Myopia progression in children and adolescents: impact of COVID-19 pandemic and current and future control strategies

Main Article Content

Ahmed Kassem


adolescents, myopia, eyeglasses, mydriatics, atropine, contact lenses


Abstract: Myopia is a significant and growing public health problem with typical onset or progression during childhood adolescence. High myopia has lifelong impact on ocular health and socio-economic aspects of patients ‘lives. COVID-19 lockdown resulted in demonstrable increase in incidence and progression rate of myopia in children and adolescence. Low dose atropine and Orthokeratology contact lenses appear to be most effective in slowing down myopia progression. Rebound progression after stopping both modalities were reported. Defocus modifying spectacle lenses and contact lenses are less effective but possibly better tolerated.


Download data is not yet available.
Abstract 126 | PDF Downloads 93


1. Flitcroft DI, He M, Jonas JB, Jong M, Naidoo K, Ohno-Matsui K, et al. IMI - Defining and Classifying Myopia: A Proposed Set of Standards for Clinical and Epidemiologic Studies. Invest Ophthalmol Vis Sci 2019; 60 3:M20-m30. doi:10.1167/iovs.18-25957.
2. Ohno-Matsui K, Wu P-C, Yamashiro K, Vutipongsatorn K, Fang Y, Cheung CMG, et al. IMI Pathologic Myopia. Investigative Ophthalmology & Visual Science 2021; 62 5:5-. doi:10.1167/iovs.62.5.5. Available at:
3. Sankaridurg P, Tahhan N, Kandel H, Naduvilath T, Zou H, Frick KD, et al. IMI Impact of Myopia. Invest Ophthalmol Vis Sci 2021; 62 5:2. doi:10.1167/iovs.62.5.2.
4. Modjtahedi BS, Abbott RL, Fong DS, Lum F, Tan D. Reducing the Global Burden of Myopia by Delaying the Onset of Myopia and Reducing Myopic Progression in Children: The Academy's Task Force on Myopia. Ophthalmology 2021; 128 6:816-26. doi:10.1016/j.ophtha.2020.10.040.
5. Tideman JW, Snabel MC, Tedja MS, van Rijn GA, Wong KT, Kuijpers RW, et al. Association of Axial Length With Risk of Uncorrectable Visual Impairment for Europeans With Myopia. JAMA Ophthalmol 2016; 134 12:1355-63. doi:10.1001/jamaophthalmol.2016.4009.
6. Bullimore MA, Ritchey ER, Shah S, Leveziel N, Bourne RRA, Flitcroft DI. The Risks and Benefits of Myopia Control. Ophthalmology 2021; 128 11:1561-79. doi:10.1016/j.ophtha.2021.04.032.
7. Naidoo KS, Fricke TR, Frick KD, Jong M, Naduvilath TJ, Resnikoff S, et al. Potential Lost Productivity Resulting from the Global Burden of Myopia: Systematic Review, Meta-analysis, and Modeling. Ophthalmology 2019; 126 3:338-46. doi:10.1016/j.ophtha.2018.10.029.
8. Chua SYL, Foster PJ. The Economic and Societal Impact of Myopia and High Myopia. In: Ang M, Wong TY, eds. Updates on Myopia: A Clinical Perspective. Singapore: Springer Singapore, 2020.
9. Foo LL, Lanca C, Wong CW, Ting D, Lamoureux E, Saw SM, et al. Cost of Myopia Correction: A Systematic Review. Front Med (Lausanne) 2021; 8:718724. doi:10.3389/fmed.2021.718724.
10. Wu PC, Chen CT, Lin KK, Sun CC, Kuo CN, Huang HM, et al. Myopia Prevention and Outdoor Light Intensity in a School-Based Cluster Randomized Trial. Ophthalmology 2018; 125 8:1239-50. doi:10.1016/j.ophtha.2017.12.011.
