CT findings in “Post-Covid”: residua from acute pneumonia or “Post-Covid-ILD”?

Main Article Content

Stefanie Meiler https://orcid.org/0000-0002-7324-2532
Florian Poschenrieder
Arno Mohr
Quirin Strotzer
Gregor Scharf
Janine Rennert
Christian Stroszczynski
Michael Pfeifer
Okka Hamer

Keywords

COVID-19, pneumonia, ILD, long covid

Abstract

The aim of this study was to evaluate if CT findings in patients with pulmonary Post Covid syndrome represent residua after acute pneumonia or if SARS-CoV 2 induces a true ILD. Consecutive patients with status post acute Covid-19 pneumonia and persisting pulmonary symptoms were enrolled. Inclusion criteria were availability of at least one chest CT performed in the acute phase and at least one chest CT performed at least 80 days after symptom onset. In both acute and chronic phase CTs 14 CT features as well as distribution and extent of opacifications were independently determined by two chest radiologists. Evolution of every single CT lesion over time was registered intraindividually for every patient. Moreover, lung abnormalities were automatically segmented using a pre-trained nnU-Net model and volume as well as density of parenchymal lesions were plotted over the entire course of disease including all available CTs. 29 patients (median age 59 years, IQR 8, 22 men) were enrolled. Follow-up period was 80-242 days (mean 134). 152/157 (97 %) lesions in the chronic phase CTs represented residua of lung pathology in the acute phase. Subjective and objective evaluation of serial CTs showed that CT abnormalities were stable in location and continuously decreasing in extent and density. The results of our study support the hypothesis that CT abnormalities in the chronic phase after Covid-19 pneumonia represent residua in terms of prolonged healing of acute infection. We did not find any evidence for a Post Covid ILD.

