Use of perfusional CBCT imaging for intraprocedural evaluation of endovascular treatment in patients with diabetic foot: a concept paper

Main Article Content

Martina Gurgitano
Giulia Signorelli
Giovanni Maria Rodà
Alessandro Liguori
Marco Pandolfi
Giuseppe Granata
Antonio Arrichiello
Anna Maria Ierardi
Aldo Paolucci
Gianpaolo Carrafiello


mri bold, cbct, radiology, interventional radiology, diabetic foot, perfusion imaging, cone beam


Diabetes mellitus (DM) is one of the most common metabolic diseases worldwide; its global burden has increased rapidly over the past decade, enough to be considered a public health emergency in many countries. Diabetic foot disease and, particularly diabetic foot ulceration, is the major complication of DM: through a skin damage of the foot, with a loss of epithelial tissue, it can deepen to muscles and bones and lead to the amputation of the lower limbs. Peripheral arterial disease (PAD) in patients with diabetes, manifests like a diffuse macroangiopathic multi-segmental involvement of the lower limb vessels, also connected to a damage of collateral circulation; it may also display characteristic microaneurysms and tortuosity in distal arteries. As validation method, Bold-MRI is used. The diabetic foot should be handled with a multidisciplinary team approach, as its management requires systemic and localized treatments, pain control, monitoring of cardiovascular risk factors and other comorbidities. CBCT is an emerging medical imaging technique with the original feature of divergent radiation, forming a cone, in contrast with the spiral slicing of conventional CT, and has become increasingly important in treatment planning and diagnosis: from small anatomical areas, such as implantology, to the world of interventional radiology, with a wide range of applications: as guidance for biopsies or ablation treatments. The aim of this project is to evaluate the usefulness of perfusion CBCT imaging, obtained during endovascular revascularization, for intraprocedural evaluation of endovascular treatment in patients with diabetic foot.


Download data is not yet available.
Abstract 340 | PDF Downloads 126


1. Hicks CW, Selvin E. Epidemiology of peripheral neuropathy and lower extremity disease in diabetes. Curr Diab Rep. 2019;19(10):86.
2. Kalish J, Hamdan A. Management of diabetic foot problems. J Vasc Surg. 2010;51(2):476–86.
3. Bowering CK. Diabetic foot ulcers: Pathophysiology, assessment, and therapy. Can Fam Physician 2001;47:1007-16.
4. Albers JW, Pop-Busui R. Diabetic neuropathy: mechanisms, emerging treatments, and subtypes. Curr Neurol Neurosci Rep.2014;14(8):473.
5. Dyck PJ, Albers JW, Andersen H, Arezzo JC, Biessels GJ, Bril V, et al. Diabetic polyneuropathies: update on research definition, diagnostic criteria and estimation of severity. Diabetes Metab Res Rev. 2011;27(7):620–8.
6. Pop-Busui R, Boulton AJ, Feldman EL, Bril V, Freeman R, Malik RA, et al. Diabetic neuropathy: a position statement by the American Diabetes Association. Diabetes Care. 2017;40(1):136–54.
7. Chomel S, Douek P, Moulin P, Vaudoux M, Marchand B. Contrast-enhanced MR angiography of the foot: anatomy and clinical application in patients with diabetes. AJR Am J Roentgenol 2004; 182:1435–42. doi:10.2214/ajr.182.6.1821435
8. Van der Feen C, Neijens FS, Kanters SD, Mali WP, Stolk RP, Banga JD. Angiographic distribution oflower extremity atherosclerosis in patients with and without diabetes. Diabet Med 2002; 19:366–70. doi: 10.1046/j.1464-5491.2002.00642.x
9. Rubba P, Leccia G, Faccenda F, De Simone B, Carbone L, Pauciullo P, et al. Diabetes mellitus andlocalizations of obliterating arterial disease of the lower limbs. Angiology 1991; 42: 296–301. doi:10.1177/000331979104200406
10. Ledermann HP, Schweitzer ME, Morrison WB. Nonenhancing tissue on MR imaging of pedalinfection: characterization of necrotic tissue and associated limitations for diagnosis ofosteomyelitis and abscess. AJR Am J Roentgenol 2002; 178: 215–22. doi:10.2214/ajr.178.1.1780215
11. Sumpio BE, Lee T, Blume PA. Vascular evaluation and arterial reconstruction of the diabetic foot.Clin Podiatr Med Surg 2003; 20: 689–708. doi: 10.1016/S0891-8422(03)00088-0
12. Dolan NC, Liu K, Criqui MH, et al. Peripheral artery disease, diabetes, and reduced lower extremity functioning. Diabetes Care. 2002;25(1):113-120.
13. Boyko EJ, Ahroni JH, Davignon D, Stensel V, Prigeon RL, Smith DG. Diagnostic utility of the historyand physical examination for peripheral vascular disease among patients with diabetes mellitus. JClin Epidemiol. 1997;50(6):659-668.
14. Naidoo P, Liu VJ, Mautone M, Bergin S. Lower limb complications of diabetes mellitus: acomprehensive review with clinicopathological insights from a dedicated high-risk diabetic footmultidisciplinary team. Br J Radiol. 2015;88(1053):20150135.
15. Willmann JK, Wildermuth S. Multidetector-row CT angiography of upper- and lower-leg peripheral arteries. Eur Radiol 2005; 15(suppl 4): D3-D9
16. Norgren L, Hiatt WR, Dormandy JA, et al. Inter-Society Consensus for the Management of Peripheral Arterial Disease (TASC II). J Vasc Surg. 2007; 45 Suppl S:S5‐S67. doi:10.1016/j.jvs.2006.12.037
17. Armstrong DG, Lavery LA, Nixon BP, Boulton AJ. It’s not what you put on but what you take o : Techniques for debriding and offloading the diabetic foot wound. Clin Infect Dis 2004;39: S92-9.
18. Armstrong DG, Nguyen HC, Lavery LA, van Schie CH, Boulton AJ, Harkless LB. O – loading the diabetic foot wound. Diabetes Care 2001;24:1019-22.
19. Lipsky BA. Medical treatment of diabetic foot infections. Clin Infect Dis 2004;39:S104-14.
20. Schaper NC, Andros G, Apelqvist J, Bakker K, Lammer J, Lepäntalo M, Mills JL, Reekers J, ShearmanCP, Zierler RE, Hinchliffe RJ. Diagnosis and treatment of peripheral artery disease in diabeticpatients with a foot ulcer. A progress report of the International Working Group on the DiabeticFoot. Schaper N, Houtum W, Boulton A, eds. Diabetes Metab Res Rev. 2012;28 (S1):218–224.doi:
21. Hinchliffe RJ, Forsythe RO, Apelqvist J, et al. Guidelines on diagnosis, prognosis, and managementof peripheral artery disease in patients with foot ulcers and diabetes (IWGDF 2019 update).Diabetes Metab Res Rev. 2020;36(S1):e3276.
22. Taylor GI, Palmer JH. The vascular territories (angiosomes) of the body: experimental study andclinical applications. British J Plastic Surg.1987;40(2):113-41.
23. Lo ZJ, Lin Z, Pua U, et al. Diabetic foot limb salvage—a series of 809 attempts and predictors forendovascular limb salvage failure. Ann Vasc Surg. 2018;49:9-16.
24. Jongsma H, Bekken JA, Akkersdijk GP, Hoeks SE, Verhagen HJ, Fioole B. Angiosome-directed revascularization in patients with critical limb ischemia. J Vasc Surg. 2017;65(4):1208-1219.e1.
25. Thompson MM, Sayers RD, Varty K, Reid A, London NJ (1993) Bell PR Chronic critical leg ischaemia must be redefined. Eur J Vasc Surg 7:420–463
26. Kroese AJ, Stranden E (1998) How critical is chronic critical leg ischaemia? Ann Chir Gynaecol 87:141–144
27. Ruangsetakit C, Chinsakchai K, Mahawongkajit P, et al. Transcutaneous oxygen tension: a useful predictor of ulcer healing in critical limb ischaemia. J Wound Care 2010; 19: 202–206.
28. Utsunomiya M, Nakamura M, Nagashima Y, et al. Predictive value of skin perfusion pressure after endovascular therapy for wound healing in critical limb ischemia. J Endovasc Ther 2014; 21: 662–670
29. Boezeman RP, Becx BP, van den Heuvel, et al. Monitoring of foot oxygenation with near-infrared spectroscopy in patients with critical limb ischemia undergoing percutaneous transluminal angioplasty: a pilot study. Eur J Vasc Endovasc Surg 2016; 52: 650–656.
30. Murray T, Rodt T, Lee MJ. Two-dimensional perfusion angiography of the foot: technical considerations and initial analysis. J Endovasc Ther. 2016;23:58-64.
31. Jens S, Marquering HA, Koelemay MJ, Reekers JA. Perfusion angiography of the foot in patients with critical limb ischemia: description of the technique. Cardiovasc Intervent Radiol. 2015;38:201-205.
32. Swennen GR, Schutyser F. Three-dimensional cephalometry: spiral multi-slice vs cone-beam computed tomography. Am J Orthod Dentofacial Orthop 2006;130(03):410–416
33. Ricci PM, Boldini M, Bonfante E, et al. Cone-beam computed tomography compared to X-ray in diagnosis of extremities bone fractures: a study of 198 cases. Eur J Radiol Open 2019; 6:119–121
34. Bruix J, Sherman M. Management of hepatocellular carcinoma: an up-date. Hepatology 2011; 53:1020–1022.
35. Ierardi AM, Pesapane F, Rivolta N, et al. Type 2 Endoleaks in Endovascular Aortic Repair: Cone Beam CT and Automatic Vessel Detection to Guide the Embolization. Acta Radiol. 2018 Jun;59(6):681-687. doi: 10.1177/0284185117729184.
36. Carrafiello G, Ierardi AM, Duka E, et al. Usefulness of Cone-Beam Computed Tomography and Automatic Vessel Detection Software in Emergency Transarterial Embolization. Cardiovasc Intervent Radiol. 2016 Apr;39(4):530-7. doi: 10.1007/s00270-015-1213-1. Epub 2015 Oct 20.
37. Carrafiello G, Ierardi AM, Radaelli A, et al. Unenhanced Cone Beam Computed Tomography and Fusion Imaging in Direct Percutaneous Sac Injection for Treatment of Type II Endoleak: Technical Note. Cardiovasc Intervent Radiol. 2016 Mar;39(3):447-52. doi: 10.1007/s00270-015-1217-x.
38. Ierardi AM, Duka E, Radaelli A et. Al Fusion of CT Angiography or MR Angiography With Unenhanced CBCT and Fluoroscopy Guidance in Endovascular Treatments of Aorto-Iliac Steno-Occlusion: Technical Note on a Preliminary Experience. Cardiovasc Intervent Radiol. 2016 Jan;39(1):111-6. doi: 10.1007/s00270-015-1158-4. Epub 2015 Jul 2.
39. RadChoo, J.Y., Park, C.M., Lee, N.K., Lee, S.M., Lee, H.J. and Goo, J.M. (2013) Percutaneous transthoracic needle biopsy of small ( 40. Zi-jun Xiang, Yi Wang, En-fu Du, Lin Xu, Bin Jiang, Huili Li, Yun Wang4 and Ning Cui (2019) The value of Cone-Beam CT-guided radiofrequency ablation in the treatment of pulmonary malignancies (≤3 cm); Bioscience Reports 39 BSR20181230
41. Struffert T, Deuerling-Zheng Y, Kloska S et al (2011) Cerebral blood volume imaging by flat detector computed tomography in comparison to conventional multislice perfusion CT. Eur Radiol 21:882–889
42. Struffert T, Deuerling-Zheng Y, Kloska S et al (2010) Flat detector-CT in the evaluation of brain parenchyma, intracranial vasculature, and cerebral blood volume: a pilot study in patients with acute symptoms of cerebral ischemia. Am J Neuroradiol 31:1462–1469
43. Ahmed AS, Zellerhoff M, Strother CM et al (2009) C-arm CT measurement of cerebral blood flow volume: an experimental study in canines. Am J Neuroradiol 30:917–922
44. Van der Bom IM, Mehra M, Walvick RP, Chueh JY, Gounis MJ (2012) Quantitative evaluation of C-arm CT cerebral blood volume in a canine model of ischemic stroke. Am J Neuroradiol 33:353–358.
45. Pereira PL, Krüger K, Hohenstein E, Welke F, Sommer C, Meier F, Eigentler T, Garbe C (2018) Intraprocedural 3D perfusion measurement during chemoembolisation with doxorubicin-eluting beads in liver metastases of malignant melanoma; Eur Radiol 28:1456–1464.
46. Kim KA, Choi SY, Kim MU, Baek SY, Park SH, Yoo K, Kim TH, Kim HY (2019) The Efficacy of Cone-Beam CT–Based Liver Perfusion Mapping to Predict Initial Response of Hepatocellular Carcinoma to Transarterial Chemoembolization; J Vasc Interv Radiol; 30:358–369.
47. Leardini A, Durante S, Belvedere C, Caravaggi P, Carrara C, Berti L, Lullini G, Giacomozzi C, Durastanti G, Ortolani M, Guglielmi G, Bazzocchi A (2019) Weight-bearing CT technology in musculoskeletal pathologies of the lower limbs: techniques, initial applications, and Preliminary Combinations with Gait-Analysis Measurements at the Istituto Ortopedico Rizzoli; Semin Musculoskelet Radiol;23:643–656.
48. LoPresti M, Treiber JM, Srinivasan VM, Chintalapani G, Chen SR, Burkhardt J-K, Johnson JN, Lam S, Kan P, Utility of Immediate Postprocedural Cone Beam Computed Tomography in the Detection of Ischemic and Hemorrhagic Complications in Pediatric Neurointerventional Surgery, World Neurosurgery (2020), doi:
49. Shih CD, Bazarov I, Harrington T, Vartivarian M, Reyzelman AM (2016) Initial Report on the Use of In-Office Cone Beam Computed Tomography for Early Diagnosis of Osteomyelitis in Diabetic Patients. J Am Podiatr Med Assoc 106(2): 128-132
50. Jürgens JHW, Schulz N, Wybranski C, et al. Time-resolved perfusion imaging at the angiography suite: preclinical comparison of a new flat-detector application to computed tomography perfusion. Invest Radiol 2015; 50:108–113.
51. Thulborn KR, Waterton JC, Matthews PM, Radda GK. Oxygenation dependence of the transverse relaxation time of water protons in whole blood at high field. Biochim Biophys Acta. 1982;714:265–270. doi: 10.1016/0304-4165(82)90333-6.
52. Ogawa S, Menon RS, Tank DW, et al. Functional brain mapping by blood oxygenation level-dependent contrast magnetic resonance imaging. A comparison of signal characteristics with a biophysical model. Biophys J. 1993; 64:803–812.
53. Ledermann HP, Heidecker H-G, Schulte A-C, et al. Calf muscles imaged at BOLD MR:Correlation with TcPO2 and flowmetry measurements during ischemia and reactive hyperemia –Initial experience. Radiology. 2006; 241:477–484.
54. Noseworthy M, Bulte DP, Alfonsi J. BOLD magnetic resonance imaging in skeletal muscle. Semin Musculoskelet Radiol. 2003;7:307–15.
55. Partovi S, Karimi S, Jacobi B, Schulte A-C, Aschwanden M, Zipp L, Lyo JK, Karmonik C, Müller-Eschner M, Huegli RW, Bongartz G, Bilecen D. Clinical implications of skeletal muscle blood-oxygenation-level-dependent (BOLD) MRI. Mag Reson Mater Phy. 2012;25:251–61. doi: 10.1007/s10334-012-0306-y.
56. Damon BM, Hornberger JL, Wadington MC, Lansdown DA, Kent-Braun JA. Dual gradient-echo MRI of post-contraction changes in skeletal muscle blood volume and oxygenation. Magn Reson Med. 2007;57:670–9. doi: 10.1002/mrm.21191.
