Longitudinal study of ICET-A on glucose tolerance, insulin sensitivity and β-cell secretion in eleven β-thalassemia major patients with mild iron overload Low serum ferritin and glucose homeostasis in β-thalassemia major

Main Article Content

Vincenzo De Sanctis https://orcid.org/0000-0002-6131-974X
Ashraf T Soliman
Shahina Daar
Ploutarchos Tzoulis
Salvatore Di Maio
Christos Kattamis


β-thalassemia major, glucose tolerance, insulin sensitivity, β-cell secretion, serum ferritin, follow-up.


Background: Iron chelation therapy (ICT) is the gold standard for treating patients with iron overload, though its long-term effects are still under evaluation. According to current recommendations regarding  transfusion-dependent  (TD)  β-thalassemia major (β-TM) patients, their serum ferritin (SF) levels should be maintained below 1,000 ng/mL and ICT should be discontinued when the levels are <500 ng/mL in two successive tests. Alternatively, the dose of chelator could be considerably reduced to maintain a balance between iron input and output of  frequent transfusions. Study design: Due to the paucity of information on long-term effects of ICT  in β-TM with low SF levels on glucose homeostasis, the International Network of Clinicians for Endocrinopathies in Thalassemia and Adolescence Medicine (ICET-A) promoted a retrospective and an ongoing prospective observational study with the primary aim to address the long-term effects of ICT on glucose tolerance and metabolism (β-cell function and peripheral insulin sensitivity) in adult β-TM patients with persistent SF level below 800 ng/mL. Patients and Methods: 11 β-TM patients (mean age: 35.5 ± 5.5 years; SF range: 345-777 ng/mL) with normal glucose tolerance test (OGTT) or abnormal glucose tolerance (AGT) for a median of 5.3(1.1-8.3) years. Results: Abnormal glucose tolerance (AGT) was observed in 7 patients (63.6%) at first observation and ) persisted in 6 patients (54.5%) at last observation. None of them developed diabetes mellitus. AGT was reversed in two patients.

One patient with NGT developed early glucose intolerance (1-h PG ≥155 and 2-h PG <140 mg/dL). Three out of  5 patients with isolated impaired glucose tolerance presented a variation of  ATG. Stabilization of low indices for β-cell function and insulin sensitivity/resistance was observed. One patient developed hypogonadotrophic hypogonadism. Three out of 6 patients with SF below 500 ng/dL had hypercalciuria. Conclusion: Despite low SF level, the burden of endocrine complications remains a challenge in β-TM patients. The ability to keep iron at near "normal" level with acceptable risks of toxicity remains to be established.


