Plaque-associated fibroblasts: Key regulators of atherosclerosis pathogenesis and plaque stability
Keywords:
atherosclerotic plaque, plaque stability, fibroblast activation, vascular inflammation, extracellular matrix remodeling, atherosclerosis pathogenesis, plaque progression, fibroblasts in cardiovascular disease, vulnerable plaque dynamicsAbstract
This review explores the evolving understanding of the origin and behavior of plaque-associated fibroblasts, with a primary focus on their phenotype and interactions within the plaque microenvironment (PME). These fibroblasts play a crucial role in shaping the plaque's trajectory, either towards stability or instability. The pathological transformation of fibroblasts into myofibroblasts, characterized by increased contractility and secretion, contributes to excessive extracellular matrix (ECM) deposition. Activated myofibroblasts also influence vasa vasorum growth by producing key factors such as vascular endothelial growth factor (VEGF), transforming growth factor-beta (TGF-beta), platelet-derived growth factor (PDGF), and monocyte chemoattractant protein 1 (MCP1).
The bidirectional crosstalk between fibroblasts and inflammatory cells within the plaque is a crucial aspect. Activated fibroblasts release proinflammatory factors like interleukin-1 (IL-1), activating resident immune cells and facilitating their migration through the PME. Conversely, immune cells produce cytokines such as IL-6, TNF-alpha, TGF-beta, and IL-1beta, stimulating fibroblasts to produce matrix metalloproteinase 1 (MMP1) and collagen deposition. The dynamic interplay among these cells, influenced by genetic predispositions, systemic conditions (hypertension, diabetes), inflammatory states (including COVID-19), and environmental factors (diet, lifestyle), determines the plaque's fate. Understanding histological images of atherosclerotic lesions could provide insights for therapeutic strategies aiming to inhibit detrimental smooth muscle cell transitions, promoting plaque stabilization and preventing severe clinical complications arising from carotid atherosclerotic plaque rupture.
References
Libby P. The changing landscape of atherosclerosis. Nature. 2021;592(7855):524-533. doi:10.1038/s41586-021-03392-8
Saba L, Cau R, Murgia A, et al. Carotid Plaque-RADS, a novel stroke risk classification system. JACC Cardiovasc Imaging. Published online September 2023. doi:10.1016/j.jcmg.2023.09.005
Singh S, Torzewski M. Fibroblasts and Their Pathological Functions in the Fibrosis of Aortic Valve Sclerosis and Atherosclerosis. Biomolecules. 2019;9(9). doi:10.3390/biom9090472
Kuret T, Sodin-Šemrl S. The Role of Fibroblasts in Atherosclerosis Progression. In: Bertoncelj MF, Lakota K, eds. IntechOpen; 2021:Ch. 3. doi:10.5772/intechopen.98546
Stary HC. Natural history and histological classification of atherosclerotic lesions: an update. Arterioscler Thromb Vasc Biol. 2000;20(5):1177-1178. doi:10.1161/01.atv.20.5.1177
Gaggini M, Gorini F, Vassalle C. Lipids in Atherosclerosis: Pathophysiology and the Role of Calculated Lipid Indices in Assessing Cardiovascular Risk in Patients with Hyperlipidemia. Int J Mol Sci. 2022;24(1). doi:10.3390/ijms24010075
Munger E, Hickey JW, Dey AK, Jafri MS, Kinser JM, Mehta NN. Application of machine learning in understanding atherosclerosis: Emerging insights. APL Bioeng. 2021;5(1):11505. doi:10.1063/5.0028986
Saba L, Francone M, Bassareo PP, et al. CT Attenuation Analysis of Carotid Intraplaque Hemorrhage. AJNR Am J Neuroradiol. 2018;39(1):131-137. doi:10.3174/ajnr.A5461
Harman JL, Jørgensen HF. The role of smooth muscle cells in plaque stability: Therapeutic targeting potential. Br J Pharmacol. 2019;176(19):3741-3753. doi:10.1111/bph.14779
Virmani R, Kolodgie FD, Burke AP, Farb A, Schwartz SM. Lessons from sudden coronary death: a comprehensive morphological classification scheme for atherosclerotic lesions. Arterioscler Thromb Vasc Biol. 2000;20(5):1262-1275. doi:10.1161/01.atv.20.5.1262
Goncalves I, Sun J, Tengryd C, et al. Plaque Vulnerability Index Predicts Cardiovascular Events: A Histological Study of an Endarterectomy Cohort. J Am Heart Assoc. 2021;10(15):e021038. doi:10.1161/JAHA.120.021038
Chang HY, Chi JT, Dudoit S, et al. Diversity, topographic differentiation, and positional memory in human fibroblasts. Proc Natl Acad Sci U S A. 2002;99(20):12877-12882. doi:10.1073/pnas.162488599
Mehendale F, Martin P. The cellular and molecular events of wound healing. Cutan Wound Heal. Published online 2001:15-37.