Abstract 416 | PDF Downloads 358

References

1. Goërtz YMJ, Van Herck M, Delbressine JM, et al. Persistent symptoms 3 months after a SARS-CoV-2 infection: the post-COVID-19 syndrome? ERJ Open Research. 2020;6(4):00542-2020. doi: 10.1183/23120541.00542-2020.
2. Han X, Fan Y, Alwalid O, et al. Six-Month Follow-up Chest CT findings after Severe COVID-19 Pneumonia. Radiology. 2021:203153. doi: 10.1148/radiol.2021203153.
3. Shaw B, Daskareh M, Gholamrezanezhad A. The lingering manifestations of COVID-19 during and after convalescence: update on long-term pulmonary consequences of coronavirus disease 2019 (COVID-19). Radiol Med. 2021;126(1):40-6. doi: 10.1007/s11547-020-01295-8.
4. Sonnweber T, Sahanic S, Pizzini A, et al. Cardiopulmonary recovery after COVID-19 - an observational prospective multi-center trial. Eur Respir J. 2020. doi: 10.1183/13993003.03481-2020.
5. Mandal S, Barnett J, Brill SE, et al. 'Long-COVID': a cross-sectional study of persisting symptoms, biomarker and imaging abnormalities following hospitalisation for COVID-19. Thorax. 2020. doi: 10.1136/thoraxjnl-2020-215818.
6. Truffaut L, Demey L, Bruyneel AV, et al. Post-discharge critical COVID-19 lung function related to severity of radiologic lung involvement at admission. Respir Res. 2021;22(1):29. doi: 10.1186/s12931-021-01625-y.
7. Carfì A, Bernabei R, Landi F. Persistent Symptoms in Patients After Acute COVID-19. Jama. 2020;324(6):603-5. doi: 10.1001/jama.2020.12603.
8. Halpin S, O'Connor R, Sivan M. Long COVID and chronic COVID syndromes. J Med Virol. 2021;93(3):1242-3. doi: 10.1002/jmv.26587.
9. National Institute for Health and Care Excellence: Clinical Guidelines. COVID-19 rapid guideline: managing the long-term effects of COVID-19. National Institute for Health and Care Excellence: Clinical Guidelines. London: National Institute for Health and Care Excellence (UK)
Copyright © NICE 2020.; 2020.
10. Rabady S, Altenberger J, Brose M, et al. Leitlinie S1: Long COVID: Differenzialdiagnostik und Behandlungsstrategien. Wiener klinische Wochenschrift. 2021;133(7):237-78. doi: 10.1007/s00508-021-01974-0.
11. Antoniou KM, Vasarmidi E, Russell AM, et al. European Respiratory Society Statement on Long COVID-19 Follow-Up. Eur Respir J. 2022. doi: 10.1183/13993003.02174-2021.
12. Huang C, Huang L, Wang Y, et al. 6-month consequences of COVID-19 in patients discharged from hospital: a cohort study. The Lancet. 2021;397(10270):220-32. doi: 10.1016/s0140-6736(20)32656-8.
13. Lee JH, Yim JJ, Park J. Pulmonary function and chest computed tomography abnormalities 6-12 months after recovery from COVID-19: a systematic review and meta-analysis. Respir Res. 2022;23(1):233. doi: 10.1186/s12931-022-02163-x.
14. Li D, Liao X, Ma Z, et al. Clinical status of patients 1 year after hospital discharge following recovery from COVID-19: a prospective cohort study. Ann Intensive Care. 2022;12(1):64. doi: 10.1186/s13613-022-01034-4.
15. Valenzuela C, Waterer G, Raghu G. Interstitial lung disease before and after COVID-19: a double threat? Eur Respir J. 2021;58(6). doi: 10.1183/13993003.01956-2021.
16. Giacomelli C, Piccarducci R, Marchetti L, et al. Pulmonary fibrosis from molecular mechanisms to therapeutic interventions: lessons from post-COVID-19 patients. Biochem Pharmacol. 2021;193:114812. doi: 10.1016/j.bcp.2021.114812.
17. Wild JM, Porter JC, Molyneaux PL, et al. Understanding the burden of interstitial lung disease post-COVID-19: the UK Interstitial Lung Disease-Long COVID Study (UKILD-Long COVID). BMJ Open Respir Res. 2021;8(1). doi: 10.1136/bmjresp-2021-001049.
18. Udwadia ZF, Koul PA, Richeldi L. Post-COVID lung fibrosis: The tsunami that will follow the earthquake. Lung India. 2021;38(Supplement):S41-s7. doi: 10.4103/lungindia.lungindia_818_20.
19. Wijsenbeek M, Cottin V. Spectrum of Fibrotic Lung Diseases. N Engl J Med. 2020;383(10):958-68. doi: 10.1056/NEJMra2005230.
20. Ackermann M, Verleden SE, Kuehnel M, et al. Pulmonary Vascular Endothelialitis, Thrombosis, and Angiogenesis in Covid-19. New England Journal of Medicine. 2020;383(2):120-8. doi: 10.1056/NEJMoa2015432.
21. Ciaffi J, Meliconi R, Ruscitti P, et al. Rheumatic manifestations of COVID-19: a systematic review and meta-analysis. BMC Rheumatol. 2020;4:65. doi: 10.1186/s41927-020-00165-0.
22. Paliwal VK, Garg RK, Gupta A, et al. Neuromuscular presentations in patients with COVID-19. Neurol Sci. 2020;41(11):3039-56. doi: 10.1007/s10072-020-04708-8.
23. Bonometti R, Sacchi MC, Stobbione P, et al. The first case of systemic lupus erythematosus (SLE) triggered by COVID-19 infection. Eur Rev Med Pharmacol Sci. 2020;24(18):9695-7. doi: 10.26355/eurrev_202009_23060.
24. Gooding R, Myers B, Salta S. Lupus Anticoagulant in Patients with Covid-19. N Engl J Med. 2020;383(19):1893. doi: 10.1056/NEJMc2027508.
25. Zhang Y, Xiao M, Zhang S, et al. Coagulopathy and Antiphospholipid Antibodies in Patients with Covid-19. N Engl J Med. 2020;382(17):e38. doi: 10.1056/NEJMc2007575.