Download data is not yet available.
Abstract 223 | PDF Downloads 231


1. Farmakis D, Porter J, Taher A, Cappellini MD, Angastiniotis M, Eleftheriou A. 2021 Thalassaemia International Federation Guidelines for the Management of Transfusion-dependent Thalassemia. Hemasphere. 2022;6(8):e732. doi: 10.1097/HS9.0000000000000732.
2. Kattamis A, Kwiatkowski JL, Aydinok Y. Thalassaemia. Lancet. 2022;399(10343):2310-24. doi: 10.1016/S0140-6736(22)00536-0.
3. Wood JC. Estimating tissue iron burden: current status and future prospects. Br J Haematol. 2015;170(1):15-28. doi: 10.1111/bjh.13374.
4. Noetzli LJ, Carson SM, Nord AS, Coates TD, Wood JC. Longitudinal analysis of heart and liver iron in thalassemia major. Blood. 2008;112(7):2973-8. doi: 10.1182/blood-2008-04-148767.
5. Oudit GY, Trivieri MG, Khaper N, Liu PP, Backx PH. Role of L-type Ca2+ channels in iron transport and iron-overload cardiomyopathy. J Mol Med (Berl). 2006;84(5):349-64. doi: 10.1007/s00109-005-0029-x.
6. Berdoukas V, Nord A, Carson S, Puliyel M, Hofstra T, Wood J, Coates TD. Tissue iron evaluation in chronically transfused children shows significant levels of iron loading at a very young age. Am J Hematol. 2013;88:E283-285. doi:10.1002/ajh.23543.
7. De Sanctis V, Soliman A, Tzoulis P, et al. The Prevalence of glucose dysregulations (GDs) in patients with β-thalassemias in different countries: A preliminary ICET-A survey. Acta Biomed. 2021;92(3): e2021240.doi: 10.23750/ abm.v92i3.11733.
8. De Sanctis V, Soliman A, Tzoulis P, et al. The clinical characteristics, biochemical parameters and insulin response to oral glucose tolerance test (OGTT) in 25 transfusion dependent β-thalassemia (TDT) patients recently diagnosed with diabetes mellitus (DM). Acta Biomed. 2022 Jan 19;92(6):e2021488. doi: 10.23750/abm.v92i6.12366.
9. Sevimli C, Yilmaz Y, Bayramoglu Z, et al. Pancreatic MR imaging and endocrine complications in patients with beta-thalassemia: a single-center experience. Clin Exp Med.2022; 22:95–101.doi.org/10. 1007/s10238-021-00735-7.
10. De Sanctis V, Daar S, Soliman AT, et al. Screening for glucose dysregulation in β-thalassemia major (β-TM): An update of current evidences and personal experience. Acta Biomed. 2022;93(1):e2022158. doi: 10.23750/abm.v93i1.12802.
11. Spasiano A, Meloni A, Costantini S, et al. Setting for "Normal" Serum Ferritin Levels in Patients with Transfusion-Dependent Thalassemia: Our Current Strategy. J Clin Med. 2021;10(24):5985. doi: 10.3390/ jcm10245985.
12. Pinto MV, Bacigalupo L, Gianesin B, et al. Lack of correlation between heart, liver and pancreas MRI 2*: Results from long-term follow-up in a cohort of adult β -thalassemia major patients. Am J Hematol. 2018;93 (3):E79-82. doi:10.1002/ajh.25009.
13. Farmaki K, Tzoumari I, Pappa C, Chouliaras G, Berdoukas V. Normalisation of total body iron load with very intensive combined chelation reverses cardiac and endocrine complications of thalassaemia major. Br J Haematol. 2010;148(3):466-75.doi:10.1111/j.1365-2141.2009.07970.x.
14. De Sanctis V, Soliman A, Daar S, Tzoulis P, Di Maio S, Kattamis C. Glucose Homeostasis and Αssessment of β-Cell Function by 3-hour Oral Glucose Tolerance (OGTT) in Patients with β-Thalassemia Major with Serum Ferritin below 1,000 ng/dL: Results from a Single ICET-A Centre. Accepted for publication, Medit J Hemat Infect Dis. 2022.
15, Kuo FY, Cheng KC, Li Y, Cheng JT. Oral glucose tolerance test in diabetes, the old method revisited. World J Diabetes. 2021;12(6):786-93. doi: 10.4239/wjd.v12.i6.786.
16. Klein KR, Walker CP, McFerren AL, Huffman H, Frohlich F, Buse JB. Carbohydrate Intake Prior to Oral Glucose Tolerance Testing. J Endocr Soc. 2021;5(5):bvab049. doi: 10.1210/jendso/bvab049.
17. American Diabetes Association. Classification and Diagnosis of Diabetes: Standards of Medical Care in Diabetes - 2020. Diabetes Care. 2020; 43(Suppl.1): S14-S31.https://doi.org/10.2337/dc20-S002.
18. De Sanctis V, Soliman A, Tzoulis P, Daar S, Pozzobon G, Kattamis C. A study of isolated hyperglycemia (blood glucose ≥155 mg/dL) at 1-hour of oral glucose tolerance test (OGTT) in patients with β-transfusion dependent thalassemia (β-TDT) followed for 12 years. Acta Biomed. 2021;92(4): e2021322. doi: 10.23750/abm.v92i4.11105.
19. Tschritter O, Fritsche A, Shirkavand F, Machicao F, Haring H, Stumvoll M. Assessing the shape of the glucose curve during an oral glucose tolerance test. Diabetes Care. 2003;26:1026–33.doi:10.2337/diacare. 26.4.1026.
20. Matsuda M, DeFronzo RA. Insulin sensitivity indices obtained from oral glucose tolerance testing: comparison with the euglycemic insulin clamp. Diabetes Care. 1999;22(9):1462-70. doi:10.2337/ diacare. 22.9.1462.