Ferrer RA, Saalbach A, Grünwedel M, et al. Dermal Fibroblasts Promote Alternative Macrophage Activation Improving Impaired Wound Healing. J Invest Dermatol. 2017;137(4):941-950. doi:10.1016/j.jid.2016.11.035
Knoedler S, Broichhausen S, Guo R, et al. Fibroblasts - the cellular choreographers of wound healing. Front Immunol. 2023;14:1233800. doi:10.3389/fimmu.2023.1233800
Eyden B, Banerjee SS, Shenjere P, Fisher C. The myofibroblast and its tumours. J Clin Pathol. 2009;62(3):236-249. doi:10.1136/jcp.2008.061630
Bagalad BS, Mohan Kumar KP, Puneeth HK. Myofibroblasts: Master of disguise. J Oral Maxillofac Pathol. 2017;21(3):462-463. doi:10.4103/jomfp.JOMFP_146_15
Milutinović A, Šuput D, Zorc-Pleskovič R. Pathogenesis of atherosclerosis in the tunica intima, media, and adventitia of coronary arteries: An updated review. Bosn J basic Med Sci. 2020;20(1):21-30. doi:10.17305/bjbms.2019.4320
Lu P, Takai K, Weaver VM, Werb Z. Extracellular matrix degradation and remodeling in development and disease. Cold Spring Harb Perspect Biol. 2011;3(12). doi:10.1101/cshperspect.a005058
Plikus MV, Wang X, Sinha S, et al. Fibroblasts: Origins, definitions, and functions in health and disease. Cell. 2021;184(15):3852-3872. doi:10.1016/j.cell.2021.06.024
Bentzon JF, Otsuka F, Virmani R, Falk E. Mechanisms of plaque formation and rupture. Circ Res. 2014;114(12):1852-1866. doi:10.1161/CIRCRESAHA.114.302721
Klagsbrun M, Edelman ER. Biological and biochemical properties of fibroblast growth factors. Implications for the pathogenesis of atherosclerosis. Arteriosclerosis. 1989;9(3):269-278. doi:10.1161/01.atv.9.3.269
Saba L, Chen H, Cau R, et al. Impact Analysis of Different CT Configurations of Carotid Artery Plaque Calcifications on Cerebrovascular Events. AJNR Am J Neuroradiol. 2022;43(2):272-279. doi:10.3174/ajnr.A7401
Cerrone G, Fanni D, Lai ML, et al. Plasma cells in the carotid plaque: Occurrence and significance. Eur Rev Med Pharmacol Sci. 2021;25(11):4064-4068. doi:10.26355/eurrev_202106_26047
Stone PH, Libby P, Boden WE. Fundamental Pathobiology of Coronary Atherosclerosis and Clinical Implications for Chronic Ischemic Heart Disease Management-The Plaque Hypothesis: A Narrative Review. JAMA Cardiol. 2023;8(2):192-201. doi:10.1001/jamacardio.2022.3926
de Bakker M, Timmerman N, van Koeverden ID, et al. The age- and sex-specific composition of atherosclerotic plaques in vascular surgery patients. Atherosclerosis. 2020;310:1-10. doi:10.1016/j.atherosclerosis.2020.07.016
Burke AP, Farb A, Malcom G, Virmani R. Effect of menopause on plaque morphologic characteristics in coronary atherosclerosis. Am Heart J. 2001;141(2 Suppl):S58-62. doi:10.1067/mhj.2001.109946
Diez Benavente E, Karnewar S, Buono M, et al. Female Gene Networks Are Expressed in Myofibroblast-Like Smooth Muscle Cells in Vulnerable Atherosclerotic Plaques. Arterioscler Thromb Vasc Biol. 2023;43(10):1836-1850. doi:10.1161/ATVBAHA.123.319325
Sartore S, Chiavegato A, Faggin E, et al. Contribution of adventitial fibroblasts to neointima formation and vascular remodeling: from innocent bystander to active participant. Circ Res. 2001;89(12):1111-1121. doi:10.1161/hh2401.100844
Zeisberg EM, Tarnavski O, Zeisberg M, et al. Endothelial-to-mesenchymal transition contributes to cardiac fibrosis. Nat Med. 2007;13(8):952-961. doi:10.1038/nm1613
Chen PY, Qin L, Baeyens N, et al. Endothelial-to-mesenchymal transition drives atherosclerosis progression. J Clin Invest. 2015;125(12):4514-4528. doi:10.1172/JCI82719
Tillie RJHA, van Kuijk K, Sluimer JC. Fibroblasts in atherosclerosis: heterogeneous and plastic participants. Curr Opin Lipidol. 2020;31(5):273-278. doi:10.1097/MOL.0000000000000700
Haudek SB, Xia Y, Huebener P, et al. Bone marrow-derived fibroblast precursors mediate ischemic cardiomyopathy in mice. Proc Natl Acad Sci U S A. 2006;103(48):18284-18289. doi:10.1073/pnas.0608799103
Bucala R, Spiegel LA, Chesney J, Hogan M, Cerami A. Circulating fibrocytes define a new leukocyte subpopulation that mediates tissue repair. Mol Med. 1994;1(1):71-81.
Meng XM, Wang S, Huang XR, et al. Inflammatory macrophages can transdifferentiate into myofibroblasts during renal fibrosis. Cell Death Dis. 2016;7(12):e2495. doi:10.1038/cddis.2016.402
Gu W, Nowak WN, Xie Y, et al. Single-Cell RNA-Sequencing and Metabolomics Analyses Reveal the Contribution of Perivascular Adipose Tissue Stem Cells to Vascular Remodeling. Arterioscler Thromb Vasc Biol. 2019;39(10):2049-2066. doi:10.1161/ATVBAHA.119.312732
Souilhol C, Harmsen MC, Evans PC, Krenning G. Endothelial-mesenchymal transition in atherosclerosis. Cardiovasc Res. 2018;114(4):565-577. doi:10.1093/cvr/cvx253
Wesseling M, Sakkers TR, de Jager SCA, Pasterkamp G, Goumans MJ. The morphological and molecular mechanisms of epithelial/endothelial-to-mesenchymal transition and its involvement in atherosclerosis. Vascul Pharmacol. 2018;106:1-8. doi:10.1016/j.vph.2018.02.006
Mahmoud MM, Serbanovic-Canic J, Feng S, et al. Shear stress induces endothelial-to-mesenchymal transition via the transcription factor Snail. Sci Rep. 2017;7(1):3375. doi:10.1038/s41598-017-03532-z
Evrard SM, Lecce L, Michelis KC, et al. Endothelial to mesenchymal transition is common in atherosclerotic lesions and is associated with plaque instability. Nat Commun. 2016;7:11853. doi:10.1038/ncomms11853
Huang Q, Gan Y, Yu Z, Wu H, Zhong Z. Endothelial to Mesenchymal Transition: An Insight in Atherosclerosis. Front Cardiovasc Med. 2021;8:734550. doi:10.3389/fcvm.2021.734550
Simons M. Endothelial-to-mesenchymal transition: advances and controversies. Curr Opin Physiol. 2023;34. doi:10.1016/j.cophys.2023.100678
Saba L, Cau R, Spinato G, et al Carotid stenosis and cryptogenic stroke. J Vasc Surg. 2024 May;79(5):1119-1131. doi: 10.1016/j.jvs.2024.01.004. Epub 2024 Jan 7. PMID: 38190926.
Cau, R., Pisu, F., Muscogiuri, G., Mannelli, L., Suri, J. S., & Saba, L. (2023). Applications of artificial intelligence-based models in vulnerable carotid plaque. Vessel Plus.
Cau R, Anzalone N, Mannelli L, et al. Pericarotid Fat as a Marker of Cerebrovascular Risk. AJNR Am J Neuroradiol. 2024 Nov 7;45(11):1635-1641. doi: 10.3174/ajnr.A8300. PMID: 39147585; PMCID: PMC11543090.
Downloads
Published
Issue
Section
License
Copyright (c) 2024 Gavino Faa, Riccardo Cau, Jasjit S. Suri, Matteo Fraschini, Massimo Castagnola, Luca Saba

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by-nc/4.0) which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Transfer of Copyright and Permission to Reproduce Parts of Published Papers.
Authors retain the copyright for their published work. No formal permission will be required to reproduce parts (tables or illustrations) of published papers, provided the source is quoted appropriately and reproduction has no commercial intent. Reproductions with commercial intent will require written permission and payment of royalties.