MicroRNA global profiling in cystic fibrosis cell lines reveals dysregulated pathways related with inflammation, cancer, growth, glucose and lipid metabolism, and fertility: an exploratory study.

Main Article Content

Cecilia Catellani
Francesca Cirillo
Sara Graziano
Luisa Montanini
Nelson Marmiroli
Mariolina Gullì
Maria Elisabeth Street

Keywords

cystic fibrosis, miRNA, growth, inflammation, cancer, glucose metabolism, lipid metabolism, fertility

Abstract

Background and aim: Cystic fibrosis (CF), is due to CF transmembrane conductance regulator (CFTR) loss of function, and is associated with comorbidities. The increasing longevity of CF patients has been associated with increased cancer risk besides the other known comorbidities. The significant heterogeneity among patients, suggests potential epigenetic regulation. Little attention has been given to how CFTR influences microRNA (miRNA) expression and how this may impact on biological processes and pathways.


Methods: We assessed the changes in miRNAs and subsequently identified the affected molecular pathways using CFBE41o-, and IB3 human immortalized cell lines since they reflect the most common genetic mutations in CF patients, and 16HBE14o- cells were used as controls.


Results: In the CF cell lines, 41 miRNAs showed significant changes (FC (log2) ≥ +2 or FC (log2) ≤ -2 and p-value≤0.05). Gene target analysis evidenced 511 validated miRNA target genes. Gene Ontology analysis evidenced cancer, inflammation, body growth, glucose, and lipid metabolism as the biological processes most impacted by these miRNAs. Protein-protein interaction and pathway analysis highlighted 50 significantly enriched pathways among which RAS, TGF beta, JAK/STAT and insulin signaling.


Conclusions: CFTR loss of function is associated with changes in the miRNA network, which regulates genes involved in the major comorbidities that affect CF patients suggesting that further research is warranted.

Downloads

Download data is not yet available.
Abstract 119 | Supplementary files Downloads 55 PDF Downloads 40

References

1. Scotet V, L'Hostis C, Férec C. The Changing Epidemiology of Cystic Fibrosis: Incidence, Survival and Impact of the CFTR Gene Discovery Genes (Basel). 2020;11:589.
2. Skov M, Baekvad-Hansen M, Hougaard DM, Skogstrand K, Lund AM, Pressler T, et al. Cystic fibrosis newborn screening in Denmark: Experience from the first 2 years Pediatr Pulmonol. 2020; 55: 549-555.
3. Dankert-Roelse JE, Bouva MJ, Jakobs BS, Janssens HM, de Winter-de Groot KM, Schönbeck Y, et al. Newborn blood spot screening for cystic fibrosis with a four-step screening strategy in the Netherlands J Cyst Fibros. 2019; 18: 54-63.
4. David J, Chrastina P, Pešková K, Kožich V, Friedecký D, Adam T, et al. Epidemiology of rare diseases detected by newborn screening in the Czech Republic Cent Eur J Public Health. 2019; 27: 153-159.
5. Soltysova A, Tarova ET, Ficek A, Baldovic M, Polakova H, Kayserova H, et al. Comprehensive genetic study of cystic fibrosis in Slovak patients in 25 years of genetic diagnostics Clin Respir J. 2018; 12: 1197-1206.
6. Castellani C, Picci L, Tridello G, Casati E, Tamanini A, Bartoloni L, et al. Cystic fibrosis carrier screening effects on birth prevalence and newborn screening. Genet Med. 2016; 18: 145–151
7. Audrézet MP, Munck A, Scotet V, Claustres M, Roussey M, Delmas D, et al. Comprehensive CFTR gene analysis of the French cystic fibrosis screened newborn cohort: implications for diagnosis, genetic counseling, and mutation-specific therapy Genet Med. 2015; 17: 108-16.
8. Cystic Fibrosis Mutation Database (http://www.genet.sickkids.on.ca/StatisticsPage.html) (Accessed on 21st September 2021).
9. Cutting GR. Cystic fibrosis genetics: from molecular understanding to clinical application. Nat Rev Genet. 2015; 16: 45-56.
10. Drumm ML, Ziady AG, Davis PB. Genetic variation and clinical heterogeneity in cystic fibrosis Annu Rev Pathol. 2012; 7: 267-82.
11. MacKenzie T, Gifford AH, Sabadosa KA, Quinton HB, Knapp EA, Goss CH, et al. Longevity of patients with cystic fibrosis in 2000 to 2010 and beyond: survival analysis of the Cystic Fibrosis Foundation patient registry Ann Intern Med. 2014; 161: 233-41.
12. Cystic Fibrosis Foundation. https://www.cff.org/Research/Researcher-Resources/Patient-Registry/Understanding-Changes-in-Life-Expectancy/ (accessed 22nd October, 2021).
13. Zhang J, Wang Y, Jiang X, Chan HC. Cystic fibrosis transmembrane conductance regulator-emerging regulator of cancer Cell Mol Life Sci. 2018; 75: 1737-1756.
14. Maisonneuve P, Marshall BC, Knapp EA, Lowenfels AB. Cancer risk in cystic fibrosis: a 20-year nationwide study from the United States J Natl Cancer Inst. 2013; 105: 122-9.
15. Tu Z, Chen Q, Zhang JT, Jiang X, Xia Y, Chan HC. CFTR is a potential marker for nasopharyngeal carcinoma prognosis and metastasis Oncotarget. 2016; 7: 76955–76965.
16. Tian F, Zhao J, Fan X, Kang Z. Weighted gene co-expression network analysis in identification of metastasis-related genes of lung squamous cell carcinoma based on the Cancer Genome Atlas database J Thorac Dis. 2017; 9: 42-53.
17. Li J, Zhang JT, Jiang X, Shi X, Shen J, Feng F, et al. The cystic fibrosis transmembrane conductance regulator as a biomarker in non-small cell lung cancer Int J Oncol. 2015; 46: 2107-15.
18. Moribe T, Iizuka N, Miura T, Kimura N, Tamatsukuri S, Ishitsuka H, et al. Methylation of multiple genes as molecular markers for diagnosis of a small, well-differentiated hepatocellular carcinoma Int J Cancer. 2009; 125: 388-97.
19. Ding S, Gong B, Yu J, Gu J, Zhang H, Shang Z, et al. Methylation profile of the promoter CpG islands of 14 "drug-resistance" genes in hepatocellular carcinoma World J Gastroenterol. 2004; 10: 3433-40.
20. Than BLN, Linnekamp JF, Starr TK, Largaespada DA, Rod A, Zhang Y, et al. CFTR is a tumor suppressor gene in murine and human intestinal cancer Oncogene. 2017; 36: 3504.
21. Sun TT, Wang Y, Cheng H, Xiao HZ, Xiang JJ, Zhang JT, et al. Disrupted interaction between CFTR and AF-6/afadin aggravates malignant phenotypes of colon cancer Biochim Biophys Acta. 2014; 1843: 618-28.
22. Ashour N, Angulo JC, Andrés G, Alelú R, González-Corpas A, Toledo MV, et al. A DNA hypermethylation profile reveals new potential biomarkers for prostate cancer diagnosis and prognosis Prostate. 2014; 74: 1171-82.
23. Xie C, Jiang XH, Zhang JT, Sun TT, Dong JD, Sanders AJ, et al. CFTR suppresses tumor progression through miR-193b targeting urokinase plasminogen activator (uPA) in prostate cancer Oncogene. 2013, 32: 2282-91.
24. Zhao Y, Guo S, Sun J, Huang Z, Zhu T, Zhang H, et al. Methylcap-seq reveals novel DNA methylation markers for the diagnosis and recurrence prediction of bladder cancer in a Chinese population PLoS One. 2012; 7: e35175.
25. Yu J, Zhu T, Wang Z, Zhang H, Qian Z, Xu H, et al. A novel set of DNA methylation markers in urine sediments for sensitive/specific detection of bladder cancer Clin Cancer Res. 2007; 13: 7296-304.
26. Southey MC, Batten L, Andersen CR, McCredie MR, Giles GG, Dite G, et al. CFTR deltaF508 carrier status, risk of breast cancer before the age of 40 and histological grading in a population-based case-control study Int J Cancer. 1998; 79: 487-9.
27. Jung Y, Ha H, Jung SH, Lee MG, Lee HW, Yoon J, et al. F508 amino acid deletion mutation of CFTR gene in Korean lung cancer patients Exp Mol Med. 2001; 33: 29-31.
28. Oh I, Oh C, Yoon T, Choi J, Kim SK, Park HJ, et al. Association of CFTR gene polymorphisms with papillary thyroid cancer Oncol Lett. 2012; 3: 455-461.
29. Hamoir C, Pepermans X, Piessevaux H, Jouret-Mourin A, Weynand B, Habyalimana J, et al. Clinical and morphological characteristics of sporadic genetically determined pancreatitis as compared to idiopathic pancreatitis: higher risk of pancreatic cancer in CFTR variants Digestion. 2013; 7: 229-39.
30. McWilliams RR, Petersen GM, Rabe KG, Holtegaard LM, Lynch PJ, Bishop MD, et al. Cystic fibrosis transmembrane conductance regulator (CFTR) gene mutations and risk for pancreatic adenocarcinoma. Cancer. 2010; 116: 203-9.
31. McWilliams R, Highsmith WE, Rabe KG, de Andrade M, Tordsen LA, Holtegaard LM, et al. Cystic fibrosis transmembrane regulator gene carrier status is a risk factor for young onset pancreatic adenocarcinoma Gut. 2005; 54: 1661-2.
32. Li Y, Sun Z, Wu Y, Babovic-Vuksanovic D, Li Y, Cunningham JM, et al. Cystic fibrosis transmembrane conductance regulator gene mutation and lung cancer risk. Lung Cancer. 2010; 70: 14-21.
33. Abraham EH, Vos P, Kahn J, Grubman SA, Jefferson DM, Ding I, et al. Cystic fibrosis hetero- and homozygosity is associated with inhibition of breast cancer growth Nat Med. 1996; 2: 593-6.
34. Coussens LM, Werb Z. Inflammation and cancer. Nature. 2002; 420: 860-7.
35. Yun CW, Lee SH. The Roles of Autophagy in Cancer. Int J Mol Sci. 2018; 19: 3466.
36. Street ME, Ziveri MA, Spaggiari C, Viani I, Volta C, Grzincich GL, et al. Inflammation is a modulator of the insulin-like growth factor (IGF)/IGF-binding protein system inducing reduced bioactivity of IGFs in cystic fibrosis Eur J Endocrinol. 2006; 154: 47-52.
37. Berger M. Inflammatory mediators in cystic fibrosis lung disease. Allergy Asthma Proc. 2002; 23: 19-25.
38. Maiuri L, Raia V, Piacentini M, Tosco A, Villella VR, Kroemer G. Cystic fibrosis transmembrane conductance regulator (CFTR) and autophagy: hereditary defects in cystic fibrosis versus gluten-mediated inhibition in celiac disease Oncotarget. 2019; 10: 4492-4500.
39. Villella VR, Esposito S, Ferrari E, Monzani R, Tosco A, Rossin F, et al. Autophagy suppresses the pathogenic immune response to dietary antigens in cystic fibrosis Cell Death Dis. 2019; 10: 258.
40. O'Shea D, O'Connell J. Cystic fibrosis related diabetes. Curr Diab Rep. 2014; 14: 511.
41. McCormick J, Mehta G, Olesen HV, Viviani L, Macek Jr M, Mehta A, et al. Comparative demographics of the European cystic fibrosis population: a cross-sectional database analysis Lancet. 2010; 375: 1007-13.
42. Ripa P, Robertson I, Cowley D, Harris M, Masters IB, Cotterill AM. The relationship between insulin secretion, the insulin-like growth factor axis and growth in children with cystic fibrosis Clin Endocrinol (Oxf). 2002; 56: 383-9.
43. Colomba J, Rabasa-Lhoret R, Bonhoure A, Bergeron C, Boudreau V, Tremblay F, et al. Dyslipidemia is not associated with the development of glucose intolerance or diabetes in cystic fibrosis J Cyst Fibros. 2020; 19: 704-711.
44. Nowak JK, Szczepanik M, Wojsyk-Banaszak I, Mądry E, Wykrętowicz A, Krzyżanowska-Jankowska P, et al. Cystic fibrosis dyslipidaemia: A cross-sectional study. J Cyst Fibros. 2019; 18: 566-571.
45. Siwamogsatham O, Alvarez JA, Tangpricha V. Diagnosis and treatment of endocrine comorbidities in patients with cystic fibrosis. Curr Opin Endocrinol Diabetes Obes. 2014; 21: 422-9.
46. Street ME, Spaggiari C, Ziveri MA, Rossi M, Volta C, Viani I, et al. Insulin production and resistance in cystic fibrosis: effect of age, disease activity, and genotype J Endocrinol Invest. 2012; 35: 246-53.
47. Kamiński P, Baszyński J, Jerzak I, Kavanagh BP, Nowacka-Chiari E, Polanin M, et al. External and Genetic Conditions Determining Male Infertility. Int J Mol Sci. 2020; 21: 5274.
48. Lyon A, Bilton D. Fertility issues in cystic fibrosis. Paediatr Respir Rev. 2002; 3: 236-40.
49. Hughan KS, Daley T, Rayas MS, Kelly A, Roe A. Female reproductive health in cystic fibrosis. J Cyst Fibros. 2019; 18: S95-S104.
50. Xu W, Hui C, Yu SSB, Jing C, Chan HC. MicroRNAs and cystic fibrosis--an epigenetic perspective Cell Biol Int. 2011; 35: 463-6.
51. O'Brien J, Hayder H, Zayed Y, Peng C. Overview of MicroRNA Biogenesis, Mechanisms of Actions, and Circulation Front Endocrinol (Lausanne). 2018; 9: 402.
52. Bartel DP. MicroRNAs: target recognition and regulatory functions. Cell. 2009; 136: 215-33.
53. Catalanotto C, Cogoni , Zardo G. MicroRNA in Control of Gene Expression: An Overview of Nuclear Functions Int J Mol Sci. 2016; 17: 1712.
54. O'Connell RM, Rao DS, Chaudhuri AA, Baltimore D. Physiological and pathological roles for microRNAs in the immune system. Nat Rev Immunol. 2010; 10: 111-22.
55. Ardekani AM, Moslemi Naeini M. The Role of MicroRNAs in Human Diseases Avicenna J Med Biotechnol. 2010; 2: 161-79.
56. Wu J, Shen Z. Exosomal miRNAs as biomarkers for diagnostic and prognostic in lung cancer Cancer Med. 2020; 9: 6909-6922.
57. Mori MA, Ludwig RG, Garcia-Martin R, Brandão BB, Kahn CR. Extracellular miRNAs: From Biomarkers to Mediators of Physiology and Disease Cell Metab. 2019; 30: 656–673.
58. Pardini B, De Maria D, Francavilla A, Di Gaetano C, Ronco G, Naccarati A. MicroRNAs as markers of progression in cervical cancer: a systematic review BMC Cancer. 2018; 18: 696.
59. Schulte C, Karakas M, Zeller T. microRNAs in cardiovascular disease - clinical application Clin Chem Lab Med. 2017; 55: 687-704.
60. Bertoli G, Cava C, Castiglioni I. MicroRNAs: New Biomarkers for Diagnosis, Prognosis, Therapy Prediction and Therapeutic Tools for Breast Cancer Theranostics. 2015; 5: 1122-43.
61. Shin VY, Chu KM. MiRNA as potential biomarkers and therapeutic targets for gastric cancer World J Gastroenterol. 2014; 20: 10432-9.
62. Cirillo F, Catellani C, Lazzeroni P, Sartori C, Street ME. The Role of MicroRNAs in Influencing Body Growth and Development. Horm Res Paediatr. 2020; 93: 7-15.
63. Smerieri A, Montanini L, Maiuri L, Bernasconi S, Street ME. FOXO1 content is reduced in cystic fibrosis and increases with IGF-I treatment Int J Mol Sci. 2014; 15: 18000-22.
64. Talimur Reza AM, Choi Y, Han SG, Song H, Park C, Hong K, et al. Roles of microRNAs in mammalian reproduction: from the commitment of germ cells to peri-implantation embryos Biol Rev Camb Philos Soc. 2019; 94: 415-438.
65. Yang Z, Cappello T, Wang L. Emerging role of microRNAs in lipid metabolism. Acta Pharm Sin B. 2015; 5: 145-50.
66. Oglesby IK, Chotirmall SH, McElvaney NG, Greene CM. Regulation of cystic fibrosis transmembrane conductance regulator by microRNA-145, -223, and -494 is altered in ΔF508 cystic fibrosis airway epithelium J Immunol. 2013; 190: 3354-62.
67. Ramachandran S, Karp PH, Osterhaus SR, Jiang P, Wohlford-Lenane C, Lennox KA, et al. Post-transcriptional regulation of cystic fibrosis transmembrane conductance regulator expression and function by microRNAs. Am J Respir Cell Mol Biol. 2013; 49: 544-51.
68. Ramachandran S, Karp PH, Jiang P, Ostedgaard LS, Walz AE, Fisher JT, et al. A microRNA network regulates expression and biosynthesis of wild-type and DeltaF508 mutant cystic fibrosis transmembrane conductance regulator Proc Natl Acad Sci U S A. 2012; 109: 13362-7.
69. Tazi MF, Dakhlallah DA, Caution K, Gerber MM, Chang S, Khalil H, et al. Elevated Mirc1/Mir17-92 cluster expression negatively regulates autophagy and CFTR (cystic fibrosis transmembrane conductance regulator) function in CF macrophages. Autophagy. 2016; 12: 2026-2037.
70. Sonneville F, Ruffin M, Guillot L, Rousselet N, Le Rouzic P, Corvol H, et al. New insights about miRNAs in cystic fibrosis. Am J Pathol. 2015; 185: 897-908.
71. Bhattacharyya S, Balakathiresan NS, Dalgard C, Gutti U, Armistead D, Jozwik C, et al. Elevated miR-155 promotes inflammation in cystic fibrosis by driving hyperexpression of interleukin-8. J Biol Chem. 2011; 286: 11604-15.
72. Cirillo F, Lazzeroni P, Catellani C, Sartori C, Amarri S, Street ME. MicroRNAs link chronic inflammation in childhood to growth impairment and insulin-resistance. Cytokine Growth Factor Rev. 2018; 39: 1-18.
73. Ehrhardt C, Collnot EM, Baldes C, Becker U, Laue M, Kim KJ, et al. Towards an in vitro model of cystic fibrosis small airway epithelium: characterisation of the human bronchial epithelial cell line CFBE41o-. Cell Tissue Res. 2006; 323: 405-15.
74. Zeitlin PL, Lu L, Rhim J, Cutting G, Stetten G, Kieffer KA, et al. A cystic fibrosis bronchial epithelial cell line: immortalization by adeno-12-SV40 infection. Am J Respir Cell Mol Biol. 1991; 4: 313-9.
75. Cozens AL, Yezzi MJ, Kunzelmann K, Ohrui T, Chin L, Eng K, et al. CFTR expression and chloride secretion in polarized immortal human bronchial epithelial cells. Am J Respir Cell Mol Biol. 1994; 10: 38-47.
76. Montanini L, Smerieri A, Gullì M, Cirillo F, Pisi G, Sartori C, et al. miR-146a, miR-155, miR-370, and miR-708 Are CFTR-Dependent, Predicted FOXO1 Regulators and Change at Onset of CFRDs. J Clin Endocrinol Metab. 2016; 101: 4955-4963.
77. Sticht C, De La Torre C, Parveen A, Gretz N. miRWalk: An online resource for prediction of microRNA binding sites. PLoS One. 2018; 13: e0206239.
78. Vlachos IS, Zagganas K, Paraskevopoulou MD, Georgakilas G, Karagkouni D, Vergoulis T, et al. DIANA-miRPath v3.0: deciphering microRNA function with experimental support. Nucleic Acids Res. 2015; 43: W460-6.
79. Vlachos IS, Paraskevopoulou MD, Karagkouni D, Georgakilas G, Vergoulis T, Kanellos I, et al. DIANA-TarBase v7.0: indexing more than half a million experimentally supported miRNA:mRNA interactions Nucleic Acids Res. 2015; 43: D153-9.
80. Szklarczyk D, Gable AL, Lyon D, Junge A, Wyder S, Huerta-Cepas J, et al. STRING v11: protein-protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Res. 2019; 47: D607-D613.
81. Kanehisa M, Goto S, Kawashima S, Nakaya A. The KEGG databases at GenomeNet. Nucleic Acids Res. 2002; 30: 42-6.
82. Bardin P, Marchal-Duval E, Sonneville F, Blouquit-Laye S, Rousselet N, Le Rouzic P, et al. Small RNA and transcriptome sequencing reveal the role of miR-199a-3p in inflammatory processes in cystic fibrosis airways. J Pathol. 2018; 245: 410-420.
83. Goetz D, Ren CL. Review of Cystic Fibrosis. Pediatr Ann. 2019; 48: e154-e161.
84. Minshall E, Chakir J, Laviolette M, Molet S, Zhu Z, Olivenstein R, et al. IL-11 expression is increased in severe asthma: association with epithelial cells and eosinophils. J Allergy Clin Immunol. 2000; 105: 232-8.
85. Strikoudis A, Cieślak A, Loffredo L, Chen YW, Patel N, Saqi A, et al. Modeling of Fibrotic Lung Disease Using 3D Organoids Derived from Human Pluripotent Stem Cells. Cell Rep. 2019; 27: 3709-3723.e5.
86. Scheller J, Chalaris A, Schmidt-Arras D, Rose-John S. The pro- and anti-inflammatory properties of the cytokine interleukin-6. Biochim Biophys Acta. 2011; 1813: 878-88.
87. Wunderlich FT, Ströhle P, Könner AC, Gruber S, Tovar S, Brönneke HS, et al. Interleukin-6 signaling in liver-parenchymal cells suppresses hepatic inflammation and improves systemic insulin action. Cell Metab. 2010; 12: 237-49.
88. Jordan JA, Guo RF, Yun EC, Sarma V, Warner RL, Crouch LD, et al. Role of IL-18 in acute lung inflammation. J Immunol. 2001; 167: 7060-8.
89. Bierie B, Moses HL. Transforming growth factor beta (TGF-beta) and inflammation in cancer. Cytokine Growth Factor Rev. 2010; 21: 49-59.
90. MacFarlane EG, Haupt J, Dietz HC, Shore EM. TGF-beta Family Signaling in Connective Tissue and Skeletal Diseases. Cold Spring Harb Perspect Biol. 2017; 9: a022269.
91. Le Goff C, Cormier-Daire V. From tall to short: the role of TGFbeta signaling in growth and its disorders. Am J Med Genet C Semin Med Genet. 2012; 160C: 145-53.
92. De Voogd FA, Gearry RB, Mulder CJ, Day AS. Osteoprotegerin: A novel biomarker for inflammatory bowel disease and gastrointestinal carcinoma. J Gastroenterol Hepatol. 2016; 31: 1386-92.
93. Venkataraman C, Justen K, Zhao J, Galbreath E, Na S. Death receptor-6 regulates the development of pulmonary eosinophilia and airway inflammation in a mouse model of asthma. Immunol Lett. 2006; 106: 42-7.
94. Roesch EA, Nichols DP, Chmiel JF. Inflammation in cystic fibrosis: An update. Pediatr Pulmonol. 2018; 53: S30-S50.
95. Grabarek B, Wcislo-Dziadecka D, Gola J, Kruszniewska-Rajs C, Brzezinska-Wcislo L, Zmarzly N, et al. Changes in the Expression Profile of JAK/STAT Signaling Pathway Genes and Mirnas Regulating their Expression Under the Adalimumab Therapy Curr Pharm Biotechnol. 2018; 19: 556-565.
96. Wcisło-Dziadecka D, Simka K, Kaźmierczak A, Kruszniewska-Rajs C, Gola J, Grabarek B, et al. Psoriasis Treatment Changes the Expression Profile of Selected Caspases and their Regulatory MicroRNAs Cell Physiol Biochem. 2018; 50: 525-537.
97. Multhoff G, Molls M, Radons J. Chronic inflammation in cancer development. Front Immunol. 2012; 2: 98.
98. Scott P, Anderson K, Singhania M, Cormier R. Cystic Fibrosis, CFTR, and Colorectal Cancer. Int J Mol Sci. 2020; 21: 2891.
99. Uribe ML, Marrocco I, Yarden Y. EGFR in Cancer: Signaling Mechanisms, Drugs, and Acquired Resistance Cancers (Basel). 2021; 13: 2748.
100. Stolarczyk M, Veit G, Schnúr A, Veltman M, Lukacs GL, Scholte BJ. Extracellular oxidation in cystic fibrosis airway epithelium causes enhanced EGFR/ADAM17 activity Am J Physiol Lung Cell Mol Physiol. 2018; 314: L555-L568.
101. Bhat AA, Uppada S, Achkar IW, Hashem S, Yadav SK, Shanmugakonar M, et al. Tight Junction Proteins and Signaling Pathways in Cancer and Inflammation: A Functional Crosstalk Front Physiol. 2019; 9: 1942.
102. Molina SA, Stauffer B, Moriarty HK, Kim AH, McCarty NA, Koval M. Junctional abnormalities in human airway epithelial cells expressing F508del CFTR Am J Physiol Lung Cell Mol Physiol. 2015; 309: L475-87.
103. Madden E, Logue SE, Healy SJ, Manie S, Samali A. The role of the unfolded protein response in cancer progression: From oncogenesis to chemoresistance Biol Cell. 2019; 111: 1-17.
104. Bartoszewski R, Rab A, Jurkuvenaite A, Mazur M, Wakefield J, Collawn JF, et al. Activation of the unfolded protein response by deltaF508 CFTR Am J Respir Cell Mol Biol. 2008; 39: 448-57.
105. Lara-Reyna S, Scambler T, Holbrook J, Wong C, Jarosz-Griffiths HH, Martinon F, et al. Metabolic Reprograming of Cystic Fibrosis Macrophages via the IRE1α Arm of the Unfolded Protein Response Results in Exacerbated Inflammation Front Immunol. 2019; 10: 1789.
106. Liu K, Zhang W, Tan J, Ma J, Zhao J. MiR-200b-3p Functions as an Oncogene by Targeting ABCA1 in Lung Adenocarcinoma. Technol Cancer Res Treat. 2019; 18: 1533033819892590.
107. Hermyt E, Zmarzły N, Grabarek B, Kruszniewska-Rajs C, Gola J, Jęda-Golonka A, et al. Interplay between miRNAs and Genes Associated with Cell Proliferation in Endometrial Cancer Int J Mol Sci. 2019; 20: 6011.
108. Xia X, Wang J, Liu Y, Yue M. Lower Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) Promotes the Proliferation and Migration of Endometrial Carcinoma Med Sci Monit. 2017; 23: 966-974.
109. Johannesson M, Askling J, Montgomery SM, Ekbom A, Bahmanyar S. Cancer risk among patients with cystic fibrosis and their first-degree relatives. Int J Cancer. 2009; 125: 2953-6.
110. Hadjiliadis D, Khoruts A, Zauber AG, Hempstead SE, Maisonneuve P, Lowenfels AB, et al. Cystic Fibrosis Colorectal Cancer Screening Consensus Recommendations. Gastroenterology. 2018; 154: 736-745.e14.
111. Qu YL, Wang HF, Sun ZQ, Tang Y, Han XN, Yu XB, et al. Up-regulated miR-155-5p promotes cell proliferation, invasion and metastasis in colorectal carcinoma. Int J Clin Exp Pathol. 2015; 8: 6988-94.
112. Li X, Zhang G, Luo F, Ruan J, Huang D, Feng D, et al. Identification of aberrantly expressed miRNAs in rectal cancer. Oncol Rep. 2012; 28: 77-84.
113. Liang Z, Li X, Liu S, Li C, Wang X, Xing J. MiR-141-3p inhibits cell proliferation, migration and invasion by targeting TRAF5 in colorectal cancer. Biochem Biophys Res Commun. 2019; 514: 699-705.
114. Chen L, Wang X, Zhu Y, Zhu J, Lai Q. miR-200b-3p inhibits proliferation and induces apoptosis in colorectal cancer by targeting Wnt1. Mol Med Rep. 2018; 18: 2571-2580.
115. Wang C, Fan HQ, Zhang YW. MiR-511-5p functions as a tumor suppressor and a predictive of prognosis in colorectal cancer by directly targeting GPR116. Eur Rev Med Pharmacol Sci. 2019; 23: 6119-6130.
116. Li WC, Wu YQ, Gao B, Wang CY, Zhang JJ. MiRNA-574-3p inhibits cell progression by directly targeting CCND2 in colorectal cancer. Biosci Rep. 2019; 39: BSR20190976.
117. Wang KY, Ma J, Zhang FX, Yu MJ, Xue JS, Zhao JS. MicroRNA-378 inhibits cell growth and enhances L-OHP-induced apoptosis in human colorectal cancer. IUBMB Life. 2014; 66: 645-54.
118. Goldsweig B, Kaminski B, Sidhaye A, Blackman SM, Kelly A. Puberty in cystic fibrosis. J Cyst Fibros. 2019); 18: S88-S94.
119. Street ME, Spaggiari C, Volta C, Ziveri MA, Viani I, Rossi M, et al. The IGF system and cytokine interactions and relationships with longitudinal growth in prepubertal patients with cystic fibrosis. Clin Endocrinol (Oxf). 2009; 70: 593-8.
120. Landon C, Rosenfeld RG. Short stature and pubertal delay in cystic fibrosis. Pediatrician. 1987; 14: 253-60.
121. Aftab S, Dattani MT. Pathogenesis of Growth Failure in Rasopathies. Pediatr Endocrinol Rev. 2019; 16: 447-458.
122. Binder G. Noonan syndrome, the Ras-MAPK signalling pathway and short stature. Horm Res. 2009; 71: 64-70.
123. Rojas-Gil AP, Ziros PG, Diaz L, Kletsas D, Basdra EK, Alexandrides TK, et al. Growth hormone/JAK-STAT axis signal-transduction defect. A novel treatable cause of growth failure. FEBS J. 2006; 273: 3454-66.