26. Hansell DM, Bankier AA, MacMahon H, et al. Fleischner Society: glossary of terms for thoracic imaging. Radiology. 2008;246(3):697-722. doi: 10.1148/radiol.2462070712.
27. Hofmanninger J, Prayer F, Pan J, et al. Automatic lung segmentation in routine imaging is primarily a data diversity problem, not a methodology problem. Eur Radiol Exp. 2020;4(1):50. doi: 10.1186/s41747-020-00173-2.
28. Isensee F, Jaeger PF, Kohl SAA, et al. nnU-Net: a self-configuring method for deep learning-based biomedical image segmentation. Nat Methods. 2021;18(2):203-11. doi: 10.1038/s41592-020-01008-z.
29. Roth H, Xu Z, Diez CT, et al. Rapid Artificial Intelligence Solutions in a Pandemic - The COVID-19-20 Lung CT Lesion Segmentation Challenge. Res Sq. 2021. doi: 10.21203/rs.3.rs-571332/v1.
30. Yushkevich PA, Piven J, Hazlett HC, et al. User-guided 3D active contour segmentation of anatomical structures: significantly improved efficiency and reliability. Neuroimage. 2006;31(3):1116-28. doi: 10.1016/j.neuroimage.2006.01.015.
31. Myall KJ, Mukherjee B, Castanheira AM, et al. Persistent Post-COVID-19 Inflammatory Interstitial Lung Disease: An Observational Study of Corticosteroid Treatment. Annals of the American Thoracic Society.0(ja):null. doi: 10.1513/AnnalsATS.202008-1002OC.
32. Wells AU, Devaraj A, Desai SR. Interstitial Lung Disease after COVID-19 Infection: A Catalog of Uncertainties. Radiology. 2021;299(1):E216-E8. doi: 10.1148/radiol.2021204482.
33. Marvisi M, Ferrozzi F, Balzarini L, et al. First report on clinical and radiological features of COVID-19 pneumonitis in a Caucasian population: Factors predicting fibrotic evolution. Int J Infect Dis. 2020;99:485-8. doi: 10.1016/j.ijid.2020.08.054.
34. Lerum TV, Aaløkken TM, Brønstad E, et al. Dyspnoea, lung function and CT findings 3 months after hospital admission for COVID-19. Eur Respir J. 2021;57(4). doi: 10.1183/13993003.03448-2020.
35. Wu X, Liu X, Zhou Y, et al. 3-month, 6-month, 9-month, and 12-month respiratory outcomes in patients following COVID-19-related hospitalisation: a prospective study. Lancet Respir Med. 2021;9(7):747-54. doi: 10.1016/s2213-2600(21)00174-0.
36. Bocchino M, Lieto R, Romano F, et al. Chest CT-based Assessment of 1-year Outcomes after Moderate COVID-19 Pneumonia. Radiology. 2022;305(2):479-85. doi: 10.1148/radiol.220019.
37. Guan CS, Lv ZB, Li JJ, et al. CT appearances, patterns of progression, and follow-up of COVID-19: evaluation on thin-section CT. Insights Imaging. 2021;12(1):73. doi: 10.1186/s13244-021-01019-0.
38. Chang YC, Yu CJ, Chang SC, et al. Pulmonary sequelae in convalescent patients after severe acute respiratory syndrome: evaluation with thin-section CT. Radiology. 2005;236(3):1067-75. doi: 10.1148/radiol.2363040958.
39. Ng CK, Chan JW, Kwan TL, et al. Six month radiological and physiological outcomes in severe acute respiratory syndrome (SARS) survivors. Thorax. 2004;59(10):889-91. doi: 10.1136/thx.2004.023762.
40. Hui DS, Wong KT, Ko FW, et al. The 1-year impact of severe acute respiratory syndrome on pulmonary function, exercise capacity, and quality of life in a cohort of survivors. Chest. 2005;128(4):2247-61. doi: 10.1378/chest.128.4.2247.
41. Qiao J, Zhang M, Bi J, et al. Pulmonary fibrosis induced by H5N1 viral infection in mice. Respir Res. 2009;10(1):107. doi: 10.1186/1465-9921-10-107.
42. Chen J, Wu J, Hao S, et al. Long term outcomes in survivors of epidemic Influenza A (H7N9) virus infection. Sci Rep. 2017;7(1):17275. doi: 10.1038/s41598-017-17497-6.
43. Bai L, Gu L, Cao B, et al. Clinical features of pneumonia caused by 2009 influenza A(H1N1) virus in Beijing, China. Chest. 2011;139(5):1156-64. doi: 10.1378/chest.10-1036.
44. Desai SR, Wells AU, Rubens MB, et al. Acute respiratory distress syndrome: CT abnormalities at long-term follow-up. Radiology. 1999;210(1):29-35. doi: 10.1148/radiology.210.1.r99ja2629.
45. Burnham EL, Janssen WJ, Riches DW, et al. The fibroproliferative response in acute respiratory distress syndrome: mechanisms and clinical significance. Eur Respir J. 2014;43(1):276-85. doi: 10.1183/09031936.00196412.
46. Zompatori M, Ciccarese F, Fasano L. Overview of current lung imaging in acute respiratory distress syndrome. Eur Respir Rev. 2014;23(134):519-30. doi: 10.1183/09059180.00001314.
47. Peter MG, Shaney LB, Robin C, et al. Respiratory follow-up of patients with COVID-19 pneumonia. Thorax. 2020;75(11):1009. doi: 10.1136/thoraxjnl-2020-215314.
48. Society BT: British Thoracic Society guidance on respiratory follow up of patients with a clinico-radiological diagnosis of COVID-19 pneumonia. https://www.brit-thoracic.org.uk/covid-19/covid-19-information-for-the-respiratory-community/ (2020). Accessed 06-11-2023.
49. Martini K, Larici AR, Revel MP, et al. COVID-19 pneumonia imaging follow-up: when and how? A proposition from ESTI and ESR. Eur Radiol. 2022;32(4):2639-49. doi: 10.1007/s00330-021-08317-7.
50. Raghu G, Wilson KC. COVID-19 interstitial pneumonia: monitoring the clinical course in survivors. The Lancet Respiratory Medicine. 2020;8(9):839-42. doi: https://doi.org/10.1016/S2213-2600(20)30349-0.