The Pancreatic changes affecting glucose homeostasis in transfusion dependent β- thalassemia (TDT): a short review Pancreatic changes and glucose homeostasis in β-thalassemia

Main Article Content

Vincenzo De Sanctis
Ashraf Soliman
Ploutarchos Tzoulis
Shahina Daar
Bernadette Fiscina
Christos Kattamis


Thalassemia; Iron overload; Viral hepatitis; Chronic liver disease; Insulin resistance; Diabetes mellitus


Background : The natural history of the glycometabolic state in transfusion-dependent β-thalassemia (TDT) patients is characterized by a deterioration of glucose tolerance over time. Aims:

This review depicts our current knowledges on the complex and multifacet pathophysiologic mechanisms implicated in the development of alteration of glucose homeostasis in patients with TDT. Search strategy: A systematic search was done on December 2020 including Web of Science (ISI), Scopus,  PubMed, Embase, and Scholar for papers published in the last 20 years. Moreover, we checked the reference lists of the relevant articles and previously performed reviews for additional pertinent studies. The personal experience on the care of patients with thalassemias is also reported. Conclusion: A regular packed red blood cells (PRBCs) transfusion program, optimization of chelation therapy, and prevention and treatment of liver infections are critical to achieve adequate glucometabolic control in TDT patients. Many exciting opportunities remain for further research and therapeutic development.


Download data is not yet available.
Abstract 14 |


1. Weatherall DJ. Thalassemia as a global health problem: recent progress toward its control in the developing countries. Ann N Y Acad Sci. 2010;1202:17-23.

2. Chuncharunee S, Teawtrakul N, Siritanaratkul N, Chueamuangphan N. Review of disease-related complications and management in adult patients with thalassemia: A multi-center study in Thailand. PLoS One. 2019;14:e0214148.

3. Viprakasit V, Ekwattanakit S. Clinical Classification, Screening and Diagnosis for Thalassemia. Hematol Oncol Clin North Am. 2018; 32:193-211.

4. Taher AT, Saliba AN. Iron overload in thalassemia: different organs at different rates. Hematology Am Soc Hematol Educ Program. 2017;1:265-271.

5. Old J, Harteveld CL, Traeger-Synodinos J, Petrou M, Angastiniotis M, Galanello R. Prevention of Thalassaemias and Other Haemoglobin Disorders: Volume 2: Laboratory Protocols [Internet]. 2nd ed. Nicosia (Cyprus): Thalassaemia International Federation 2012.

6. Soliman AT, De Sanctis V, Yassin M, Soliman N. Iron deficiency anemia and glucose metabolism. Acta Biomed. 2017;88:112-118.

7. De Sanctis V, D'Ascola G, Wonke B. The development of diabetes mellitus and chronic liver disease in long term chelated beta thalassaemic patients. Postgrad Med J. 1986;62:831-836.

8. Mowla A, Karimi M, Afrasiabi A, De Sanctis V. Prevalence of diabetes mellitus and impaired glucose tolerance in beta-thalassemia patients with and without hepatitis C virus infection. Pediatr Endocrinol Rev. 2004;2 Suppl. 2:282-284.

9. Chern JP, Lin KH, Lu MY, et al. Abnormal glucose tolerance in trans-fusion-dependent ß-thalassemic patients. Diabetes Care. 2001;24:850-854.

10.Waldvogel-Abramowski S, Waeber G, Gassner C, Buser A, Frey BM, Favrat B, Tissot JD. Physiology of iron metabolism. Transfus Med Hemother. 2014;41:213-321.

11. Reichert CO, da Cunha J, Levy D, Maselli LMF, Bydlowski SP, Spada C. Hepcidin: Homeostasis and Diseases Related to Iron Metabolism. Acta Haematol. 2017;137:220-236.

12. Ganz T, Nemeth E. Hepcidin and iron homeostasis. Biochim Biophys Acta. 2012;1823:1434-443.

13. Muñoz M, Villar I, García-Erce JA. An update on iron physiology. World J Gastroenterol. 2009;15: 4617-4626.

14. Anderson GJ, Frazer DM. Current understanding of iron homeostasis. Am J Clin Nutr. 2017;106 Suppl. 6:1559S-1566S.

15. Sebastiani G, Pantopoulos K. Disorders associated with systemic or local iron overload: from pathophysiology to clinical practice. Metallomics. 2011;3:971-986.

