Enhancing the mind: a neuroethical perspective on diverse brain enhancement techniques

Main Article Content

Marta Vassallo
Mario Picozzi

Keywords

Brain enhancement, Cosmetic neurology, Neuroethics, Psychotropic drugs, Non-invasive techniques, Cognitive enhancement, Neurohacking, Justice in healthcare, Mental performance optimization, Neurologic interventions

Abstract

Advances in medical science have expanded our ability to manipulate health, extending beyond treating diseases to enhancing cognitive and emotional functions. This practice, known as cosmetic neurology, involves using neurologic interventions and psychotropic drugs to improve brain performance, resilience to stress, and overall mental well-being, even in healthy individuals. While these interventions raise critical ethical concerns—such as issues of authenticity, beneficence, non-maleficence, and justice—emerging evidence suggests promising alternatives. Non-invasive brain enhancement techniques and experimental biohacking practices, including lifestyle adjustments and technological interventions, offer innovative pathways for cognitive enhancement. However, ethical investigations into these alternatives remain limited. This paper provides a comprehensive neuroethical analysis of invasive and non-invasive enhancement methods, emphasizing the relative advantages of non-drug-based approaches. It argues that non-invasive techniques present a less ethically fraught and more sustainable alternative to psychotropic drugs, positioning them as viable solutions for advancing the field of brain enhancement.

Abstract 38 | PDF Downloads 22

References

1. Steinbock B. The Oxford handbook of bioethics. New York : Oxford University Press; 2007.
2. Rossi S, Santarnecchi E, Feurra M. Noninvasive brain stimulation and brain oscillations. Handb Clin Neurol 2022; 184:239–47.
3. Santos D. Conceptualizing the democratization of innovation through transitions theory: A case study of biohacking in community science labs. Environ Innov Soc Transit 2023; 49:100783.
4. Mohamed AD. Neuroethical issues in pharmacological cognitive enhancement. Wiley Interdiscip Rev Cogn Sci 2014; 5(5):533–49.
5. Salvador R, Biagi MC, Puonti O, et al. Personalization of Multi-electrode Setups in tCS/tES: Methods and Advantages. In: Makarov SN, Noetscher GM, Nummenmaa A, editors. Brain and Human Body Modeling 2020. Berlin: Springer; 2021. p. 119–135.
6. Dresler M, Sandberg A, Bublitz C, et al. Hacking the Brain: Dimensions of Cognitive Enhancement. ACS Chem Neurosci 2018; 10(3):1137.
7. Einöther SJL, Giesbrecht T. Caffeine as an attention enhancer: reviewing existing assumptions. Psychopharmacology (Berl) 2013; 225(2):251–74.
8. Bozzatello P, Brignolo E, De Grandi E, BellinoS. Supplementation with Omega-3 Fatty Acids in Psychiatric Disorders: A Review of Literature Data. J Clin Med 2016; 5(8):67.
9. Lopresti AL, Smith SJ, Pouchieu C, et al. Effects of a polyphenol-rich grape and blueberry extract (Memophenol™) on cognitive function in older adults with mild cognitive impairment: A randomized, double-blind, placebo-controlled study. Front Psychol 2023; 14:1144231.
10. Cramer H, Lauche R, Anheyer D, et al. Yoga for anxiety: A systematic review and meta-analysis of randomized controlled trials. Depress Anxiety 2018; 35(9):830–43
11. Schumer MC, Lindsay EK, David CreswellJ. Brief mindfulness training for negative affectivity: A systematic review and meta-analysis. J Consult Clin Psychol 2018; 86(7):569–83.
12. Bruce SE, Werner KB, Preston BF, Baker LM. Improvements in concentration, working memory and sustained attention following consumption of a natural citicoline-caffeine beverage. Int J Food Sci Nutr 2014; 65(8):1003–7.