11. He M, Xiang F, Zeng Y, Mai J, Chen Q, Zhang J, et al. Effect of Time Spent Outdoors at School on the Development of Myopia Among Children in China: A Randomized Clinical Trial. JAMA 2015; 314 11:1142-8. doi:10.1001/jama.2015.10803. Available at:
12. Rose KA, Morgan IG, Ip J, Kifley A, Huynh S, Smith W, et al. Outdoor activity reduces the prevalence of myopia in children. Ophthalmology 2008; 115 8:1279-85. doi:10.1016/j.ophtha.2007.12.019.
13. Wen L, Cao Y, Cheng Q, Li X, Pan L, Li L, et al. Objectively measured near work, outdoor exposure and myopia in children. Br J Ophthalmol 2020; 104 11:1542-7. doi:10.1136/bjophthalmol-2019-315258.
14. Xu L, Ma Y, Yuan J, Zhang Y, Wang H, Zhang G, et al. COVID-19 Quarantine Reveals That Behavioral Changes Have an Effect on Myopia Progression. Ophthalmology 2021; 128 11:1652-4. doi:10.1016/j.ophtha.2021.04.001.
15. Ma M, Xiong S, Zhao S, Zheng Z, Sun T, Li C. COVID-19 Home Quarantine Accelerated the Progression of Myopia in Children Aged 7 to 12 Years in China. Invest Ophthalmol Vis Sci 2021; 62 10:37. doi:10.1167/iovs.62.10.37.
16. Zhang X, Cheung SSL, Chan HN, Zhang Y, Wang YM, Yip BH, et al. Myopia incidence and lifestyle changes among school children during the COVID-19 pandemic: a population-based prospective study. Br J Ophthalmol 2022; 106 12:1772-8. doi:10.1136/bjophthalmol-2021-319307.
17. Mohan A, Sen P, Peeush P, Shah C, Jain E. Impact of online classes and home confinement on myopia progression in children during COVID-19 pandemic: Digital eye strain among kids (DESK) study 4. Indian J Ophthalmol 2022; 70 1:241-5. doi:10.4103/ijo.IJO_1721_21.
18. McBrien NA, Moghaddam HO, Reeder AP. Atropine reduces experimental myopia and eye enlargement via a nonaccommodative mechanism. Invest Ophthalmol Vis Sci 1993; 34 1:205-15.
19. Yen MY, Liu JH, Kao SC, Shiao CH. Comparison of the effect of atropine and cyclopentolate on myopia. Ann Ophthalmol 1989; 21 5:180-2, 7.
20. Shih YF, Chen CH, Chou AC, Ho TC, Lin LL, Hung PT. Effects of different concentrations of atropine on controlling myopia in myopic children. J Ocul Pharmacol Ther 1999; 15 1:85-90. doi:10.1089/jop.1999.15.85.
21. Chua WH, Balakrishnan V, Chan YH, Tong L, Ling Y, Quah BL, et al. Atropine for the treatment of childhood myopia. Ophthalmology 2006; 113 12:2285-91. doi:10.1016/j.ophtha.2006.05.062.
22. Tong L, Huang XL, Koh AL, Zhang X, Tan DT, Chua WH. Atropine for the treatment of childhood myopia: effect on myopia progression after cessation of atropine. Ophthalmology 2009; 116 3:572-9. doi:10.1016/j.ophtha.2008.10.020.
23. Chia A, Lu QS, Tan D. Five-Year Clinical Trial on Atropine for the Treatment of Myopia 2: Myopia Control with Atropine 0.01% Eyedrops. Ophthalmology 2016; 123 2:391-9. doi:10.1016/j.ophtha.2015.07.004.
24. Yam JC, Jiang Y, Tang SM, Law AKP, Chan JJ, Wong E, et al. Low-Concentration Atropine for Myopia Progression (LAMP) Study: A Randomized, Double-Blinded, Placebo-Controlled Trial of 0.05%, 0.025%, and 0.01% Atropine Eye Drops in Myopia Control. Ophthalmology 2019; 126 1:113-24. doi:10.1016/j.ophtha.2018.05.029.