16. Aydinok Y, Kattamis A, Viprakasit V. Current approach to iron chelation in children. Br J Haematol. 2014;165:745-775.

17. Wood JC. Use of Magnetic Resonance Imaging to Monitor Iron Overload. Hematol Oncol Clin North Am. 2014; 28: 747–764.

18. Knutson MD. Non-transferrin-bound iron transporters. Free Radic Biol Med. 2019;133:101-111.

19. Lee DH, Liu DY, Jacobs DR Jr, et al . Common presence of non-transferrin-bound iron among patients with type 2 diabetes. Diabetes Care. 2006;29:1090-1095.

20. Sumneang N, Siri-Angkul N, Kumfu S, Chattipakorn SC, Chattipakorn N. The effects of iron overload on mitochondrial function, mitochondrial dynamics, and ferroptosis in cardiomyocytes. Arch Biochem. Biophys. 2020;680:108241.

21. Maiese K, Chong ZZ, Shang YC. Mechanistic insights into diabetes mellitus and oxidative stress. Curr Med Chem. 2007;14:1729-1738.

22. Oudit GY, Sun H, Trivieri MG, et al. L-type Ca2+ channels provide a major pathway for iron entry into cardiomyocytes in iron-overload cardiomyopathy. Nat Med. 2003;9:1187-1194.

23. Wood JC. Guidelines for quantifying iron overload. Hematology (Am Soc Hematol Educ Program). 2014; 2014:210–215.

24. Fernández-Real JM, López-Bermejo A, Ricart W. Cross-talk between iron metabolism and diabetes. Diabetes. 2002;51:2348-2354.

25. Fischer R, Harmatz PR. Non-invasive assessment of tissue iron overload. Hematology Am Soc Hematol Educ Program. 2009;2009:215–221.

26. Bassett ML, Halliday JW, Powell LW. Value of hepatic iron measurements in early hemochromatosis and determination of the critical iron level associated with fibrosis. Hepatology.1986;6:24-29.

27. Olivieri NF, Brittenham GM. Iron-chelating therapy and the treatment of thalassemia. Blood. 1997;89: 739-761.

28. St Pierre TG, Clark PR, Chua-anusorn W, et al. Noninvasive measurement and imaging of liver iron concentrations using proton magnetic resonance. Blood. 2005;105:855-861.
29. Iancu TC, Ward RJ, Peters TJ. Ultrastructural changes in the pancreas of carbonyl iron-fed rats. J Pediatr Gastroenterol Nutr. 1990;10:95-101.
30. Iancu TC, Shiloh H. Experimental iron overload. Ultrastructural studies. Ann N Y Acad Sci. 1988; 526: 164-178.
31. Iancu TC, Shiloh H. Morphologic observations in iron overload: an update. Adv Exp Med Biol. 1994; 356:255-265.
32. Papanikolaou G, Pantopoulos K. Iron metabolism and toxicity. Toxicol Appl Pharmacol. 2005;202:199-211.
33. Awai M, Narasaki M, Yamanoi Y, Seno S. Induction of diabetes in animals by parenteral administration of ferric nitrilotriacetate. A model of experimental hemochromatosis. Am J Pathol. 1979;95:663-673.

34. Lu JP, Hayashi K, Okada S, Awai M. Transferrin receptors and selective iron deposition in pancreatic B cells of iron-overloaded rats. Acta Pathol Jpn. 1991;41:647-652.
35. Cooksey RC, Jouihan HA, Ajioka RS, Hazel MW, Jones DL, Kushner JP, McClain DA. Oxidative stress, beta-cell apoptosis, and decreased insulin secretory capacity in mouse models of hemochromatosis. Endocrinology. 2004;145:5305-5312.
36. Lenzen S, Drinkgern J, Tiedge M. Low antioxidant enzyme gene expression in pancreatic islets compared with various other mouse tissues. Free Radic Biol Med. 1996;20:463-466.
37. Wang H, Li H, Jiang X, Shi W, Shen Z, Li M. Hepcidin is directly regulated by insulin and plays an important role in iron overload in streptozotocin-induced diabetic rats. Diabetes. 2014;63:1506-1518.
38. Kulaksiz H, Fein E, Redecker P, Stremmel W, Adler G, Cetin Y. Pancreatic beta-cells express hepcidin, an iron-uptake regulatory peptide. J Endocrinol. 2008;197:241-249.
39. Ambachew S, Biadgo B. Hepcidin in Iron Homeostasis: Diagnostic and Therapeutic Implications in Type 2 Diabetes Mellitus Patients. Acta Haematol. 2017;138:183-193.
40. Rahier J, Loozen S, Goebbels RM, Abrahem M. The haemochromatotic human pancreas: a quantitative immunohistochemical and ultrastructural study. Diabetologia. 1987;30:5-12.

41. Kishimoto M, Endo H, Hagiwara S, Miwa A, Noda M. Immunohistochemical findings in the pancreatic islets of a patient with transfusional iron overload and diabetes: case report. J Med Invest .2010;57:345-349.

42. Lu JP, Hayashi K. Selective iron deposition in pancreatic islet B cells of transfusional iron-overloaded autopsy cases. Pathol Int. 1994;44:194-199.

43. Suda K. Hemosiderin deposition in the pancreas. Arch Pathol Lab Med. 1985;109:996-999.

44. Christoforidis A, Haritandi A, Tsitouridis I, et al. Correlative study of iron accumulation in liver, myocardium, and pituitary assessed with MRI in young thalassemic patients. J Pediatr Hematol Oncol. 2006;28:311-315.

45. Argyropoulou MI, Astrakas L. MRI evaluation of tissue iron burden in patients with beta-thalassaemia major. Pediatr Radiol. 2007; 37:1191-200.

46. ElAlfy MS, Khalil Elsherif NH, Ebeid FSE, et al. Renal iron deposition by magnetic resonance imaging in pediatric β-thalassemia major patients: Relation to renal biomarkers, total body iron and chelation therapy. Eur J Radiol. 2018;103:65-70.

47. Midiri M, Lo Casto A, Sparacia G, D'Angelo P, et al. MR imaging of pancreatic changes in patients with transfusion-dependent beta-thalassemia major. AJR Am J Roentgenol. 1999;173:187-192.

48. Papakonstantinou O, Ladis V, Kostaridou S, et al. The pancreas in beta-thalassaemia major: MR Imaging features and correlation with iron stores and glucose
disturbances. Eur Radiol. 2007;17:1535-1543.

49. Au WY, Lam WW, Chu WW, et al. A cross-sectional magnetic resonance imaging assessment of organ specific hemosiderosis in 180 thalassemia major patients in Hong Kong. Haematologica. 2008; 93:784-786.

50. Au WY, Lam WW, Chu W, et al. A T2* magnetic resonance imaging study of pancreatic iron overload in thalassemia major. Haematologica. 2008;93:116-119.

51. Noetzli LJ, Papudesi J, Coates TD, Wood JC. Pancreatic iron loading predicts cardiac iron loading in thalassemia major. Blood. 2009;114:4021-4026.

52. Papakonstantinou O, Alexopoulou E, Economopoulos N, et al. Assessment of iron distribution between liver, spleen, pancreas, bone marrow, and myocardium by means of R2 relaxometry with MRI in patients with beta-thalassemia major. J Magn Reson Imaging. 2009; 29:853-859.
53. Matter RM, Allam KE, Sadony AM. Gradient-echo magnetic resonance imaging study of pancreatic iron overload in young Egyptian beta-thalassemia major patients and effect of splenectomy. Diabetol Metab Synd. 2010;2:23.
54. Youssef DM, Fawzy Mohammad F, Ahmed Fathy A, Aly Abdelbasset M. Assessment of hepatic and pancreatic iron overload in pediatric Beta-thalassemic major patients by t2* weighted gradient echo magnetic resonance imaging. ISRN Hematol. 2013;2013:496985.

55. Pepe A, Pistoia L, Gamberini MR, et al. The Close Link of Pancreatic Iron With Glucose Metabolism and With Cardiac Complications in Thalassemia Major: A Large, Multicenter Observational Study. Diabetes Care. 2020; 43: 2830-2839.

56. Kosaryan M, Rahimi M, Darvishi-Khezri H, Gholizadeh N, Akbarzadeh R, Aliasgharian A. Correlation of Pancreatic Iron Overload Measured by T2*-Weighted Magnetic Resonance Imaging in Diabetic Patients with β-Thalassemia Major. Hemoglobin. 2017;41:151-156.

57. Shur J, Kannengiesser SAR, Menezes R, Ward R, Kuo K, Jhaveri K. Glucose dysregulation in patients with iron overload: is there a relationship with quantitative pancreas and liver iron and fat content measured by MRI? Eur Radiol. 2020;30:1616-1623.

58. Noetzli LJ, Mittelman SD, Watanabe RM, Coates TD, Wood JC. Pancreatic iron and glucose dysregulation in thalassemia major. Am J Hematol. 2012;87:155-160.

59. Di Marco V, Capra M, Gagliardotto F, et al . Liver disease in chelated transfusion-dependent thalassemics: the role of iron overload and chronic hepatitis C. Haematologica. 2008; 93:1243–1246.
60. Resti M, Azzari C, Rossi ME, Vullo C, Borgatti L, Vierucci A. Prevalence of hepatitis C virus antibody in beta-thalassemic polytransfused children in a long-term follow-up. Vox Sang. 1991;60:246-247.
61. Rebulla P, Mozzi F, Contino G, Locatelli E, Sirchia G. Antibody to hepatitis C virus in 1,305 Italian multiply transfused thalassaemics: Comparison of first and second generation tests. Transfus Med. 1992; 2:69-70.

62. Maira D, Cassinerio E, Marcon A, et al. Progression of liver fibrosis can be controlled by adequate chelation in transfusion-dependent thalassemia (TDT). Ann Hematol. 2017;96:1931-1936.

63. De Sanctis V, Soliman AT, Daar S, et al. A Concise Review on the Frequency, Major Risk Factors and Surveillance of Hepatocellular Carcinoma (HCC) in β-Thalassemias: Past, Present and Future Perspectives and the ICET-A Experience. Mediterr J Hematol Infect Dis. 2020;12:e2020006.

64. Prati D, Zanella A, Farma E, et al. A multicenter prospective study on the risk of acquiring liver disease in anti-hepatitis C virus negative patients affected from homozygous beta-thalassemia. Blood. 1998;92:3460-3464.

65. Desbois AC, Cacoub P. Diabetes mellitus, insulin resistance and hepatitis C virus infection: A contemporary review. World J Gastroenterol. 2017;23:1697-1711.

66. Imazeki F, Yokosuka O, Fukai K, Kanda T, Kojima H, Saisho H. Prevalence of diabetes mellitus and insulin resistance in patients with chronic hepatitis C: comparison with hepatitis B virus-infected and hepatitis C virus-cleared patients. Liver Int. 2008;28:355-362.

67. Moucari R, Asselah T, Cazals-Hatem D, et al. Insulin resistance in chronic hepatitis C: association with genotypes 1 and 4, serum HCV RNA level, and liver fibrosis. Gastroenterology. 2008;134:416-423.
68. Huang JF, Huang CF, Yeh ML, et al. The outcomes of glucose abnormalities in chronic hepatitis C patients receiving interferon-free direct antiviral agents. Kaohsiung J Med Sci. 2017;33:567-571.
69. Fung EB, Gildengorin G, Talwar S, Hagar L, Lal A. Zinc status affects glucose homeostasis and insulin secretion in patients with thalassemia. Nutrients. 2015;7:4296-307.
70. Dehshal MH, Hooghooghi AH, Kebryaeezadeh A, et al. Zinc deficiency aggravates abnormal glucose metabolism in thalassemia major patients. Med Sci Monit. 2007;13:CR235-239.
71. Soliman A, De Sanctis V, Yassin M. Vitamin d status in thalassemia major: an update. Mediterr J Hematol Infect Dis. 2013;5:e2013057.

72. Tzoulis P, Ang AL, Shah FT, et al. Prevalence of low bone mass and vitamin D deficiency in β-thalassemia major. Hemoglobin. 2014;38:173-178.

73. Chausmer AB. Zinc, insulin and diabetes. J Am Coll Nutr. 1998;17:109-115.

74. Himoto T, Masaki T. Associations between Zinc Deficiency and Metabolic Abnormalities in Patients with Chronic Liver Disease. Nutrients. 2018;10:88.

75. Badawi A, Sayegh S, Sadoun E, Al-Thani M, Arora P, Haddad PS. Relationship between insulin resistance and plasma vitamin D in adults. Diabetes Metab Syndr Obes. 2014;7:297-303.

76. Sung CC, Liao MT, Lu KC, Wu CC. Role of vitamin D in insulin resistance. J Biomed Biotechnol. 2012;2012:634195.

77. Tang H, Li D, Li Y, Zhang X, Song Y, Li X. Effects of Vitamin D Supplementation on Glucose and Insulin Homeostasis and Incident Diabetes among Nondiabetic Adults: A Meta-Analysis of Randomized Controlled Trials. Int J Endocrinol. 2018;2018:7908764.
78. Bannerman RM, Keusch G, Kreimer-Birnbaum M, Vance VK, Vaughan S. Thalassemia intermedia, with iron overload, cardiac failure, diabetes mellitus, hypopituitarism and porphyrinuria. Am J Med. 1967; 42: 476-486.

79. Italian Working Group on Endocrine Complications in Non-endocrine Diseases. Multicentre study on prevalence of endocrine complications in thalassaemia major. Clin Endocrinol (Oxf). 1995; 42:581-586.

80. De Sanctis V, Eleftheriou A, Malaventura C; Thalassaemia International Federation Study Group on Growth and Endocrine Complications in Thalassaemia. Prevalence of endocrine complications and short stature in patients with thalassaemia major: a multicenter study by the Thalassaemia International Federation (TIF). Pediatr Endocrinol Rev. 2004;2 Suppl. 2:249-255.

81. Ang AL, Tzoulis P, Prescott E, Davis BA, Barnard M, Shah FT. History of myocardial iron loading is a strong risk factor for diabetes mellitus and hypogonadism in adults with β thalassemia major. Eur J Haematol. 2014;92:229-236.

82. He LN, Chen W, Yang Y,et al. Elevated Prevalence of Abnormal Glucose Metabolism and Other Endocrine Disorders in Patients with β-Thalassemia Major: A Meta-Analysis. Biomed Res Int. 2019; 2019:6573497.

83. De Sanctis V, Soliman AT, Elsedfy H, et al. Diabetes and Glucose Metabolism in Thalassemia Major: An Update. Expert Rev Hematol. 2016;9:401-408.

84. Au WY, Li CF, Fang JP, et al. Assessment of iron overload in very young children with limited thalassemia care resources in South China. Hemoglobin. 2014;38:119-126.

85. Berdoukas V, Nord A, Carson S, et al. Tissue iron evaluation in chronically transfused children shows significant levels of iron loading at a very young age. Am J Hematol. 2013;88:E283-285.

86. Gomber S, Dabas A, Bagmar S, Madhu SV. Glucose Homeostasis and Effect of Chelation on β Cell Function in Children With β-Thalassemia Major. J Pediatr Hematol Oncol. 2018;40:56-59.
87. Liang Y, Bajoria R, Jiang Y,et al. Prevalence of diabetes mellitus in Chinese children with thalassaemia major. Trop Med Int Health. 2017;22:716-724.

88. Metwalley KA, El-Saied AR. Glucose homeostasis in Egyptian children and adolescents with β-Thalassemia major: Relationship to oxidative stress. Indian J Endocrinol Metab. 2014;18:333-339.
89. Monge L, Pinach S, Caramellino L, Bertero MT, Dall'omo A, Carta Q. The possible role of autoimmunity in the pathogenesis of diabetes in B-thalassemia major. Diabetes Metab. 2001;27:149-154.
90. Kattamis C, Ladis V, Tsoussis D, Kaloumenou I, Theodoridis C. Evolution of glucose intolerance and diabetes in transfused patients with thalassemia. Pediatr Endocrinol Rev. 2004;2 Suppl 2 :267-271.

91. Dmochowski K, Finegood DT, Francombe W, Tyler B, Zinman B. Factors determining glucose tolerance in patients with thalassemia major. J Clin Endocrinol Metab. 1993;77:478-483.