13. Husain M, Mehta MA. Cognitive enhancement by drugs in health and disease. Trends Cogn Sci 2011; 15(1):28–36.
14. Sahakian BJ, Bruhl AB, Cook J, et al. The impact of neuroscience on society: cognitive enhancement in neuropsychiatric disorders and in healthy people. Philos Trans R Soc Lond B Biol Sci 2015; 370(1677):20140214.
15. Santarnecchi E, Polizzotto NR, Godone M, et al. Frequency-Dependent Enhancement of Fluid Intelligence Induced by Transcranial Oscillatory Potentials. Current Biology 2013; 23(15):1449-53.
16. Batty GD, Shipley MJ, Gale CR, Mortensen LH, Deary, IJ. Does IQ predict total and cardiovascular disease mortality as strongly as other risk factors? Comparison of effect estimates using the Vietnam Experience Study. Heart 2008; 94(12):1541–4.
17. Santarnecchi E, Muller T, Rossi S, et al. Individual differences and specificity of prefrontal gamma frequency-tACS on fluid intelligence capabilities. Cortex 2016; 75:33–43.
18. Kitano H. Biological robustness. Nat Rev Genet 2004; 5(11):826–37.
19. Cools R, Roberts AC, Robbins TW. Serotoninergic regulation of emotional and behavioural control processes. Trends Cogn Sci 2008; 12(1):31–40.
20. Weintraub D, Koester J, Potenza MN, et al. Impulse control disorders in Parkinson disease: a cross-sectional study of 3090 patients. Arch Neurol 2010; 67(5):589–95.
21. Weintraub D, Siderowf AD, Potenza MN, et al. Association of dopamine agonist use with impulse control disorders in Parkinson disease. Arch Neurol 2006; 63(7):969–73.
22. Sahakian BJ, Morein-Zamir S. Neuroethical issues in cognitive enhancement. J Psychopharmacol 2011; 25(2):197–204.
23. Mohamed AD. Neuroethical issues in pharmacological cognitive enhancement. Wiley Interdiscip Rev Cogn Sci 2014; 5(5):533–49.
24. Erker TD, Arif Y, John JA, et al. Neuromodulatory effects of parietal high-definition transcranial direct-current stimulation on network-level activity serving fluid intelligence. J Physiol 2024; 602(12):2917–30.
25. Huang YZ, Edwards MJ, Rounis E, Bhatia KP, Rothwell JC. Theta burst stimulation of the human motor cortex. Neuron 2005; 4(2):201–6.
26. Blumberger DM, Vila-Rodriguez F, Thorpe KE, et al. Effectiveness of theta burst versus high-frequency repetitive transcranial magnetic stimulation in patients with depression (THREE-D): a randomised non-inferiority trial. Lancet 2018; 391(10131):1683–92.
27. Blumberger DM, Mulsant BH, Daskalakis ZJ. What is the role of brain stimulation therapies in the treatment of depression?. Curr Psychiatry Rep 2013; 15(7):368.
28. Katagiri N, Yoshida S, Koseki T, et al. Interindividual Variability of Lower-Limb Motor Cortical Plasticity Induced by Theta Burst Stimulation. Front Neurosci 2020; 14:563293.
29. Chung SW, Sullivan CM, Rogasch NC, Hoy KE, Bailey NW, Cash RFH, Fitzgerald PB. The effects of individualised intermittent theta burst stimulation in the prefrontal cortex: A TMS-EEG study. Hum Brain Mapp 2019; 40(2):608–27.
30. Chen L, Chung SW, Hoy KE, Fitzgerald PB. Is theta burst stimulation ready as a clinical treatment for depression?. Expert Rev Neurother 2019; 19(11):1089–102.
31. Sharbafshaaer M, Cirillo G, Esposito F, Tedeschi G, Trojsi F. Harnessing Brain Plasticity: The Therapeutic Power of Repetitive Transcranial Magnetic Stimulation (rTMS) and Theta Burst Stimulation (TBS) in Neurotransmitter Modulation, Receptor Dynamics, and Neuroimaging for Neurological Innovations. Biomedicines 2024; 12(11):2506.
