 10.1111/cxo.12621.
Berrazeg M, Jeannot K, Enguene VY, et al. Mutations in beta-lactamase AmpC increase resistance of Pseudomonas aeruginosa Isolates to Antipseudomonal Cephalosporins. Antimicrob Agents Chemother. 2015 Oct;59(10):6248-55.doi: 10.1128/AAC.00825-15.
Maurice NM, Bedi B, Sadikot RT. Pseudomonas aeruginosa biofilms: host response and clinical implications in lung infections. Am J Respir Cell Mol Biol. 2018 Apr;58(4):428-439.doi: 10.1165/rcmb.2017-0321TR.
Hall CW, Mah TF. Molecular mechanisms of biofilm-based antibiotic resistance and tolerance in pathogenic bacteria. FEMS Microbiol Rev. 2017 May 1;41(3):276-301. doi: 10.1093/femsre/fux010.
Ventola CL. The antibiotic resistance crisis: Part 1: Causes and threats. Pharm Ther. 2015 Apr; 40(4):277-83.
Cohen NR, Lobritz MA, Collins JJ. Microbial persistence and the road to drug resistance. Cell Host Microbe. 2013 Jun 12;13(6):632-642.doi: 10.1016/j.chom.2013.05.009.
Papenfort K, Bassler BL. Quorum sensing signal-response systems in Gram-negative bacteria. Nat Rev Microbiol. 2016 Aug 11;14(9):576-88.doi: 10.1038/nrmicro.2016.89.
Maurice NM, Bedi B, Sadikot RT. Pseudomonas aeruginosa biofilms: host response and clinical implications in lung infections. Am J Respir Cell Mol Biol. 2018 Apr;58(4):428-439.doi: 10.1165/rcmb.2017-0321TR.
Horna G, Ruiz J. Type 3 secretion system of Pseudomonas aeruginosa. Microbiol Res. 2021 May;246:126719.doi: 10.1016/j.micres.2021.126719.
Crabbé A, Jensen PO, Bjarnsholt T, et al. Antimicrobial tolerance and metabolic adaptations in microbial biofilms. Trends in microbiology. 2019 Oct;27(10):850-863. doi: 10.1016/j.tim.2019.05.003.
Siegel SJ, Weiser JN. Mechanisms of bacterial colonization of the respiratory tract. Annu Rev Microbiol. 2015;69:425-44.doi: 10.1146/annurev-micro-091014-104209.
Quinton LJ, Walkey AJ, Mizgerd JP. Integrative Physiology of Pneumonia. Physiol Rev. 2018 Jul1;98(3):1417-1464.doi: 10.1152/physrev.00032.2017.
Pang Z, Raudonis R, Glick BR, et al. Antibiotic resistance in Pseudomonas aeruginosa:mechanisms and alternative therapeutic strategies. Biotechnol Adv. 2019 Jan-Feb;37(1):177-192. doi:10.1016/j.biotechadv.2018.11.013
Flitter BA, Hvorecny KL, Ono E, et al. Pseudomonas aeruginosa sabotages the generation of host proresolving lipid mediators. Proc Natl Acad Sci USA. 2017 Jan 3;114(1):136-141. doi: 10.1073/pnas.1610242114.
Panda SK, Colonna M. Innate lymphoid cells in mucosal immunity. Front Immunol. 2019 May;7(10):861.doi: 10.3389/fimmu.2019.00861.
Chiang WC, Pamp SJ, Nilsson M, et al. The metabolically active subpopulation in Pseudomonas aeruginosa biofilms survives exposure to membrane-targeting antimicrobials via distinct molecular mechanisms. FEMS Immunol Med Microbiol. 2012 Jul;65(2):245-56. doi: 10.1111/j.1574-695X.2012.00929.x.
Lopez-Calleja AI, Moralis EM, Medina RN, et al. Antimicrobial activity of ceftolozane-tazobactam against multidrug-resistant and extensively drug-resistant Pseudomonas aeruginosa clinical isolates from a Spanish hospital. Rev Esp Quimioter. 2019 Feb; 32(1):68-72.
Sinha M, Ghosh N, Wijesinghe DS, et al. Pseudomonas aeruginosa theft biofilm require host lipids of cutaneous wound. Ann Surg. 2023 Mar 1;277(3):634-647.doi: 10.1097/SLA.0000000000005252.
Bowler LL, Zhanel GG, Ball TB, et al. Mature Pseudomonas aeruginosa biofilms prevail compared to young biofilms in the presence of ceftazidime. Antimicrob Agents Chemother. 2012 Sep;56(9):4976-9. doi: 10.1128/AAC.00650-12.
Feng W, Sun F, Wang Q, et al. Epidemiology and resistance characteristics of Pseudomonas aeruginosa isolates from the respiratory department of a hospital in China. J Glob Antimicrob Resist. 2017 Mar;8:142-147. doi: 10.1016/j.jgar.2016.11.012.
Ahmed MN, Porse A, Sommer MOA, et al. Evolution of antibiotic resistance in biofilm and planktonic Pseudomonas aeruginosa populations exposed to subinhibitory levels of ciprofloxacin. Antimicrob Agents Chemother. 2018 Jul27; 62(8):e00320-18. doi: 10.1128/AAC.00320-18.
Beaudoin T, Zhang L, Hinz AJ, et al. The biofilm-specific antibiotic resistance gene ndvB is important for expression of ethanol oxidation genes in Pseudomonas aeruginosa biofilms. J Bacteriol. 2012 Jun;194(12):3128-36. doi: 10.1128/JB.06178-11.
Livermore DM. Of Pseudomonas, porins, pumps and carbapenems. J Antimicrob Chemother. 2001 Mar;47(3):247-50.doi: 10.1093/jac/47.3.247.
Livermore DM. Multiple mechanisms of antimicrobial resistance in Pseudomonas aeruginosa: our worst nightmare? Clin Infect Dis. 2002 Mar 1;34(5):634-40.doi: 10.1086/338782.
Jurado-Martin I, Sainz-Mejias M, McClean S. Pseudomonas aeruginosa: an audacious pathogen with an adaptable arsenal of virulence factors. Int J Mol Sci. 2021 Mar 18; 22(6):3128. doi: 10.3390/ijms22063128.
Ozer E, Yaniv K, Chetrit E, et al. An inside look at a biofilm: Pseudomonas aeruginosa flagella biotracking. Sci Adv. 2021 Jun 11; 7(24):eabg8581.doi: 10.1126/sciadv.abg8581.
Qin S, Xiao W, Zhou C, et al. Pseudomonas aeruginosa: pathogenesis, virulence factors, antibiotic resistance, interaction with host, technology advances and emerging therapeutics. Signal Transduction and Targeted Therapy. 2022 Jun 25;7(1):199.doi: 10.1038/s41392-022-01056-1.
Singh S, Datta S, Narayanan KB, Rajnish KN. Bacterial exo-polysaccharides in biofilms: role in antimicrobial resistance and treatments. J Genet Eng Biotechnol. 2021 Sep 23;19(1):140.doi: 10.1186/s43141-021-00242-y.
Downloads
Published
Issue
Section
License
Copyright (c) 2024 Olha Bondarenko, Maryna Mishyna, Alfredo Chetta, Svitlana Malanchuk, Mykhailo Mishyn, Yuliya Mozgova, Iryna Marchenko, Roberta Pisi, Annalisa Frizzelli, Yurii Kot
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by-nc/4.0) which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Transfer of Copyright and Permission to Reproduce Parts of Published Papers.
Authors retain the copyright for their published work. No formal permission will be required to reproduce parts (tables or illustrations) of published papers, provided the source is quoted appropriately and reproduction has no commercial intent. Reproductions with commercial intent will require written permission and payment of royalties.