25. Yam JC, Li FF, Zhang X, Tang SM, Yip BHK, Kam KW, et al. Two-Year Clinical Trial of the Low-Concentration Atropine for Myopia Progression (LAMP) Study: Phase 2 Report. Ophthalmology 2020; 127 7:910-9. doi:10.1016/j.ophtha.2019.12.011.
26. Li S-M, Wu S-S, Kang M-T, Liu Y, Jia S-M, Li S-Y, et al. Atropine Slows Myopia Progression More in Asian than White Children by Meta-analysis. Optometry and Vision Science 2014; 91 3:342-50. doi:10.1097/opx.0000000000000178. Available at:
27. Polling JR, Kok RG, Tideman JW, Meskat B, Klaver CC. Effectiveness study of atropine for progressive myopia in Europeans. Eye (Lond) 2016; 30 7:998-1004. doi:10.1038/eye.2016.78.
28. Ha A, Kim SJ, Shim SR, Kim YK, Jung JH. Efficacy and Safety of 8 Atropine Concentrations for Myopia Control in Children: A Network Meta-Analysis. Ophthalmology 2022; 129 3:322-33. doi:10.1016/j.ophtha.2021.10.016.
29. Cooper J, Eisenberg N, Schulman E, Wang FM. Maximum atropine dose without clinical signs or symptoms. Optom Vis Sci 2013; 90 12:1467-72. doi:10.1097/opx.0000000000000037.
30. VanderVeen DK, Kraker RT, Pineles SL, Hutchinson AK, Wilson LB, Galvin JA, et al. Use of Orthokeratology for the Prevention of Myopic Progression in Children: A Report by the American Academy of Ophthalmology. Ophthalmology 2019; 126 4:623-36. doi:10.1016/j.ophtha.2018.11.026.
31. Swarbrick HA, Alharbi A, Watt K, Lum E, Kang P. Myopia control during orthokeratology lens wear in children using a novel study design. Ophthalmology 2015; 122 3:620-30. doi:10.1016/j.ophtha.2014.09.028.
32. Cho P, Cheung SW. Retardation of myopia in Orthokeratology (ROMIO) study: a 2-year randomized clinical trial. Invest Ophthalmol Vis Sci 2012; 53 11:7077-85. doi:10.1167/iovs.12-10565.
33. Downie LE, Lowe R. Corneal reshaping influences myopic prescription stability (CRIMPS): an analysis of the effect of orthokeratology on childhood myopic refractive stability. Eye Contact Lens 2013; 39 4:303-10. doi:10.1097/ICL.0b013e318298ee76.
34. Charm J, Cho P. High myopia-partial reduction ortho-k: a 2-year randomized study. Optom Vis Sci 2013; 90 6:530-9. doi:10.1097/OPX.0b013e318293657d.
35. Chen C, Cheung SW, Cho P. Myopia control using toric orthokeratology (TO-SEE study). Invest Ophthalmol Vis Sci 2013; 54 10:6510-7. doi:10.1167/iovs.13-12527.
36. Davis RL, Eiden SB, Bennett ES, Koffler BH, Wohl LG, Lipson MJ. Stabilizing Myopia by Accelerating Reshaping Technique (SMART)-Study Three Year Outcomes and Overview. Advances in Ophthalmology & Visual System 2015; 2.
37. Tsai H-R, Wang J-H, Huang H-K, Chen T-L, Chen P-W, Chiu C-J. Efficacy of atropine, orthokeratology, and combined atropine with orthokeratology for childhood myopia: A systematic review and network meta-analysis. Journal of the Formosan Medical Association 2022; 121 12:2490-500. doi: Available at:
38. Bullimore MA, Sinnott LT, Jones-Jordan LA. The risk of microbial keratitis with overnight corneal reshaping lenses. Optom Vis Sci 2013; 90 9:937-44. doi:10.1097/OPX.0b013e31829cac92.