32. Nitsche MA, Paulus W. Excitability changes induced in the human motor cortex by weak transcranial direct current stimulation. J Physiol 2000; 527(3):633–9.
33. Vitor-Costa M, Okuno NM, Bortolotti H, et al. Improving Cycling Performance: Transcranial Direct Current Stimulation Increases Time to Exhaustion in Cycling. PLoS One 2015; 10(12):e0144916.
34. Douglas KM, Peckham A, Porter R, Hammar A. Cognitive enhancement therapy for mood disorders: A new paradigm?. Aust N Z J Psychiatry 2019; 53(12):1148–50.
35. Dedoncker J, Brunoni AR, Baeken C, Vanderhasselt MA. A Systematic Review and Meta-Analysis of the Effects of Transcranial Direct Current Stimulation (tDCS) Over the Dorsolateral Prefrontal Cortex in Healthy and Neuropsychiatric Samples: Influence of Stimulation Parameters. Brain Stimul 2016; 9(4):501–17.
36. Flöel A. tDCS-enhanced motor and cognitive function in neurological diseases. Neuroimage 2014; 85(3):934–47.
37. Kuo HI, Paulus W, Batsikadze G, Jamil A, Kuo MF, Nitsche MA. Chronic Enhancement of Serotonin Facilitates Excitatory Transcranial Direct Current Stimulation-Induced Neuroplasticity. Neuropsychopharmacology 2016; 41(5):1223–30.
38. Lefaucheur JP, Antal A, Ayache SS, et al. Evidence-based guidelines on the therapeutic use of transcranial direct current stimulation (tDCS). Clin Neurophysiol 2017; 128(1):56–92.
39. Ridding MC, Ziemann U. Determinants of the induction of cortical plasticity by non-invasive brain stimulation in healthy subjects. J Physiol 2010; 588(13);2291–304.
40. Stagg CJ, Nitsche MA. Physiological basis of transcranial direct current stimulation. Neuroscientist 2011; 17(1):37–53.
41. Wischnewski M, Schutter DJLG. Efficacy and Time Course of Theta Burst Stimulation in Healthy Humans. Brain Stimul 2015; 8(4):685–92.
42. Horvath JC, Forte JD, Carter O. Quantitative Review Finds No Evidence of Cognitive Effects in Healthy Populations From Single-session Transcranial Direct Current Stimulation (tDCS). Brain Stimul 2015; 8(3):535–50.
43. Bergmann TO, Karabanov A, Hartwigsen G, Thielscher A, Siebner HR. Combining non-invasive transcranial brain stimulation with neuroimaging and electrophysiology: Current approaches and future perspectives. Neuroimage 2016; 140:4–19.
44. Lutz A, Greischar LL, Rawlings NB, Ricard M, Davidson RJ. Long-term meditators self-induce high-amplitude gamma synchrony during mental practice. Proc Natl Acad Sci USA 2004; 101(46):16369–73.
45. Camfield DA, Stough C, Farrimond J, Scholey AB. Acute effects of tea constituents L-theanine, caffeine, and epigallocatechin gallate on cognitive function and mood: a systematic review and meta-analysis. Nutr Rev 2014; 72(8):507–22.
46. Gómez-Pinilla F. Brain foods: the effects of nutrients on brain function. Nat Rev Neurosci 2008; 9(7):568–78.
47. Gupta VK, Scheunemann L, Eisenberg T, et al. Restoring polyamines protects from age-induced memory impairment in an autophagy-dependent manner. Nat Neurosci 2013; 16(10):1453–60.
48. Ross A, Thomas S. The health benefits of yoga and exercise: a review of comparison studies. J Altern Complement Med 2010; 16(1):3–12.
49. Zeidan F, Johnson SK, Diamond BJ, David Z, Goolkasian P. Mindfulness meditation improves cognition: evidence of brief mental training. Conscious Cogn 2010; 19(2):597–605.
50. Pascoe MC, Bauer IE. A systematic review of randomised control trials on the effects of yoga on stress measures and mood. J Psychiatr Res 2015; 68:270–82.
51. Smith A, Brice C, Nash J, Rich N, Nutt DJ. Caffeine and central noradrenaline: effects on mood, cognitive performance, eye movements and cardiovascular function. J Psychopharmacol 2003; 17(3):283-92.
52. Ferré S. Role of the central ascending neurotransmitter systems in the psychostimulant effects of caffeine. J Alzheimers Dis 2010; 20(Suppl 1):S35–49.
53. Hewlett P, Smith A. Effects of repeated doses of caffeine on performance and alertness: new data and secondary analyses. Hum Psychopharmacol 2007; 22(6):339–50.
54. Reyner LA, Horne JA. Suppression of sleepiness in drivers: combination of caffeine with a short nap. Psychophysiology 1997; 34(6):721–5.
55. Warburton DE, Nicol CW, Bredin SS. Health benefits of physical activity: the evidence. CMAJ 2006; 174(6):801–9.
56. Riedel BW, Lichstein KL, Dwyer WO. Sleep compression and sleep education for older insomniacs: self-help versus therapist guidance. Psychol Aging 1995; 10(1):54–63.
57. Heatherley SV, Hayward RC, Seers HE, Rogers PJ. Cognitive and psychomotor performance, mood, and pressor effects of caffeine after 4, 6 and 8 h caffeine abstinence. Psychopharmacology (Berl) 2005; 178(4):461–70.
58. Rogers PJ, Dernoncourt C. Regular caffeine consumption: a balance of adverse and beneficial effects for mood and psychomotor performance. Pharmacol Biochem Behav 1998; 59(4):1039–45.
59. Nehlig A. Is caffeine a cognitive enhancer?. J Alzheimers Dis 2010; 20(Suppl 1):S85–94.
60. Evans SM, Griffiths RR. Caffeine tolerance and choice in humans. Psychopharmacology (Berl) 1992; 108(1-2):51–9.
61. Juliano LM, Griffiths RR. A critical review of caffeine withdrawal: empirical validation of symptoms and signs, incidence, severity, and associated features. Psychopharmacology (Berl) 2004; 176(1):1–29.
62. Schuh K, Griffiths R. Caffeine reinforcement: the role of withdrawal. Psychopharmacology (Berl) 1997; 130(4):320–6.
63. Dews PB, O'Brien CP, Bergman J. Caffeine: behavioral effects of withdrawal and related issues. Food Chem Toxicol 2002; 40(9):1257–61.
64. Fillmore MT, Mulvihill LE, Vogel-Sprott M. The expected drug and its expected effect interact to determine placebo responses to alcohol and caffeine. Psychopharmacology (Berl) 1994; 115(3):383–8.
65. Smit H, Rogers P. Effects of low doses of caffeine on cognitive performance, mood and thirst in low and higher caffeine consumers. Psychopharmacology (Berl) 2000; 152(2):167–73.
66. Addicott MA, Laurienti PJ. A comparison of the effects of caffeine following abstinence and normal caffeine use. Psychopharmacology (Berl) 2009; 207(3):423–31.
67. Owens DS, Benton D. The impact of raising blood glucose on reaction times. Neuropsychobiology 1994; 30(2-3):106–13.
68. Benton D, Owens DS, Parker PY. Blood glucose influences memory and attention in young adults. Neuropsychologia 1994; 32(5):595–607.
69. Scholey AB, Harper S, Kennedy DO. Cognitive demand and blood glucose. Physiol Behav 2001; 73(4):585–92.
70. Owen L, Scholey AB, Finnegan Y, Hu H, Sünram-Lea SI. The effect of glucose dose and fasting interval on cognitive function: a double-blind, placebo-controlled, six-way crossover study. Psychopharmacology (Berl) 2012; 220(3):577–89.
71. Messier C. Glucose improvement of memory: a review. Eur J Pharmacol 2004; 490(1-3):33–57.
72. Smith MA, Riby LM, Eekelen JA, Foster JK. Glucose enhancement of human memory: a comprehensive research review of the glucose memory facilitation effect. Neurosci Biobehav Rev 2011; 35(3):770–83.
73. Sünram-Lea SI, Foster JK, Durlach P, Perez C. Investigation into the significance of task difficulty and divided allocation of resources on the glucose memory facilitation effect. Psychopharmacology (Berl) 2002; 160(4):387–97.
74. Meikle A, Riby LM, Stollery B. The impact of glucose ingestion and gluco-regulatory control on cognitive performance: a comparison of younger and middle aged adults. Hum. Psychopharmacol Clin Exp 2004;19:523–35.
75. Manning CA, Hall JL, Gold PE. (1990). Glucose Effects on Memory and Other Neuropsychological Tests in Elderly Humans. Psychological Science 1990; 1(5):307–11.
76. Serra-Grabulosa JM, Adan A, Falcón C, Bargalló N. Glucose and caffeine effects on sustained attention: an exploratory fMRI study. Hum Psychopharmacol 2010; 25(7-8):543–52.
77. Hillman CH, Erickson KI, Kramer AF. Be smart, exercise your heart: exercise effects on brain and cognition. Nat Rev Neurosci 2008; 9(1):58–65.
78. Sibley BA, Etnier JL. (2003). The Relationship between Physical Activity and Cognition in Children: A Meta-Analysis. Pediatr Exerc Sci 2003; 15(3):243–56.
79. Richards M, James SN, Sizer A, et al. Identifying the lifetime cognitive and socioeconomic antecedents of cognitive state: seven decades of follow-up in a British birth cohort study. BMJ Open 2019; 9(4):e024404.
80. van Uffelen JG, Chin A Paw MJ, Hopman-Rock M, van Mechelen W. The effects of exercise on cognition in older adults with and without cognitive decline: a systematic review. Clin J Sport Med 2008; 18(6):486–500.
81. Smith PJ, Blumenthal JA, Hoffman BM, et a. Aerobic exercise and neurocognitive performance: a meta-analytic review of randomized controlled trials. Psychosom Med 2010; 72(3):239–52.
82. Coles K, Tomporowski PD. Effects of acute exercise on executive processing, short-term and long-term memory. J Sports Sci 2008; 26(3):333–44.
83. Winter B, Breitenstein C, Mooren FC, et al. High impact running improves learning. Neurobiol Learn Mem 2007; 87(4):597–609.
84. Lambourne K, Tomporowski P. The effect of exercise-induced arousal on cognitive task performance: a meta-regression analysis. Brain Res 2010; 1341:12–24.
85. Brisswalter J, Collardeau M, René A. Effects of acute physical exercise characteristics on cognitive performance. Sports Med 2002; 32(9):555–66.
86. Voss MW, Kramer AF, Basak C, Prakash RS, Roberts B. Are expert athletes ‘expert’ in the cognitive laboratory? A meta-analytic review of cognition and sport expertise. Appl Cogn Psychol 2010; 24(6):812–26.
87. Colcombe SJ, Kramer AF, Erickson KI, et al. Cardiovascular fitness, cortical plasticity, and aging. Proc Natl Acad Sci USA 2004; 101(9):3316–21.
88. Burdette JH, Laurienti PJ, Espeland MA, et al. Using network science to evaluate exercise-associated brain changes in older adults. Front Aging Neurosci 2010; 2:23.
89. Gordon GR, Choi HB, Rungta RL, Ellis-Davies GC, MacVicar BA. Brain metabolism dictates the polarity of astrocyte control over arterioles. Nature 2008; 456(7223):745–9.
90. Neeper SA, Gómez-Pinilla F, Choi J, Cotman C. Exercise and brain neurotrophins. Nature 1995; 373(6510):109.
91. Vaynman S, Gomez-Pinilla F. Revenge of the ‘sit’: How lifestyle impacts neuronal and cognitive health through molecular systems that interface energy metabolism with neuronal plasticity. J Neurosci Res 2006; 84(4):699–715.
92. Erickson KI, Raji CA, Lopez OL, et al. Physical activity predicts gray matter volume in late adulthood: the Cardiovascular Health Study. Neurology 2010; 75(16):1415–22.
93. Pereira AC, Huddleston DE, Brickman AM, et al. An in vivo correlate of exercise-induced neurogenesis in the adult dentate gyrus. Proc Natl Acad Sci USA 2007; 104(13):5638–43.
94. Diekelmann S, Born J. The memory function of sleep. Nat Rev Neurosci 2010;11(2):114–26.
95. Fischer S, Hallschmid M, Elsner AL, Born J. Sleep forms memory for finger skills. Proc Natl Acad Sci USA 2002; 99(18):11987–91.
96. Walker MP, Brakefield T, Morgan A, Hobson JA, Stickgold R. Practice with sleep makes perfect: sleep-dependent motor skill learning. Neuron 2002; 35(1):205–11.
97. Mednick S, Nakayama K, Stickgold R. Sleep-dependent learning: a nap is as good as a night. Nat Neurosci 2003; 6(7):697–8.
98. Lahl O, Wispel C, Willigens B, Pietrowsky R. An ultra short episode of sleep is sufficient to promote declarative memory performance. J Sleep Res 2008; 17(1):3–10.
99. Censor N, Karni A, Sagi D. A link between perceptual learning, adaptation and sleep. Vision Res 2006; 46(23):4071–4.
100. Tsunematsu T. What are the neural mechanisms and physiological functions of dreams? Neurosci Res 2023; 189:54–9.
101. Ji D, Wilson MA. Coordinated memory replay in the visual cortex and hippocampus during sleep. Nat Neurosci 2007; 10(1):100–7.
102. Rasch B, Büchel C, Gais S, Born J. Odor cues during slow-wave sleep prompt declarative memory consolidation. Science 2007; 315(5817):1426–9.
103. Mölle M, Born J. Slow oscillations orchestrating fast oscillations and memory consolidation. Prog Brain Res 2011; 193:93–110.
104. Wagner U, Gais S, Haider H, Verleger R, Born J. Sleep inspires insight. Nature 2004; 427(6972):352–5.
105. Cai DJ, Mednick SA, Harrison EM, Kanady JC, Mednick SC. REM, not incubation, improves creativity by priming associative networks. Proc Natl Acad Sci USA 2009; 106(25):10130–4.
106. Killgore WD. Effects of sleep deprivation on cognition. Prog Brain Res 2010; 185:105–29.
107. Hobson JA. Sleep is of the brain, by the brain and for the brain. Nature 2005;437(7063):1254–6.
108. Hobson JA, Pace-Schott EF. The cognitive neuroscience of sleep: neuronal systems, consciousness and learning. Nat Rev Neurosci 2002; 3(9):679–93.
109. Lutz A, Brefczynski-Lewis J, Johnstone T, Davidson RJ. Regulation of the neural circuitry of emotion by compassion meditation: effects of meditative expertise. PLoS One 2008;3(3):e1897.
110. Leung MK, Chan CC, Yin J, Lee CF, So KF, Lee TM. Increased gray matter volume in the right angular and posterior parahippocampal gyri in loving-kindness meditators. Soc Cogn Affect Neurosci 2013; 8(1):34–9.
111. Moore A, Malinowski P. Meditation, mindfulness and cognitive flexibility. Conscious Cogn 2009; 18(1):176–86.
112. Hodgins HS, Adair KC. Attentional processes and meditation. Conscious Cogn 2010; 19(4):872–8.
113. Chiesa A, Calati R, Serretti A. Does mindfulness training improve cognitive abilities? A systematic review of neuropsychological findings. Clin Psychol Rev 2011; 31(3):449–64.
114. Sumantry D, Stewart KE. Meditation, Mindfulness, and Attention: a Meta-analysis. Mindfulness (NY) 2021; 12(6):1332–49.
115. Lodha S, Gupta R. Mindfulness, Attentional Networks, and Executive Functioning: a Review of Interventions and Long-Term Meditation Practice. Journal of Cognitive Enhancement 2022; 6(4):531–48.
116. Kasamatsu A, Hirai T. An electroencephalographic study on the zen meditation (Zazen). Folia Psychiatr Neurol Jpn 1966; 20(4):315–36.
117. Murata T, Koshino Y, Omori M, et al. Quantitative EEG Study on Zen Meditation (Zazen). Psychiatry Clin Neurosci 1993; 48(4):881–90.
118. Hölzel BK, Ott U, Gard T, et al. Investigation of mindfulness meditation practitioners with voxel-based morphometry. Soc Cogn Affect Neurosci 2008; 3(1):55–61.
119. Davidson RJ, Kabat-Zinn J, Schumacher J, et al. Alterations in brain and immune function produced by mindfulness meditation. Psychosom Med 2003; 65(4):564–70.
120. Lutz A, Slagter HA, Dunne JD, Davidson RJ. Attention regulation and monitoring in meditation. Trends Cogn Sci 2008; 12(4):163–9.
121. Pagnoni G, Cekic M, Guo Y. "Thinking about not-thinking": neural correlates of conceptual processing during Zen meditation. PLoS One 2008; 3(9):e3083.
122. Kozasa EH, Sato JR, Lacerda SS, et al. Meditation training increases brain efficiency in an attention task. Neuroimage 2012; 59(1):745–9.
123. Kjaer TW, Bertelsen C, Piccini P, Brooks D, Alving J, Lou HC. Increased dopamine tone during meditation-induced change of consciousness. Brain Res Cogn Brain Res 2002; 13(2):255–9.
124. Luders E, Toga AW, Lepore N, Gaser C. The underlying anatomical correlates of long-term meditation: larger hippocampal and frontal volumes of gray matter. Neuroimage 2009; 45(3):672–8.
125. Lazar SW, Kerr CE, Wasserman RH, et al. Meditation experience is associated with increased cortical thickness. Neuroreport 2005; 16(17):1893–7.
126. Hölzel BK, Carmody J, Vangel M, et al. Mindfulness practice leads to increases in regional brain gray matter density. Psychiatry Res 2011; 191(1):36–43.
127. Zrenner C, Ziemann U. Closed-Loop Brain Stimulation. Biol Psychiatry 2024; 95(6):545–52.
128. Vassallo M, Picozzi M. Managing brain-hype: Understanding and discriminating overemphasized brain-based allegations. Med Histor 2023; 7(3): e2023053.
129. Bublitz F, Almeida H, Luiz SOD, Perkusich A. Pervasive advertising: An approach for consumers and advertisers. Proceedings 2013 IEEE 3rd International Conference on Consumer Electronics; 2013 Sep 09-11: Berlin, DE. Berlin: IEEE; 2013.
130. van den Anker J, Reed MD, Allegaert K, Kearns GL. Developmental Changes in Pharmacokinetics and Pharmacodynamics. J Clin Pharmacol 2018; 58 Suppl 10:S10–S25.
131. Tully JL, Bridge O, Rennie J, Krecké J, Stevens T. The rising use of cognitive enhancement drugs and predictors of use during COVID-19: findings from a cross-sectional survey of students and university staff in the UK. Front Psychol 2024; 15:1356496.
132. Heinz A, Müller S. Exaggerating the benefits and downplaying the risks in the bioethical debate on cognitive neuroenhancement. Rethinking Cognitive Enhancement 2017; pp. 69–86.
133. Schelle KJ, Olthof BM, Reintjes W, Bundt C, Gusman-Vermeer J, van Mil AC. A survey of substance use for cognitive enhancement by university students in the Netherlands. Front Syst Neurosci 2015; 9:10.
134. Beauchamp TL, Childress JF. Principles of Biomedical Ethics (Principles of Biomedical Ethics. Oxford: Oxford University Press; 2008.
135. Gordon EC. Cognitive enhancement and authenticity: moving beyond the Impasse. Med Health Care Philos 2022; 25(2):281–8.
136. Leuenberger M. Authenticity in the Ethics of Human Enhancement. In Jotterand F, Ienca M, editors. The Routledge Handbook of the Ethics of Human Enhancement. London: Routledge; 2023. p. 131–40.
137. Tomažič T, Čelofiga AK. Ethical aspects of the abuse of pharmaceutical enhancements by healthy people in the context of improving cognitive functions. Philos Ethics Humanit Med 2019; 14(1):1–6.
138. Hendriks L, Mihalopoulos C, Le LK, Loo C, Chatterton ML. Cost-utility analysis of rTMS as add-on therapy to standard care for the treatment of hallucinations in schizophrenia. Eur Psychiatry 2022; 65(1):1–32.
139. McMaughan DJ, Oloruntoba O, Smith ML. Socioeconomic Status and Access to Healthcare: Interrelated Drivers for Healthy Aging. Front Public Health 2020; 8:231.
140. Dunlop C, Howe A, Li D, Allen LN. The coronavirus outbreak: the central role of primary care in emergency preparedness and response. BJGP Open 2020; 4(1):bjgpopen20X101041.
141. Patel V, Saxena S, Lund C, et al. The Lancet Commission on global mental health and sustainable development. Lancet 2018; 392(10157):1553–98.
142. Cohen Kadosh R, Levy N, O'Shea J, Shea N, Savulescu J. The neuroethics of non-invasive brain stimulation. Curr Biol 2012; 22(4):R108–11.
143. Wardrope A. Authenticity and autonomy in deep-brain stimulation. J Med Ethics 2014; 40(8):563–6.
144. Bublitz JC, Merkel R. Autonomy and authenticity of enhanced personality traits. Bioethics 2009; 23(6):360–74.
145. Di Stefano N. The Idea of Beauty and Its Biases: Critical Notes on the Aesthetics of Plastic Surgery. Plast Reconstr Surg Glob Open 2017; 5(10):e1523.
146. Wexler A. The Social Context of "Do-It-Yourself" Brain Stimulation: Neurohackers, Biohackers, and Lifehackers. Front Hum Neurosci 2017; 11:224.
147. Goyal M, Singh S, Sibinga EM, et al. Meditation programs for psychological stress and well-being: a systematic review and meta-analysis. JAMA Intern Med 2014; 174(3):357–68.
148. Schulte-Frankenfeld PM, Trautwein FM. App-based mindfulness meditation reduces perceived stress and improves self-regulation in working university students: A randomised controlled trial. Appl Psychol Health Well Being 2022; 14(4):1151–71.
149. Segall S. Equality of Opportunity for Health. In: Eyal N, Hurst SA, Norheim OF, Wikler D, editors. Inequalities in Health. Oxford: Oxford Academic; 2013. p. 147–63.
150. Marmot M, Allen JJ. Social determinants of health equity. Am J Public Health 2014; 104 Suppl 4(Suppl 4):S517–9.
151. Wasserman J, Palmer RC, Gomez MM, Berzon R, Ibrahim SA, Ayanian JZ. Advancing Health Services Research to Eliminate Health Care Disparities. Am J Public Health 2019;109(S1):S64–S69.
152. Maslen H, Douglas T, Cohen Kadosh R, Levy N, Savulescu J. The regulation of cognitive enhancement devices: refining Maslen et al.'s model. J Law Biosci 2015; 2(3):754–67.
153. Cabrera LY, Fitz NS, Reiner PB. Empirical Support for the Moral Salience of the Therapy-Enhancement Distinction in the Debate Over Cognitive, Affective and Social Enhancement. Neuroethics 2014; (3):243–56.
154. Zheng J. Ethical Implications of Biohacking as Activism: Democratized Health Care, Danger, or What?. Aresty Rutgers Undergraduate Research Journal 2021; 1(3). Accessed: Nov. 13, 2024. [Online]. Available: https://www.academia.edu/70580628/Ethical_Implications_of_Biohacking_as_Activism_Democratized_Health_Care_Danger_or_What