57. Lebon V, Brillault-Salvat C, Bloch G, Leroy-Willig A, Carlier PG. Evidence of muscle BOLD effect revealed by simultaneous interleaved gradient-echo NMRI and myoglobin NMRS during leg ischemia. Magn Reson Med. 1998;40:551–8. doi: 10.1002/mrm.1910400408.
58. Donahue KM, Van Kylen J, Guven S, El Bershawi A, Luh WM, Bandettini PA, Cox RW, Hyde JS, Kissebah AH. Simultaneous gradient‒echo/spin‒echo EPI of graded ischemia in human skeletal muscle. J Magn Reson Imaging. 1998;8:1106–13. doi: 10.1002/jmri.1880080516.
59. Sanchez OA, Copenhaver EA, Elder CP, Damon BM. Absence of a significant extravascular contribution to the skeletal muscle BOLD effect at 3 T. Magn Reson Med. 2010;64:527–35.
60. Langham MC, Floyd TF, Mohler ER III, et al. Evaluation of cuff-induced ischemia in the lower extremity by magnetic resonance oximetry. J Am Coll Cardiol. 2010; 55:598–606.
61. Golster H, Hyllienmark L, Ledin T, Ludvigsson J, Sjoberg F (2005) Impaired microvascular function related to poor metabolic control in young patients with diabetes. Clin Physiol Funct Imaging 25(2):100–105
62. Cesarone MR, De Sanctis MT, Incandela L, Belcaro G, Griffin M, Cacchio M (2001) Methods of evaluation and quantification of microangiopathy in high perfusion microangiopathy (chronic venous insufficiency and diabetic microangiopathy). Angiology 52(Suppl 2):S3–S7
63. Caballero AE, Arora S, Saouaf R, Lim SC, Smakowski P, Park JY, King GL, LoGerfo FW, Horton ES, Veves A (1999) Microvascular and macrovascular reactivity is reduced in subjects at risk for type 2 diabetes. Diabetes 48(9):1856–1862.
64. Fathi R, Marwick TH (2001) Noninvasive tests of vascula function and structure: why and how to perform them. Am Heart J 141(5):694–703
65. McCully KK, Posner JD (1995) The application of blood flow measurements to the study of aging muscle. J Gerontol A Biol Sci Med Sci 50:130–136.
66. Towse TF, Slade JM, Ambrose JA, Delano MC, Meyer RA (2011) Quantitative analysis of the post-contractile blood-oxygenation-level-dependent (BOLD) effect in skeletal muscle.J Appl Physiol 111(1):27–39
67. Slade JM, Towse TF, Gossain VV, Meyer RA (2011) Peripheral microvascular response to muscle contraction is unaltered by early diabetes, but decreases with age. J Appl Physiol 111(5):1361–1371
68. Partovi S, Aschwanden M, Jacobi B, et al. Correlation of muscle BOLD MRI with transcutaneous oxygen pressure for assessing microcirculation in patients with systemic sclerosis. J Magn Reson Imaging 2013;38:845-51.
69. Towse TF, Slade JM, Ambrose JA, et al. Quantitative analysis of the postcontractile blood-oxygenation-level-dependent (BOLD) effect in skeletal muscle. J Appl Physiol (1985) 2011;111:27-39.
70. Prasad PV, Edelman RR, Epstein FH. Noninvasive evaluation of intrarenal oxygenation with BOLD MRI. Circulation. 1996; 94:3271–3275.
71. Ledermann HP, Schulte AC, Heidecker HG, et al. Blood oxygenation level-dependent magnetic resonance imaging of the skeletal muscle in patients with peripheral arterial occlusive disease. Circulation 2006;113:2929-35
72. Potthast S, Schulte A, Kos S, et al. Blood oxygenation level-dependent MRI of the skeletal muscle during ischemia in patients with peripheral arterial occlusive disease. Rofo 2009;181:1157-61.
73. Huegli RW, Schulte AC, Aschwanden M, et al. Effects of percutaneous transluminal angioplasty on muscle BOLD-MRI in patients with peripheral arterial occlusive disease: preliminary results. Eur Radiol 2009;19:509-15.

Most read articles by the same author(s)

1 2 3 > >>