39. World Society of Paediatric Ophthalmology & Strabismus Myopia Consensus Statement 2023.
40. Kam KW, Yung W, Li GKH, Chen LJ, Young AL. Infectious keratitis and orthokeratology lens use: a systematic review. Infection 2017; 45 6:727-35. doi:10.1007/s15010-017-1023-2.
41. Walline JJ, Greiner KL, McVey ME, Jones-Jordan LA. Multifocal contact lens myopia control. Optom Vis Sci 2013; 90 11:1207-14. doi:10.1097/opx.0000000000000036.
42. Walline JJ, Walker MK, Mutti DO, Jones-Jordan LA, Sinnott LT, Giannoni AG, et al. Effect of High Add Power, Medium Add Power, or Single-Vision Contact Lenses on Myopia Progression in Children: The BLINK Randomized Clinical Trial. JAMA 2020; 324 6:571-80. doi:10.1001/jama.2020.10834. Available at:
43. Lam CS, Tang WC, Tse DY, Tang YY, To CH. Defocus Incorporated Soft Contact (DISC) lens slows myopia progression in Hong Kong Chinese schoolchildren: a 2-year randomised clinical trial. Br J Ophthalmol 2014; 98 1:40-5. doi:10.1136/bjophthalmol-2013-303914.
44. Anstice NS, Phillips JR. Effect of dual-focus soft contact lens wear on axial myopia progression in children. Ophthalmology 2011; 118 6:1152-61. doi:10.1016/j.ophtha.2010.10.035.
45. Chamberlain P, Peixoto-de-Matos SC, Logan NS, Ngo C, Jones D, Young G. A 3-year Randomized Clinical Trial of MiSight Lenses for Myopia Control. Optom Vis Sci 2019; 96 8:556-67. doi:10.1097/opx.0000000000001410.
46. Gwiazda JE, Hyman L, Everett D, Norton T, Kurtz D, Manny R, et al. Five–Year Results From the Correction of Myopia Evaluation Trial (COMET). Investigative Ophthalmology & Visual Science 2006; 47 13:1166-.
47. Cheng D, Woo GC, Drobe B, Schmid KL. Effect of bifocal and prismatic bifocal spectacles on myopia progression in children: three-year results of a randomized clinical trial. JAMA Ophthalmol 2014; 132 3:258-64. doi:10.1001/jamaophthalmol.2013.7623.
48. Huang J, Wen D, Wang Q, McAlinden C, Flitcroft I, Chen H, et al. Efficacy Comparison of 16 Interventions for Myopia Control in Children: A Network Meta-analysis. Ophthalmology 2016; 123 4:697-708. doi: Available at:
49. Lam CSY, Tang WC, Tse DY, Lee RPK, Chun RKM, Hasegawa K, et al. Defocus Incorporated Multiple Segments (DIMS) spectacle lenses slow myopia progression: a 2-year randomised clinical trial. Br J Ophthalmol 2020; 104 3:363-8. doi:10.1136/bjophthalmol-2018-313739.
50. Sankaridurg P, Donovan L, Varnas S, Ho A, Chen X, Martinez A, et al. Spectacle lenses designed to reduce progression of myopia: 12-month results. Optom Vis Sci 2010; 87 9:631-41. doi:10.1097/OPX.0b013e3181ea19c7.
51. Bao J, Yang A, Huang Y, Li X, Pan Y, Ding C, et al. One-year myopia control efficacy of spectacle lenses with aspherical lenslets. Br J Ophthalmol 2022; 106 8:1171-6. doi:10.1136/bjophthalmol-2020-318367.
52. Bao J, Huang Y, Li X, Yang A, Zhou F, Wu J, et al. Spectacle Lenses With Aspherical Lenslets for Myopia Control vs Single-Vision Spectacle Lenses: A Randomized Clinical Trial. JAMA Ophthalmology 2022; 140 5:472-8. doi:10.1001/jamaophthalmol.2022.0401. Available at: