Antigen Detection Tests for SARS-CoV-2: a systematic review and meta-analysis on real world data
Keywords:
COVID-19, SARS-CoV-2, point-of-care diagnostics, rapid testing, real-world data, systematic review and meta-analysisAbstract
Background and aim Rapid antigen detection (RAD) tests on nasopharyngeal specimens have been recently made available for SARS-CoV-2 infections, and early studies suggested their potential utilization as rapid screening and diagnostic testing. The present systematic review and meta-analysis was aimed to assess available evidence and to explore the reliability of antigenic tests in the management of the SARS-CoV-2 pandemic.
Materials and Methods. We reported our meta-analysis according to the PRISMA statement. We searched Pubmed, Embase, and pre-print archive medRxiv.og for eligible studies published up to November 5th, 2020. Raw data included true/false positive and negative tests, and the total number of tests. Sensitivity and specificity data were calculated for every study, and then pooled in a random-effects model. Heterogeneity was assessed using the I2 measure. Reporting bias was assessed by means of funnel plots and regression analysis.
Results. Based on 25 studies, we computed a pooled sensitivity of 72.8% (95%CI 62.4–81.3), a specificity of 99.4% (95%CI 99.0–99.7), with high heterogeneity and risk of reporting bias. More precisely, RAD tests exhibited higher sensitivity on samples with high viral load (i.e. <25 Cycle Threshold; 97.6%; 95%CI 94.1–99.0), compared to those with low viral load (≥25 Cycle Threshold; 43.6%; 95% 27.6-61.1).
Discussion. As the majority of collected reports were either cohort or case-control studies, deprived of preventive power analysis and often oversampling positive tests, overall performances may have been overestimated. Therefore, the massive referral to antigenic tests in place of RT-qPCR is currently questionable, and also their deployment as mass screening test may lead to intolerable share of missing diagnoses. On the other hand, RAD tests may find a significant role in primary care and in front-line settings (e.g. Emergency Departments). (www.actabiomedica.it)
References
Guan W, Liang W, Zhao Y et al. Comorbidity and its impact on 1590 patients with Covid-19 in China: A Nationwide Analysis. Eur. Respir. J. 2020;55:2000547. doi: 10.1183/13993003.00547-2020
Huang C, Wang Y, Li X et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan , China. Lancet 2020;395:497-506. doi: 10.1016/S0140-6736(20)30183-5
Li Q, Guan X, Wu P, et al. Early Transmission Dynamics in Wuhan, China, of Novel Coronavirus-Infected Pneumonia. N. Engl. J. Med. 2020;382:1199-1207. doi: 10.1056/NEJMoa2001316.
Riccò M; Ferraro P, Gualerzi G, et al. Point-of-Care diagnostic of SARS-CoV-2: knowledge, attitudes, and beliefs (KAP) of medical workforce in Italy. Acta Biomed 2020;91:57–67. doi: 10.23750/abm.v91i2.9573
European Centre for Diseases Prevention and Control (ECDC) An overview of the rapid test situation for COVID-19 diagnosis in the EU / EEA; Stockholm, 2020; available from: https://www.ecdc.europa.eu/en/publications-data/overview-rapid-test-situation-covid-19-diagnosis-eueea (accessed on November 12th, 2020)
Lippi G, Mattiuzzi C, Bovo C, Plebani M. Current laboratory diagnostics of coronavirus disease 2019 ( COVID-19). Acta Biomed. 2019;91:137–145. doi: 10.23750/abm.v91i2.9548
Tang YW, Schmitz JE, Persing DH, Stratton CW. The Laboratory Diagnosis of COVID-19 Infection: Current Issues and Challenges. J. Clin. Microbiol. 2020;58:e00512-20. doi: 10.1128/JCM.00512-20
Riccò M, Ferraro P, Gualerzi G et al. Point-of-Care Diagnostic Tests for Detecting SARS-CoV-2 Antibodies : A Systematic Review and Meta-Analysis of Real-World Data. J. Clin. Med. 2020;9:1515. doi: 10.3390/jcm9051515
Vashist SK. In Vitro Diagnostic Assays for COVID-19: Recent Advances and Emerging Trends. Diagnostics (Basel, Switzerland) 2020;10:202. doi: 10.3390/diagnostics10040202..
Cassaniti I, Novazzi F, Giardina F et al. Performance of VivaDiagTM COVID-19 IgM/IgG Rapid Test is inadequate for diagnosis of COVID-19 in acute patients referring to emergency room department. J. Med. Virol. 2020;92:1724-1727. doi: 10.1002/jmv.25800.
Xu R, Cui B, Duan X, Zhang P, Zhou X, Yuan Q. Saliva: potential diagnostic value and transmission of 2019-nCoV. Int. J. Oral Sci. 2020;12:11. doi: 10.1038/s41368-020-0080-z..
World Health Organization (WHO) Antigen-detection in the diagnosis of SARS-CoV-2 infection using rapid immunoassays; 2020; Available from: https://www.who.int/publications/i/item/antigen-detection-in-the-diagnosis-of-sars-cov-2infection-using-rapid-immunoassays; accessed on Novembre 12th, 2020
World Health Organization (WHO) Laboratory testing strategy recommendations for COVID-19: interim guidance, 22 March 2020; 2020; World Health Organization. available from https://apps.who.int/iris/handle/10665/331509, accessed on November 12th, 2020
Scohy A, Anantharajah A, Bodéus M, Kabamba-Mukadi B, Verroken A, Rodriguez-Villalobos H. Low performance of rapid antigen detection test as frontline testing for COVID-19 diagnosis. J. Clin. Virol. 2020;129:104455. doi: 10.1016/j.jcv.2020.104455.
Moher D, Liberati A, Tetzlaff J et al. Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement. PLoS Med. 2009;6:e1000097. doi: 10.1371/journal.pmed.1000100
Bizzaro N, Villalta D, Giavarina D, Tozzoli R. Are anti-nucleosome antibodies a better diagnostic marker than anti-dsDNA antibodies for systemic lupus erythematosus? A systematic review and a study of metanalysis. Autoimmun. Rev. 2012;12:97–106. doi: doi: 10.1016/j.autrev.2012.07.002
Herrera V, Hsu V, Adewale A et al. Testing Healthcare Workers Exposed to COVID19 using Rapid Author ’ s Affiliation : medRxiv 2020;2020.0812.20172726. doi: 10.1101/2020.08.12.20172726
Porte L, Legarraga P, Vollrath V, Aguilera X. Evaluation of a novel antigen-based rapid detection test for the diagnosis of SARS-CoV-2 in respiratory samples. Int J Infect Dis 2020;99:328-333. doi: 10.1016/j.ijid.2020.05.098
Young S, Taylor SN, Cammarata CL, et al. Clinical evaluation of BD Veritor SARS-CoV-2 point-of-care test performance compared to PCR-based testing and versus the Sofia 2 SARS Antigen point-of-care test. J Clin Microbiol 2020;59:e02338-20.. doi: 10.1128/JCM.02338-20
Veyrenche N, Bollore K, Pisoni A, et al. Diagnosis value of SARS-CoV-2 antigen/antibody combined testing using rapid diagnostic tests at hospital admission. medRxiv 2020; 2020.09.19.20197855. doi: 10.1101/2020.09.19.20197855
Cerutti F, Burdino E, Grazia M et al. Urgent need of rapid tests for SARS CoV-2 antigen detection: Evaluation of the SD-Biosensor antigen test for SARS-CoV-2. J. Clin. Virol. 2020;132: 104654. doi: 10.1016/j.jcv.2020.104654
Albert E, Torres I, Bueno F, et al. Field evaluation of a rapid antigen test (PanbioTM COVID-19 Ag Rapid Test 2 Device) for the diagnosis of COVID-19 in primary healthcare centers. medRxiv 2020;2020.10.16.20213850. doi: 10.1101/2020.10.16.20213850
Gremmels H, Winkel BMF, Schuurman R et al. Real-life validation of the Panbio COVID-19 Antigen Rapid Test (Abbott) in community-dwelling subjects with symptoms of potential SARS-CoV-2 infection. medRxiv 2020;2020.10.16.20214189. doi: 10.1101/2020.10.16.20214189
Van der Moeren N, Zwart VF, Lodder EB et al. Performance evaluation of a sars-cov-2 rapid antigentest: test performance in the community in the netherlands. medRxiv 2020;2020.10.19.20215202. doi: 10.1101/2020.10.19.20215202
Lindner AK, Nikolai O, Kausch F et al. Head-to-head comparison of SARS-CoV-2 antigen-detecting rapid test with self-collected anterior nasal swab versus professional- collected nasopharyngeal swab. medRxiv 2020;2020.10.26.20219600. doi: 10.1101/2020.10.26.20219600
Hirotsu Y, Maejima M, Shibusawa M, Nagakubo Y. Comparison of automated SARS-CoV-2 antigen test for COVID-19 infection with quantitative RT-PCR using 313 nasopharyngeal swabs, including from seven serially followed patients. Int J Infect Dis 2020;99:397–402. doi: 10.1016/j.ijid.2020.08.029
Krüger LJ, Gaeddert M, Köppel L et al. Evaluation of the accuracy , ease of use and limit of detection of novel , rapid , antigen- detecting point-of-care diagnostics for SARS-CoV-2. medRxiv 2020;2020.10.01.20203836. doi: 10.1101/2020.10.01.20203836
Lambert-Niclot S, Cuffel A, Le Pape S et al. Evaluation of a Rapid Diagnostic Assay for Detection of SARS-CoV-2 Antigen in Nasopharyngeal Swabs. J. Clin. Microbiol. 2020;58, e00977-20. doi: 10.1128/JCM.00977-20
Linares M, Pérez Tanoira R, Romanyk J et al. Panbio antigen rapid test is reliable to diagnose SARS-CoV-2 infection in the first 7 days after the onset of symptoms. medRxiv 2020, 2020.09.20.20198192. doi: 10.1101/2020.09.20.20198192
Liotti FM, Menchinelli G, Lalle E et al. Performance of a novel diagnostic assay for rapid SARS-CoV-2 antigen detection in nasopharynx samples. Clin. Microbiol. Infect. 2021;27:487-488. doi: 10.1016/j.cmi.2020.09.030.
Mertens P, De Vos N, Martiny D et al. Development and Potential Usefulness of the COVID-19 Ag Respi-Strip Diagnostic Assay in a Pandemic Context. Front. Med. 2020;7:225. doi: 10.3389/fmed.2020.00225.
Pekosz A, Cooper CK, Parvu V et al. Antigen-based testing but not real-time PCR correlates with SARS-CoV-2 virus culture. medRxiv 2020;2020.10.02.20205708. doi: 10.1101/2020.10.02.20205708
Porte L, Legarraga P, Iruretagoyena M et al. Rapid SARS-CoV-2 antigen detection by immunofluorescence – a new tool to detect infectivity. medRxiv 2020;2020.10.04.20206466. doi: 10.1101/2020.10.04.20206466
Freymond A, Segura M. Performance evaluation of the Simtomax ® CoronaCheck rapid diagnostic test. medRxiv 2020;2020.10.28.20219667. doi: 10.1101/2020.10.28.20219667
Alemany A, Baro B, Ouchi D et al. Analytical and Clinical Performance of the Panbio COVID-19 Antigen-Detecting Rapid Diagnostic Test Background. medRxiv 2020;2020.10.30.20223198. doi: 10.1101/2020.10.30.20223198
Courtellement L, Guinard J, Guillaume C et al. Real-life performance of a novel antigen detection test on nasopharyngeal specimens for SARS-CoV-2 infection diagnosis: a prospective study. medRxiv 2020;2020.10.28.20220657. doi: 10.1101/2020.10.28.20220657
Pilarowski G, Lebel P, Sunshine S et al. Performance characteristics of a rapid SARS-CoV-2 antigen detection assay at a public plaza testing site in San Francisco. medRxiv 2020;2020.11.02.20223891. doi: 10.1101/2020. 11.02.20223891
Gupta A, Khurana S, Das R et al. Rapid chromatographic immunoassay-based evaluation of COVID-19: A cross- sectional, diagnostic test accuracy study & its implications for COVID-19 management in India. Indian J Med Res Epub 2021;153:126-131. doi: 10.4103/ijmr.IJMR_3305_20
Nalumansi A, Lutalo T, Kayiwa J et al. Field Evaluation of the Performance of a SARS-CoV-2 Antigen Rapid Diagnostic Test in Uganda using Nasopharyngeal Samples. Int. J. Infect. Dis. 2020;104:282-286 doi: 10.1016/j.ijid.2020.10.073
Blairon L, Wilmet A, Beukinga I, Tré-hardy M. Implementation of rapid SARS-CoV-2 antigenic testing in a laboratory without access to molecular methods: Experiences of a general hospital. J Clin Virol. 2020;129:104472. doi: 10.1016/j.jcv.2020.104472.
Fenollar F, Bouam A, Ballouche M et al. Evaluation of the Panbio Covid-19 rapid antigen detection test device for the screening of patients with Covid-19. J. Clin. Virol. 2020, JCM.02589-20. doi: 10.1128/JCM.02589-20.
Dutta NK, Mazumdar K, Gordy JT. The Nucleocapsid Protein of SARS–CoV-2: a Target for Vaccine Development. J. Virol. 2020;94:e00647-20. doi: 10.1128/JVI.00647-20
World Health Organization (WHO) Assessment tool for laboratories implementing COVID-19 virus testing; 2020; Available from: https://www.who.int/publications/i/item/assessment-tool-for-laboratories-implementing-covid-19-virus-testing; accessed on November 12th, 2020.
Harrington A, Cox B, Snowdon J, et al. Comparison of Abbott ID Now and Abbott m2000 methods for the detection of SARS-CoV-2 from nasopharyngeal and nasal swabs from symptomatic patients. J. Clin. Microbiol. 2020;58:e00798-20. doi: 10.1128/JCM.00798-20.
Vandenberg O, Martiny D, Rochas O, van Belkum A, Kozlakidis Z. Considerations for diagnostic COVID-19 tests. Nat. Rev. Microbiol. 2021;19:171-183. doi: 10.1038/s41579-020-00461-z..
Lee CK, Cho CH, Woo MK, Nyeck AE, Lim CS, Kim WJ. Evaluation of Sofia fluorescent immunoassay analyzer for influenza A/B virus. J. Clin. Virol. 2012;55:239–243. doi: 10.1016/j.jcv.2012.07.008
Hurt AC, Alexander R, Hibbert J, Deed N, Barr IG. Performance of six influenza rapid tests in detecting human influenza in clinical specimens. J. Clin. Virol. 2007;39:132–135. doi: 10.1016/j.jcv.2007.03.002
Uyeki TM, Prasad R, Vukotich C et al. Low sensitivity of rapid diagnostic test for influenza. Clin. Infect. Dis. 2009; 48:e89-92. doi: 10.1086/597828.
Cui Z, Chang H, Wang H et al. Development of a rapid test kit for SARS-CoV-2: an example of product design. Bio-Design Manuf. 2020, epub ahead of print. doi: 10.1007/s42242-020-00075-7.
Miller AB. Fundamental issues in screening for cancer. In Cancer epidemiology and prevention. Second edition; Schottenfeld, D., Fraumeni, J., Eds.; Oxford University Press: New York, 1996.
Wilson J, Jungne G. Principles and practice of screening for disease; 1st ed.; World Health Organization: Geneva, 1968; Vol. 34;.
Salvatore P, Dawson P, Wadhwa A et al. Epidemiological Correlates of PCR Cycle Threshold Values in the Detection of SARS-CoV-2. Clin Infect Dis 2020;ciaa1469. doi: 10.1093/cid/ciaa1469.
Riva E, Sainaghi PP, Turriziani O, Antonelli G, Patti G. SARS-CoV-2 infection: diagnostic testing results occasionally require special attention. Emerg. Microbes Infect. 2020;9:1955–1957. doi: 10.1080/22221751.2020.1814165
Yanes-Lane M, Winters N, Fregonese F et al. Proportion of asymptomatic infection among COVID-19 positive persons and their transmission potential: A systematic review and meta-analysis. PLoS One 2020;15:e0241536. doi: 10.1371/journal.pone.0241536
Bellato V, Konishi T, Pellino G et al. Screening policies, preventive measures and in-hospital infection of COVID-19 in global surgical practices. J. Glob. Health 2020;10:020507. doi: 10.7189/jogh.10.020507
Mutti A. Occupational Medicine in the time of COVID-19. Med Lav 2020;111:83–86. doi: 10.23749/mdl.v111i2.9546
Woloshin S, Patel N; Kesselheim AS. False Negative Tests for SARS-CoV-2 Infection. N Eng J Med 2020, 383(6):e38. doi: 10.1056/NEJMp2015897
Patel U, Malik P, Mehta D, et al. Early epidemiological indicators, outcomes, and interventions of COVID-19 pandemic: A systematic review. J Glob Health 2020;10:020506. doi: 10.7189/jogh.10.020506.