21. Hanefeld M, Hanefeld M, Koehler C, et al.. Insulin secretion and insulin sensitivity pattern is different in isolated impaired glucose tolerance and impaired fasting glucose: the risk factor in Impaired Glucose Tolerance for Atherosclerosis and Diabetes study. Diabetes Care. 2003;26:868–74. doi:10.2337/diacare. 26.3.868.
22. Matthews DR, Hosker JP, Rudenski AS, Naylor BA, Treacher DF, Turner RC. Homeostasis model assessment: insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia. 1985;28(7):412-9. doi:10.1007/BF00280883.
23. Hayashi T, Boyko EJ, Sato KK, et al. Patterns of insulin concentration during the OGTT predict the risk of type 2 diabetes in Japanese Americans. Diabetes Care. 2013;36(5):1229-35. doi:10.2337/dc12-0246.
24. Roth CL, Elfers C, Hampe CS. Assessment of disturbed glucose metabolism and surrogate measures of insulin sensitivity in obese children and adolescents. Nutr Diabetes. 2017;7(12):301.doi: 10.1038/ s41387-017-0004-y.
25. Utzschneider KM, Prigeon RL, Faulenbach MV, et al. Oral disposition index predicts the development of future diabetes above and beyond fasting and 2-h glucose levels. Diabetes Care. 2009;32(2):335-41.doi:
26. Fulwood R, Johnson CL, Bryner JD. Hematological and nutritional biochemistry reference data for persons 6 months-74 years of age: United States, 1976-80. Vital Health Stat.1982; 11:1-173.PMID: 7170776.
27. Alder R, Roesser EB. Introduction to probability and statistics. WH Freeman and Company Eds. Sixth Edition. San Francisco (USA), 1975.PMID:1674139.
28. De Sanctis V, Soliman AT, Daar S, Tzoulis P, Fiscina B, Kattamis C, International Network of Clinicians for Endocrinopathies in Thalassemia and Adolescence Medicine (ICET-A). Retrospective observational studies: Lights and shadows for medical writers. Acta Biomed [Internet]. [cited 2022 Oct. 20];93(5):e2022319.doi.org /10.23750/abm.v93i5.13179.
29. De Sanctis V, Gamberini MR, Borgatti L, Atti G, Vullo C, Bagni B. Alpha and beta cell evaluation in patients with thalassaemia intermedia and iron overload. Postgrad Med J.1985;61(721):963-7.doi: 10.1136/ pgmj.61.721.963.
30. Papakonstantinou O, Alexopoulou E, Economopoulos N, et al. Assessment of iron distribution between liver, spleen, pancreas, bone marrow, and myocardium by means of R2 relaxometry with mri in patients with β-thalassemia major. J Magn Reson Imaging. 2009;29(4):853–9. doi:10.1002/jmri.21707.
31. Coates TD. Physiology and pathophysiology of iron in hemoglobin-associated diseases. Free Radic Biol Med. 2014 Jul;72:23-40. doi: 10.1016/j.freeradbiomed.2014.03.039.
32. Cabantchik ZI. Labile iron in cells and body fluids: physiology, pathology, and pharmacology. Front Pharmacol. 2014;5:45. doi: 10.3389/fphar.2014.00045.
33. Noetzli LJ, Panigrahy A, Mittelman SD, et al. Pituitary iron and volume predict hypogonadism in transfusional iron overload. Am J Hematol. 2012;87(2):167–71. doi: 10.1002/ ajh.22247.
34. Scaramellini N, Arighi C, Marcon A, et al. Iron Chelation and Ferritin below 500 Mcg/L in Transfusion Dependent Thalassemia: Beyond the Limits of Clinical Trials. Blood. 2019;134 (Supplement 1):3542. doi: https://doi.org/10.1182/blood-2019-130237.
35. Wong P, Polkinghorne K, Kerr PG, et al. Deferasirox at therapeutic doses is associated with dose‐dependent hypercalciuria. Bone. 2016;85:55–8. doi.org/10.1016/j.bone.2016.01.011
36.Quinn CT, Johnson VL, Kim HY, et al. Renal dysfunction in patients with thalassaemia. Br J Haematol. 2011;153(1):111-7. doi: 10.1111/j.1365-2141.2010.08477.x.
37. Tanous O, Azulay Y, Halevy R. et al. Renal function in β-thalassemia major patients treated with two different iron-chelation regimes. BMC Nephrol.2021;22:418. doi.org/10.1186/s12882-021-02630-5.
38. Quinn CT, St Pierre TG. MRI Measurements of Iron Load in Transfusion-Dependent Patients: Implementation, Challenges, and Pitfalls. Pediatr Blood Cancer. 2016;63(5):773-80. doi: 10.1002/ pbc.25882.
39. Muniyappa R, Lee S, Chen H, Quon MJ. Current approaches for assessing insulin sensitivity and resistance in vivo: advantages, limitations, and appropriate usage. Am J Physiol Endocrinol Metab. 2008;294:E15–E26. doi: 10.1152/ajpendo.00645.2007.
40. Conwell LS, Trost SG, Brown WJ, Batch JA. Indexes of insulin resistance and secretion in obese children and adolescents: a validation study. Diabetes Care.2004;27:314–319. doi: 10.2337/diacare.27.2.314.
41. Noetzli LJ, Papudesi J, Coates TD, Wood JC. Pancreatic iron loading predicts cardiac iron loading in thalassemia major. Blood. 2009;114(19):4021-6. doi: 10.1182/blood-2009-06-225615.
42. Berliner C, Wang ZJ, Singer ST, et al. Anterior Pituitary Volume in Patients with Transfusion Dependent Anemias: Volumetric Approaches and Relation to Pituitary MRI R2. Clin Neuroradiol. 2022;32(1):259-67. doi: 10.1007/s00062-021-01111-4.

Most read articles by the same author(s)

1 2 3 4 5 6 7 8 9 10 11 > >>