Hereditary kidney diseases: New perspectives through next-generation sequencing analysis

Hereditary kidney diseases: New perspectives through next-generation sequencing analysis

Authors

  • Rossella Gaudino Pediatric Clinic, Department Surgical Sciences, Dentistry, Gynecology and Pediatrics, University of Verona
  • Chiara Tosolini Pediatric Clinic, Department Surgical Sciences, Dentistry, Gynecology and Pediatrics, University of Verona
  • Sara Picassi Pediatric Clinic, Department Surgical Sciences, Dentistry, Gynecology and Pediatrics, University of Verona
  • Luca Pecoraro Pediatric Clinic, Department Surgical Sciences, Dentistry, Gynecology and Pediatrics, University of Verona
  • Olivia Chapin Arnone Pediatric Clinic, Department Surgical Sciences, Dentistry, Gynecology and Pediatrics, University of Verona
  • Marco Zaffanello Pediatric Clinic, Department Surgical Sciences, Dentistry, Gynecology and Pediatrics, University of Verona
  • Paolo Cavarzere Pediatric Clinic, Department Surgical Sciences, Dentistry, Gynecology and Pediatrics, University of Verona
  • Giorgio Piacentini Pediatric Clinic, Department Surgical Sciences, Dentistry, Gynecology and Pediatrics, University of Verona
  • Milena Brugnara Pediatric Clinic, Department Surgical Sciences, Dentistry, Gynecology and Pediatrics, University of Verona

Keywords:

solitary fetal hyperechoic kidneys, inherited kidney disease, next-generation sequencing analysis, prenatal diagnosis, nephropathy

Abstract

Background and aim: Hereditary kidney diseases are characterized by a specific phenotypic homology while differing in prognosis and follow-up. The genetic analysis may not be conclusive, thereby limiting a better understanding of these types of kidney diseases. The next-generation sequencing (NGS) technique allows for the simultaneous analysis of multiple genes, which, although more time consuming, enables new pathogenetic mutations to be recognized, and encourages research and diagnosis of hereditary kidney diseases. The aim of the present article is to provide a comprehensive review of the literature regarding the isolated finding of fetal hyperechoic kidneys.  Methods: A systematic review was conducted in MEDLINE including articles evaluating the genetic approach to fetal hyperechoic kidneys. The PRISMA-P recommendations were used to guide this review. Results: A genetic etiology was identified in 48% of cases. Of these, 38% were autosomal recessive polycystic kidney disease (ARPKD), 29% were autosomal dominant polycystic kidney disease (ADPKD), and 22% were HNF1B-related autosomal dominant tubulointerstitial kidney disease. Genetic analysis was performed using karyotype, chromosomal microarray, and specific sequencing for PKD1-PKD2 or PKHD1. Only 4 studies reported NGS analysis permitting complex diagnoses. Conclusions: The genetic approach using the NGS technique is still underused despite allowing a faster etiological classification without an increase in diagnostic costs. Since genetic etiology is responsible for 48% of fetal hyperechoic kidneys, the application of NGS techniques should be implemented in order to encourage research in this not-yet-widely-known field of study. 

References

Mashiach R, Davidovits M, Eisenstein B, et al. Fetal hyperechogenic kidney with normal amniotic fluid volume: a diagnostic dilemma. Prenat Diagn. 2005;25(7):553-8. doi: 10.1002/pd.1185.

Ashe RG, Campbell N, Dornan JC. Antenatal detection of renal abnormalities. Ir J Med Sci. 1992;161(11):626-9. doi: 10.1007/BF02983768.

Dillon E, Ryall A. A 10 year audit of antenatal ultrasound detection of renal disease. Br J Radiol. 1998;71(845):497-500. doi: 10.1259/bjr.71.845.9691894.

Shuster S, Keunen J, Shannon P, Watkins N, Chong K, Chitayat D. Prenatal detection of isolated bilateral hyperechogenic kidneys: Etiologies and outcomes. Prenat Diagn. 2019;39(9):693-700. doi: 10.1002/pd.5418.

Estroff JA, Mandell J, Benacerraf BR. Increased renal parenchymal echogenicity in the fetus: importance and clinical outcome. Radiology. 1991;181(1):135-9. doi: 10.1148/radiology.181.1.1887022.

Muller F, Dreux S, Audibert F, et al. Fetal serum ss2-microglobulin and cystatin C in the prediction of post-natal renal function in bilateral hypoplasia and hyperechogenic enlarged kidneys. Prenat Diagn. 2004;24(5):327-32. doi: 10.1002/pd.866.

Chaumoitre K, Brun M, Cassart M, et al. Differential diagnosis of fetal hyperechogenic cystic kidneys unrelated to renal tract anomalies: A multicenter study. Ultrasound Obstet Gynecol. 2006;28(7):911-7. doi: 10.1002/uog.3856.

Digby EL, Liauw J, Dionne J, Langlois S, Nikkel SM. Etiologies and outcomes of prenatally diagnosed hyperechogenic kidneys. Prenat Diagn. 2021;41(4):465-77. doi: 10.1002/pd.5883.

Devriendt A, Cassart M, Massez A, Donner C, Avni FE. Fetal kidneys: additional sonographic criteria of normal development. Prenat Diagn. 2013;33(13):1248-52. doi: 10.1002/pd.4240.

Gimpel C, Avni FE, Bergmann C, et al. Perinatal Diagnosis, Management, and Follow-up of Cystic Renal Diseases: A Clinical Practice Recommendation With Systematic Literature Reviews. JAMA Pediatr. 2018;172(1):74-86. doi: 10.1001/jamapediatrics.2017.3938.

Renkema KY, Stokman MF, Giles RH, Knoers NV. Next-generation sequencing for research and diagnostics in kidney disease. Nat Rev Nephrol. 2014;10(8):433-44. doi: 10.1038/nrneph.2014.95

Hureaux M, Molin A, Jay N, et al. Prenatal hyperechogenic kidneys in three cases of infantile hypercalcemia associated with SLC34A1 mutations. Pediatr Nephrol. 2018;33(10):1723-9. doi: 10.1007/s00467-018-3998-z.

Bell LM, Byrne S, Thompson A, et al. Increasing body mass index z-score is continuously associated with complications of overweight in children, even in the healthy weight range. J Clin Endocrinol Metab. 2007;92(2):517-22. doi: 10.1210/jc.2006-1714.

Kalra M, Mannaa M, Fitz K, et al. Effect of surgical weight loss on sleep architecture in adolescents with severe obesity. Obes Surg. 2008;18(6):675-9. doi: 10.1007/s11695-008-9472-4.

Kang KT, Lee PL, Weng WC, Hsu WC. Body weight status and obstructive sleep apnea in children. International journal of obesity (2005). 2012;36(7):920-4. doi: 10.1038/ijo.2012.5.

Sallinen BJ, Hassan F, Olszewski A, et al. Longer weekly sleep duration predicts greater 3-month BMI reduction among obese adolescents attending a clinical multidisciplinary weight management program. Obes Facts. 2013;6(3):239-46. doi: 10.1159/000351819.

Anuntaseree W, Sangsupawanich P, Mo-suwan L, Ruangnapa K, Pruphetkaew N. Prospective cohort study on change in weight status and occurrence of habitual snoring in children. Clin Otolaryngol. 2014;39(3):164-8. doi: 10.1111/coa.12249.

Khan MKA, Chu YL, Kirk SFL, Veugelers PJ. Are sleep duration and sleep quality associated with diet quality, physical activity, and body weight status? A population-based study of Canadian children. Can J Public Health. 2015;106(5):e277-e82. doi: 10.17269/cjph.106.4892.

Frye SS, Fernandez-Mendoza J, Calhoun SL, et al. Childhood obesity, weight loss and developmental trajectories predict the persistence and remission of childhood sleep-disordered breathing. Pediatr Obes. 2019;14(1):10.1111/ijpo.12461. doi: 10.1111/ijpo.12461.

Andersen IG, Holm J-C, Homøe P. Impact of weight-loss management on children and adolescents with obesity and obstructive sleep apnea. International journal of pediatric otorhinolaryngology. 2019;123:57-62. doi: 10.1016/j.ijporl.2019.04.031.

Andersen IG, Holm J-C, Homøe P. Obstructive sleep apnea in children and adolescents with and without obesity. European archives of oto-rhino-laryngology: official journal of the European Federation of Oto-Rhino-Laryngological Societies (EUFOS): affiliated with the German Society for Oto-Rhino-Laryngology - Head and Neck Surgery. 2019;276(3):871-8. doi: 10.1007/s00405-019-05290-2.

Surányi A, Retz C, Rigo J, Schaaps JP, Foidart JM. Fetal renal hyperechogenicity in intrauterine growth retardation: importance and outcome. Pediatr Nephrol. 2001;16(7):575-80. doi: 10.1007/s004670100604.

Tsatsaris V, Gagnadoux MF, Aubry MC, Gubler MC, Dumez Y, Dommergues M. Prenatal diagnosis of bilateral isolated fetal hyperechogenic kidneys. Is it possible to predict long term outcome? BJOG. 2002;109(12):1388-93. doi: 10.1046/j.1471-0528.2002.02055.x.

Gilboa Y, Perlman S, Pode-Shakked N, et al. Prenatal diagnosis of 17q12 deletion syndrome: from fetal hyperechogenic kidneys to high risk for autism. Prenat Diagn. 2016;36(11):1027-32. doi: 10.1002/pd.4926.

Surányi A, Nyári T, Pál A. What is biparietal diameter/kidney length ratio in cases with renal hyperechogenicity? Pediatr Nephrol. 2003;18(1):14-7. doi: 10.1007/s00467-002-1004-1.

Carr MC, Benacerraf BR, Estroff JA, Mandell J. Prenatally diagnosed bilateral hyperechoic kidneys with normal amniotic fluid: postnatal outcome. J Urol. 1995;153(2):442-4. doi: 10.1097/00005392-199502000-00051.

Cassart M, Massez A, Metens T, et al. Complementary role of MRI after sonography in assessing bilateral urinary tract anomalies in the fetus. AJR Am J Roentgenol. 2004;182(3):689-95. doi: 10.2214/ajr.182.3.1820689.

Surányi A, Streitman K, Pál A, et al. Fetal renal artery flow and renal echogenicity in the chronically hypoxic state. Pediatr Nephrol. 2000;14(5):393-9. doi: 10.1007/s004670050781.

Yulia A, Napolitano R, Aiman A, et al. Perinatal and infant outcome in prenatally diagnosed hyperechogenic kidneys. Ultrasound Obstet Gynecol. 2020. doi: 10.1002/uog.22121.

Decramer S, Parant O, Beaufils S, et al. Anomalies of the TCF2 gene are the main cause of fetal bilateral hyperechogenic kidneys. J Am Soc Nephrol. 2007;18(3):923-33. doi: 10.1681/ASN.2006091057.

Jing XY, Huang LY, Zhen L, Han J, Li DZ. Prenatal diagnosis of 17q12 deletion syndrome: a retrospective case series. J Obstet Gynaecol. 2019;39(3):323-7. doi: 10.1080/01443615.2018.1519693.

Jones GE, Mousa HA, Rowley H, Houtman P, Vasudevan PC. Should we offer prenatal testing for 17q12 microdeletion syndrome to all cases with prenatally diagnosed echogenic kidneys? Prenatal findings in two families with 17q12 microdeletion syndrome and review of the literature. Prenat Diagn. 2015;35(13):1336-41. doi: 10.1002/pd.4701.

Brun M, Maugey-Laulom B, Eurin D, Didier F, Avni EF. Prenatal sonographic patterns in autosomal dominant polycystic kidney disease: a multicenter study. Ultrasound Obstet Gynecol. 2004;24(1):55-61. doi: 10.1002/uog.1098.

Zhou CX, Zhu XY, Zhu YJ, et al. Prenatal features of 17q12 microdeletion and microduplication syndromes: A retrospective case series. Taiwan J Obstet Gynecol. 2021;60(2):232-7. doi: 10.1016/j.tjog.2021.01.001.

Chaumoitre K, Colavolpe N, Shojai R, Sarran A, D' Ercole C, Panuel M. Diffusion-weighted magnetic resonance imaging with apparent diffusion coefficient (ADC) determination in normal and pathological fetal kidneys. Ultrasound Obstet Gynecol. 2007;29(1):22-31. doi: 10.1002/uog.3892.

Belin S, Delco C, Parvex P, et al. Management of delivery of a fetus with autosomal recessive polycystic kidney disease: a case report of abdominal dystocia and review of the literature. J Med Case Rep. 2019;13(1):366. doi: 10.1186/s13256-019-2293-3.

Jordan P, Arrondel C, Bessières B, et al. Bi-allelic pathogenic variations in DNAJB11 cause Ivemark II syndrome, a renal-hepatic-pancreatic dysplasia. Kidney Int. 2021;99(2):405-9. doi: 10.1016/j.kint.2020.09.029.

Gondra L, Décramer S, Chalouhi GE, Muller F, Salomon R, Heidet L. Hyperechogenic kidneys and polyhydramnios associated with HNF1B gene mutation. Pediatr Nephrol. 2016;31(10):1705-8. doi: 10.1007/s00467-016-3421-6.

Guerriero S, Gerada M, Piras S, et al. Bilateral fetal hyperechogenic kidneys associated with normal amniotic fluid: an ethical dilemma in a normal variant? Prenat Diagn. 2006;26(2):190-1. doi: 10.1002/pd.1377.

Bernheim S, Deschênes G, Schiff M, Cussenot I, Niel O. Antenatal nephromegaly and propionic acidemia: a case report. BMC Nephrol. 2017;18(1):110. doi: 10.1186/s12882-017-0535-4.

Okumura M, Bunduki V, Shiang C, Schultz R, Zugaib M. Unusual sonographic features of ARPKD. Prenat Diagn. 2006;26(4):330-2. doi: 10.1002/pd.1410.

Dorval G, Jeanpierre C, Morinière V, et al. Cystic kidney diseases associated with mutations in phosphomannomutase 2 promotor: a large spectrum of phenotypes. Pediatr Nephrol. 2021 Aug;36(8):2361-2369. doi: 10.1007/s00467-021-04953-9.

Rajanna DK, Reddy A, Srinivas NS, Aneja A. Autosomal recessive polycystic kidney disease: antenatal diagnosis and histopathological correlation. J Clin Imaging Sci. 2013;3:13. doi: 10.4103/2156-7514.109733.

Jeffery S, Saggar-Malik AK, Economides DL, Blackmore SE, MacDermot KD. Apparent normalisation of fetal renal size in autosomal dominant polycystic kidney disease (PKD1). Clin Genet. 1998;53(4):303-7. doi: 10.1111/j.1399-0004.1998.tb02701.x.

Lopes AM, Teixeira S. New-onset diabetes after kidney transplantation revealing HNF1B-associated disease. Endocrinol Diabetes Metab Case Rep. 2021 Jan 27;2021:20-0165. doi: 10.1530/EDM-20-0165.

Nishi T, Iwasaki M, Yamoto M, Nakano R. Prenatal diagnosis of autosomal recessive polycystic kidney disease by ultrasonography and magnetic resonance imaging. Acta Obstet Gynecol Scand. 1991;70(7-8):615-7. doi: 10.3109/00016349109007927.

Hofstaetter C, Neumann I, Lennert T, Dudenhausen JW. Prenatal diagnosis of diffuse mesangial glomerulosclerosis by ultrasonography: a longitudinal study of a case in an affected family. Fetal Diagn Ther. 1996;11(2):126-31. doi: 10.1159/000264291.

Kjaergaard S, Graem N, Larsen T, Skovby F. Recurrent fetal polycystic kidneys associated with glutaric aciduria type II. APMIS. 1998;106(12):1188-93. doi: 10.1111/j.1699-0463.1998.tb00276.x.

Thakur P, Speer P, Rajkovic A. Novel mutation in the PKHD1 gene diagnosed prenatally in a fetus with autosomal recessive polycystic kidney disease. Case Rep Genet. 2014;2014:517952. doi: 10.1155/2014/517952.

Whitfield J, Hurst D, Bennett MJ, Sherwood WG, Hogg R, Gonsoulin W. Fetal polycystic kidney disease associated with glutaric aciduria type II: an inborn error of energy metabolism. Am J Perinatol. 1996;13(3):131-4. doi: 10.1055/s-2007-994309.

Garcia-Tizon Larroca S, Blagoeva Atanasova V, Orera Clemente M, et al. Prenatal diagnosis of Bardet-Biedl syndrome in a case of hyperechogenic kidneys: Clinical use of DNA sequencing. Clin Case Rep. 2017;5(4):449-53. doi: 10.1002/ccr3.859.

Aldridge M, Patel C, Mallett A, Trnka P. Antenatally Diagnosed ADPKD. Kidney Int Rep. 2018;3(5):1214-7. doi: 10.1016/j.ekir.2018.05.002.

Cramer MT, Guay-Woodford LM. Cystic kidney disease: a primer. Adv Chronic Kidney Dis. 2015;22(4):297-305. doi: 10.1053/j.ackd.2015.04.001.

Gimpel C, Bergmann C, Bockenhauer D, et al. International consensus statement on the diagnosis and management of autosomal dominant polycystic kidney disease in children and young people. Nat Rev Nephrol. 2019;15(11):713-26. doi: 10.1038/s41581-019-0155-2.

de Haan A, Eijgelsheim M, Vogt L, Knoers NVAM, de Borst MH. Diagnostic yield of next-generation sequencing in patients with chronic kidney disease of unknown etiology. Front Genet. 2019;10:1264. doi: 10.3389/fgene.2019.01264.

Groopman EE, Rasouly HM, Gharavi AG. Genomic medicine for kidney disease. Nat Rev Nephrol. 2018;14(2):83-104. doi: 10.1038/nrneph.2017.167.

Bergmann C. Early and Severe Polycystic kidney disease and related ciliopathies: an emerging field of interest. Nephron. 2019;141(1):50-60. doi: 10.1159/000493532.

Downloads

Published

24-04-2024

Issue

Section

REVIEWS CLINICAL ARTICLES, UPDATES, FOCUS ON

How to Cite

1.
Gaudino R, Tosolini C, Picassi S, et al. Hereditary kidney diseases: New perspectives through next-generation sequencing analysis. Acta Biomed. 2024;95(2):e2024029. doi:10.23750/abm.v95i2.14907