124. Fontés G, Ghislain J, Benterki I, Zarrouki B, Trudel D, Berthiaume Y, et al. The deltaF508 Mutation in the Cystic Fibrosis Transmembrane Conductance Regulator Is Associated With Progressive Insulin Resistance and Decreased Functional beta-Cell Mass in Mice. Diabetes. 2015; 64: 4112-22.
125. Austin A, Kalhan SC, Orenstein D, Nixon P, Arslanian S. Roles of insulin resistance and beta-cell dysfunction in the pathogenesis of glucose intolerance in cystic fibrosis. J Clin Endocrinol Metab. 1994; 79: 80-5.
126. Lévy E, Roy C, Lacaille F, Lambert M, Messier M, Gavino V, et al. Lipoprotein abnormalities associated with cholesteryl ester transfer activity in cystic fibrosis patients: the role of essential fatty acid deficiency. Am J Clin Nutr. 1993; 57: 573-9.
127. Gylling H, Hallikainen M, Pihlajamäki J, Simonen P, Kuusisto J, Laakso M, et al. Insulin sensitivity regulates cholesterol metabolism to a greater extent than obesity: lessons from the METSIM Study. J Lipid Res. 2010; 51: 2422-7.
128. Fernández-Medarde A, Santos E. Ras in cancer and developmental diseases. Genes Cancer. 2011; 2: 344-58.
129. Rauen KA. The RASopathies. Annu Rev Genomics Hum Genet. 2013; 14: 355-69.
130. Lin HM, Lee JH, Yadav H, Kamaraju AK, Liu E, Zhigang D, et al. Transforming growth factor-beta/Smad3 signaling regulates insulin gene transcription and pancreatic islet beta-cell function. J Biol Chem. 2009; 284: 12246-57.
131. Yang L, Roh YS, Song J, Zhang B, Liu C, Loomba R, et al. Transforming growth factor beta signaling in hepatocytes participates in steatohepatitis through regulation of cell death and lipid metabolism in mice. Hepatology. 2014; 59: 483-95.
132. Ni N, Li Q. TGFbeta superfamily signaling and uterine decidualization. Reprod Biol Endocrinol. 2017; 15: 84.
133. Liu S, Chen S, Zeng J. TGF-beta signaling: A complex role in tumorigenesis (Review). Mol Med Rep. 2018; 17: 699-704.
134. Richard AJ, Stephens JM. The role of JAK-STAT signaling in adipose tissue function. Biochim Biophys Acta. 2014; 1842: 431-9.
135. Dehkhoda F, Lee CMM, Medina J, Brooks AJ. The Growth Hormone Receptor: Mechanism of Receptor Activation, Cell Signaling, and Physiological Aspects. Front Endocrinol (Lausanne). 2018; 9: 35.
136. Croker BA, Kiu H, Nicholson SE. SOCS regulation of the JAK/STAT signalling pathway. Semin Cell Dev Biol. 2008; 19: 414-22.
137. Owen KL, Brockwell NK, Parker BS. JAK-STAT Signaling: A Double-Edged Sword of Immune Regulation and Cancer Progression. Cancers (Basel). 2019; 11: 2002.
138. Mor A, Aizman E, George J, Kloog Y. Ras inhibition induces insulin sensitivity and glucose uptake. PLoS One. 2011; 6: e21712.
139. Poloz Y, Stambolic V. Obesity and cancer, a case for insulin signaling Cell Death Dis. 2015; 6: e2037.
140. Saltiel AR, Kahn CR. Insulin signalling and the regulation of glucose and lipid metabolism. Nature. 2001; 414: 799-806.
141. Sette G, Lo Cicero S, Blaconà G, Pierandrei S, Bruno SM, Salvati V, Castelli G, Falchi M, Fabrizzi B, Cimino G, De Maria R, Biffoni M, Eramo A, Lucarelli M. Theratyping cystic fibrosis in vitro in ALI culture and organoid models generated from patient-derived nasal epithelial conditionally reprogrammed stem cells. Eur Respir J. 2021 Dec 2;58(6):2100908. doi: 10.1183/13993003.00908-2021. PMID: 34413153; PMCID: PMC8675295.

Most read articles by the same author(s)