92. Merkel PA, Simonson DC, Amiel SA, et al. Insulin resistance and hyperinsulinemia in patients with thalassemia major treated by hypertransfusion. N Engl J Med. 1988;318:809-814.

93. Messina MF, Lombardo F, Meo A, et al. Three-year prospective evaluation of glucose tolerance, beta-cell function and peripheral insulin sensitivity in non-diabetic patients with thalassemia major. J Endocrinol Invest. 2002;25:497-501.

94. Jaruratanasirikul S, Chareonmuang R, Wongcharnchailert M, Laosombat V, Sangsupavanich P, Leetanaporn K. Prevalence of impaired glucose metabolism in beta-thalassemic children receiving hypertransfusions with a suboptimal dosage of iron-chelating therapy. Eur J Pediatr. 2008;167:873-876.

95. Wankanit S, Chuansumrit A, Poomthavorn P, Khlairit P, Pongratanakul S, Mahachoklertwattana P. Acute Effects of Blood Transfusion on Insulin Sensitivity and Pancreatic β-Cell Function in Children with β-Thalassemia/Hemoglobin E Disease. J Clin Res Pediatr Endocrinol. 2018;10:1-7.

96. Fernandez-Real JM, Lopez-Bermejo A, Ricart W. Iron stores, blood donation, and insulin sensitivity and secretion. Clin Chem. 2005; 51:1201–1205.

97. Fonseca V, Berger LA, Beckett AG, Dandona P. Size of pancreas in diabetes mellitus: a study based on ultrasound. Br Med J (Clin Res Ed). 1985;291:1240-1241.

98. Pfeifer CD, Schoennagel BP, Grosse R. Pancreatic iron and fat assessment by MRI-R2* in patients with iron overload diseases. J Magn Reson Imaging. 2015; 42:196-203.

99. Kwiatkowski JL. Current recommendations for chelation for transfusion-dependent thalassemia. Ann N Y Acad Sci. 2016;1368:107-114.

100. Makis A, Hatzimichael E, Papassotiriou I, Voskaridou E. Clinical trials update in new treatments of β-thalassemia. Am J Hematol. 2016;91:1135-1145.

101. Platis O, Anagnostopoulos G, Farmaki K, Posantzis M, Gotsis E, Tolis G. Glucose metabolism disorders improvement in patients with thalassaemia major after 24-36 months of intensive chelation therapy. Pediatr Endocrinol Rev.2004;2 Suppl. 2:279-281.

102. Farmaki K, Angelopoulos N, Anagnostopoulos G, Gotsis E, Rombopoulos G, Tolis G. Effect of enhanced iron chelation therapy on glucose metabolism in patients with b-thalassaemia major. Br J Haematol. 2006;134:438–444.

103. Christoforidis A, Perifanis V, Athanassiou-Metaxa M. Combined chelation therapy improves glucose metabolism in patients with beta-thalassaemia major. Br J Haematol. 2006;135:271-272.
104. De Sanctis V, Roos M, Gasser T, Fortini M, Raiola G, Galati MC; Italian Working Group on Endocrine Complications in Non-Endocrine Diseases. Impact of long-term iron chelation therapy on growth and endocrine functions in thalassaemia. J Pediatr Endocrinol Metab. 2006;19:471-480.
105. De Sanctis V, Soliman AT, Canatan D, et al. Thyroid Disorders in Homozygous β-Thalassemia: Current Knowledge, Emerging Issues and Open Problems. Mediterr J Hematol Infect Dis. 2019;11:e2019029.
106. Sharma R, Seth A, Chandra J,et al. Endocrinopathies in adolescents with thalassaemia major receiving oral iron chelation therapy. Paediatr Int Child Health. 2016;36:22-27.
107. Bilgin BK, Yozgat AK, Isik P,et al. The effect of deferasirox on endocrine complications in children with thalassemia. Pediatr Hematol Oncol. 2020;37:455-464.
108. Gamberini MR, Fortini M, De Sanctis V, Gilli G, Testa MR. Diabetes mellitus and impaired glucose tolerance in thalassaemia major: incidence, prevalence, risk factors and survival in patients followed in the Ferrara Center. Pediatr Endocrinol Rev. 2004;2 Suppl. 2:285-291.

Most read articles by the same author(s)

1 2 3 4 5 6 7 > >>