Spinal cord injuries in the absence of post-traumatic radiographic anomalies (SCIWORA): the traumatic moment between patient anterior state and efficient/concurrent causes of injury

Main Article Content

Giuseppe Basile
Stefania Fozzato
Quirino Alessandro Petrucci
Mario Gallina
Riccardo Accetta
Alberto Passeri
Luca Bianco Prevot
Enrico Marinelli

Keywords

SCIWORA, Spinal Cord Injury, contributing causes of injury, natural variability, forensic evaluation

Abstract

Background and aim:Spinal Cord Injury without Radiographic Abnormality (SCIWORA) represents acute traumatic myelopathy in the absence of instrumental evidence of fractures and/or dislocations of the cervical vertebrae.
Methods:In this article we present 4 cases of SCIWORA that came to our observation and the medico-legal implications associated with them.
Results:In defining the compensation in the context of a private accident policy for traumatic pathologies of the spinal cord, an in-depth medical-legal assessment is essential, based on an accurate examination of the health documentation including the instrumental investigations performed, the anamnesis and an accurate evaluation of the trauma dynamic. The paraphysiological deterioration of organ-tissue structures, identifiable in the concept of "natural variability of biological risk", should be included in the same definition of insured risk by age group, with the consequence that physical conditions that fall within the physiological or paraphysiological definitions, although potentially contributing to injury, do not necessarily exclude compensation. A different concept dominates the variability of the compensation according to a paraphysiological pre-existing condition. The two arguments therefore call for thorough consideration of both the paraphysiological contributing causes of injury and/or impairment as necessarily subject to a preliminary study, which through the clinical and instrumental investigation method, will define the perimeter of functionality.