Bourgonje, A.R.; Abdulle, A.E.; Timens, W.; Hillebrands, J.; Navis, G.J.; Gordijn, S.J.; et al. Angiotensin‐converting enzyme‐2 ( ACE2 ), SARS‐CoV ‐2 and pathophysiology of coronavirus disease 2019 ( COVID ‐19) . J. Pathol. 2020;251:228-248. doi: 10.1002/path.5471.
Fang Z, Zhang Y, Hang C, Ai J, Li S, Zhang W. Comparisons of viral shedding time of SARS-CoV-2 of different samples in ICU and non-ICU patients. J. Infect. 2020;81:147-178. doi: 10.1016/j.jinf.2020.03.013.
Azzi L, Carcano G, Gianfagna F et al. Saliva is a reliable tool to detect SARS-CoV-2. J. Infect. 2020;81:e45-e50. doi: 10.1016/j.jinf.2020.04.005.
Riccò M, Ranzieri S, Peruzzi S. et al. RT-qPCR assays based on saliva rather than on nasopharyngeal swabs are possible but should be interpreted with caution: Results from a systematic review and metaanalysis. Acta Biomed. 2020;91:e2020025. doi: 10.23750/abm.v91i3.10020.
Padoan A, Zuin S, Cosma C, Basso D, Plebani M, Bonfante F. Clinical performances of an ELISA for SARS-CoV-2 antibody assay and correlation with neutralization activity. Clin. Chim. Acta 2020;510:654–655. doi: 10.1016/j.cca.2020.08.024
Reusken CB, Buiting A, Bleeker-Rovers C et al. Rapid assessment of regional SARS-CoV-2 community transmission through a convenience sample of healthcare workers, the Netherlands, March 2020. Eurosurveillance 2020;25:2000334. doi: 10.2807/1560-7917.ES.2020.25.12.2000334.
To KKW, Tsang OTY, Leung WS et al. Temporal profiles of viral load in posterior oropharyngeal saliva samples and serum antibody responses during infection by SARS-CoV-2: an observational cohort study. Lancet Infect. Dis. 2020;20:565–574. doi: 10.1016/S1473-3099(20)30196-1.
Ceron JJ, Lamy E, Martinez-Subiela S et al. Use of Saliva for Diagnosis and Monitoring the SARS-CoV-2: A General Perspective. J. Clin. Med. 2020;9:1491. doi: 10.3390/jcm9051491
Hirotsu Y, Maejima M, Shibusawa M et al. Pooling RT-PCR test of SARS-CoV-2 for large cohort of “healthy” and infection-suspected patients: A prospective and consecutive study on 1,000 individuals. medRxiv 2020;2020.05.04.20088146. doi: 10.1101/2020.05.04.20088146
Chartrand C, Leeflang MMG, Minion J, Brewer T, Pai M. Review Accuracy of Rapid Influenza Diagnostic Tests. Ann. Intern. Med. 2012;156:500–511. doi: 10.7326/0003-4819-156-7-201204030-00403
Riccò M, Ranzieri S, Marchesi F. Rapid antigen tests for large-scale diagnostic campaigns: A case study from North-Eastern Italy. J Infect. 2021;82:e39-e40. doi: 10.1016/j.jinf.2021.01.011
Riccò M. A systematic review on rapid antigen test devices for SARS-CoV-2 in nursing homes: Useful, but handle with care. Enferm Infecc Microbiol Clin 2022;epub ahead of print. doi: 10.1016/j.eimc.2022.02.012
Downloads
Published
Issue
Section
License
Copyright (c) 2022 Matteo Riccò, Silvia Ranzieri, Simona Peruzzi, Marina Valente, Federico Marchesi, Nicola Luigi Bragazzi, Davide Donelli, Federica Balzarini, Pietro Ferraro, Vincenza Gianfredi, Carlo Signorelli
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by-nc/4.0) which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Transfer of Copyright and Permission to Reproduce Parts of Published Papers.
Authors retain the copyright for their published work. No formal permission will be required to reproduce parts (tables or illustrations) of published papers, provided the source is quoted appropriately and reproduction has no commercial intent. Reproductions with commercial intent will require written permission and payment of royalties.