Abstract 339 | PDF Downloads 258

References

1.Pang D, Wilberger JE Jr. Spinal cord injury without radiographic abnormalities in children. J Neurosurg. 1982 Jul;57(1):114-129. doi: 10.3171/jns.1982.57.1.0114.
2.Qi C, Cao J, Xia H, et al. Does cervical curvature affect neurological outcome after incomplete spinal cord injury without radiographic abnormality (SCIWORA): 1-year follow-up. J Orthop Surg Res. 2022 Jul 26;17(1):361. doi: 10.1186/s13018-022-03254-7.
3.Kasimatis GB, Panagiotopoulos E, Megas P, et al. The adult spinal cord injury without radiographic abnormalities syndrome: magnetic resonance imaging and clinical findings in adults with spinal cord injuries having normal radiographs and computed tomography studies. J Trauma. 2008 Jul;65(1):86-93. doi: 10.1097/TA.0b013e318157495a.
4.Sharma S, Singh M, Wani IH, Sharma S, Sharma N, Singh D. Adult Spinal Cord Injury without Radiographic Abnormalities (SCIWORA): Clinical and Radiological Correlations. J Clin Med Res. 2009 Aug;1(3):165-172. doi: 10.4021/jocmr2009.08.1256. 
5.Bonfanti L, Donelli V, Lunian M, Cerasti D, Cobianchi F, Cervellin G. Adult Spinal Cord Injury Without Radiographic Abnormality (SCIWORA). Two case reports and a narrative review. Acta Biomed. 2019 Jan 15;89(4):593-598. doi: 10.23750/abm.v89i4.7532.
6.Michelini MC, Cotelli M, Tomasini G. Adult acute quadriparesis after traumatism: is it Spinal cord Injury Without radiologic abnormality (ScIWora)? Italian Journal of Emergency Medicine 2020; 9: 58-61. doi:10.23736/S2532-1285.20.00012-9
7.Atesok K, Tanaka N, O'Brien A, et al. Posttraumatic Spinal Cord Injury without Radiographic Abnormality. Adv Orthop. 2018 Jan 4;2018:7060654. doi: 10.1155/2018/7060654.
8.Szwedowski D, Walecki J. Spinal Cord Injury without Radiographic Abnormality (SCIWORA) - Clinical and Radiological Aspects. Pol J Radiol. 2014 Dec 8;79:461-464. doi: 10.12659/PJR.890944.
9.Atesok K, Tanaka N, O'Brien A, et al. Posttraumatic Spinal Cord Injury without Radiographic Abnormality. Adv Orthop. 2018 Jan 4;2018:7060654. doi: 10.1155/2018/7060654.
10.Martinez-Perez R, Munarriz PM, Paredes I, Cotrina J, Lagares A. Cervical Spinal Cord Injury without Computed Tomography Evidence of Trauma in Adults: Magnetic Resonance Imaging Prognostic Factors. World Neurosurg. 2017 Mar;99:192-199. doi: 10.1016/j.wneu.2016.12.005. 
11.Ahuja CS, Schroeder GD, Vaccaro AR, Fehlings MG. Spinal Cord Injury-What Are the Controversies? J Orthop Trauma. 2017 Sep;31 Suppl 4:S7-S13. doi: 10.1097/BOT.0000000000000943. 
12.Matsuura P, Waters RL, Adkins RH, Rothman S, Gurbani N, Sie I. Comparison of computerized tomography parameters of the cervical spine in normal control subjects and spinal cord-injured patients. J Bone Joint Surg Am. 1989 Feb;71(2):183-188.
13.Takao T, Okada S, Morishita Y, et al. Clinical Influence of Cervical Spinal Canal Stenosis on Neurological Outcome after Traumatic Cervical Spinal Cord Injury without Major Fracture or Dislocation. Asian Spine J. 2016 Jun;10(3):536-542. doi: 10.4184/asj.2016.10.3.536.
14.Takao T, Morishita Y, Okada S, et al. Clinical relationship between cervical spinal canal stenosis and traumatic cervical spinal cord injury without major fracture or dislocation. Eur Spine J. 2013 Oct;22(10):2228-2231. doi: 10.1007/s00586-013-2865-7.
15.Basile G, Accetta R, Marinelli S, et al. Traumatology: Adoption of the Sm@rtEven Application for the Remote Evaluation of Patients and Possible Medico-Legal Implications. J Clin Med. 2022 Jun 23;11(13):3644. doi: 10.3390/jcm11133644.
16.Ciatti C, Maniscalco P, Quattrini F, et al. The epidemiology of proximal femur fractures during COVID-19 emergency in Italy: a multicentric study. Acta Biomed. 2021 Nov 5;92(5):e2021398. doi: 10.23750/abm.v92i5.11925.
17.Rüegg TB, Wicki AG, Aebli N, Wisianowsky C, Krebs J. The diagnostic value of magnetic resonance imaging measurements for assessing cervical spinal canal stenosis. J Neurosurg Spine. 2015 Mar;22(3):230-236. doi: 10.3171/2014.10.SPINE14346.
18.Ronchi E, Mastroroberto L, Genovese U. Guida alla valutazione medico-legale dell’invalidità permanente, seconda edizione, Milano 2015, pag.28-39.
19.Kobayashi T, Yawara E, Suzuki M, et al. Evaluation of Spinal Alignment and Clinical Findings for the Efficacy of One-Stage Surgery in Tandem Spinal Stenosis. Cureus. 2022 May 19;14(5):e25130. doi: 10.7759/cureus.25130.
20.Busardò FP, Tritapepe L, Montana A, Indorato F, Zaami S, Romano G. A fatal accidental subarachnoid injection of lidocaine and levobupivacaine during a lumbar paravertebral block. Forensic Sci Int. 2015 Nov;256:17-20. doi: 10.1016/j.forsciint.2015.07.017.
21.Baucher G, Taskovic J, Troude L, Molliqaj G, Nouri A, Tessitore E. Risk factors for the development of degenerative cervical myelopathy: a review of the literature. Neurosurg Rev. 2022 Apr;45(2):1675-1689. doi: 10.1007/s10143-021-01698-9.
22.Busardò FP, Frati P, Santurro A, Zaami S, Fineschi V. Errors and malpractice lawsuits in radiology: what the radiologist needs to know. Radiol Med. 2015 Sep;120(9):779-784. doi: 10.1007/s11547-015-0561-x.
23.Morishita Y, Kawano O, Maeda T. The pathophysiology of cervical spinal cord injury: what are the differences between traumatic injury and degenerative disorder. Spinal Cord Ser Cases. 2022 May 3;8(1):50. doi: 10.1038/s41394-022-00517-7.
24.Tan J, Hu F, Ou J, Su X, Liu J. Analysis of the Curative Effect and Prognostic Factors of Anterior Cervical Surgery for Spinal Cord Injury without Radiographic Abnormalities. Evid Based Complement Alternat Med. 2022 Aug 8;2022:6836966. doi: 10.1155/2022/6836966.
25.Basile G, Fozzato S, Bianco Prevot L, Accetta R, Petrucci QA. Refractory humeral non-union: treatment with photodynamic intramedullary implant IlluminOss® and internal fixation. Acta Biomed. 2022 Dec 7;93(S1):e2022340. doi: 10.23750/abm.v93iS1.13773. 
26.Martinez-Perez R, Joswig H, Rayo N, Bertazzo-Silveira G. Spinal Cord Injury Without Radiological Abnormalities and the importance of Magnetic Resonance. Acta Biomed. 2020 Sep 7;91(3):e2020084. doi: 10.23750/abm.v91i3.8518.
27.Weizenmann TC, Viott AM, Barbosa AB, et al. Evaluation of the Effect of Nandrolone Decanoate on Experimental Spinal Cord Injury in Rats. Acta Scientiae Vet 2019;47. https://doi.org/10.22456/1679-9216.98190.
28.Wu Y, Zhao J, Zhao W, Pan J, Bauman WA, Cardozo CP. Nandrolone normalizes determinants of muscle mass and fiber type after spinal cord injury. J Neurotrauma. 2012 May 20;29(8):1663-1675. doi: 10.1089/neu.2011.2203.
29.Busardò FP, Frati P, Sanzo MD, et al. The impact of nandrolone decanoate on the central nervous system. Curr Neuropharmacol. 2015 Jan;13(1):122-31. doi: 10.2174/1570159X13666141210225822. 
30.Basile G, Fozzato S, Petrucci QA, et al. Treatment of Femoral Shaft Pseudarthrosis, Case Series and Medico-Legal Implications. J Clin Med. 2022 Dec 14;11(24):7407. doi: 10.3390/jcm11247407.
31.Tewari MK, Gifti DS, Singh P, et al. Diagnosis and prognostication of adult spinal cord injury without radiographic abnormality using magnetic resonance imaging: analysis of 40 patients. Surg Neurol. 2005 Mar;63(3):204-209; discussion 209. doi: 10.1016/j.surneu.2004.05.042.
32.Basile G, Passeri A, Gaudio RM, Avato FM, Polo L, Amadei F. Anterior state and economic compensation of the traumatic pathology of the shoulder: the traumatic moment between natural variability and efficient concauses of injury”. GIOT 2020;46:179-188. doi:10.32050/0390-0134-227