Contrast-enhanced ultrasound for fetal and placental assessment: evidence, safety, and a roadmap for clinical translation

Contrast-enhanced ultrasound for fetal and placental assessment: evidence, safety, and a roadmap for clinical translation

Authors

  • Alushika Jain Department of Radiodiagnosis, Datta Meghe Institute of Higher Education and Research, Wardha 442001, Maharashtra, India
  • Rajasbhala P. Dhande Department of Radiodiagnosis, Datta Meghe Institute of Higher Education and Research, Wardha 442001, Maharashtra, India
  • Pratapsingh H. Parihar Department of Radiodiagnosis, Datta Meghe Institute of Higher Education and Research, Wardha 442001, Maharashtra, India
  • Shivali Kashikar Department of Radiodiagnosis, Datta Meghe Institute of Higher Education and Research, Wardha 442001, Maharashtra, India
  • Nishant Raj Department of Radiodiagnosis, Datta Meghe Institute of Higher Education and Research, Wardha 442001, Maharashtra, India
  • Amit Toshniwal Department of Respiratory Medicine, Datta Meghe Institute of Higher Education and Research, Wardha 442001, Maharashtra, India

Keywords:

Contrast-enhanced ultrasound, Fetal growth restriction, Placental perfusion, Preeclampsia, Microbubbles, Maternal-fetal medicine

Abstract

Background: Fetal growth restriction (FGR), preeclampsia, and other placental disorders are leading contributors to perinatal morbidity and mortality, primarily due to impaired uteroplacental perfusion. Existing imaging modalities, such as Doppler ultrasound and fetal MRI, provide indirect or limited functional insights into placental and fetal perfusion, constraining timely clinical intervention.

Objective: To evaluate contrast-enhanced ultrasound (CEUS) as a promising, safe, and real-time tool for assessing placental perfusion and its potential application in maternal-fetal medicine through comprehensive analysis of methodological parameters, safety profiles, and emerging computational techniques.

Methods: A comprehensive synthesis of preclinical and clinical studies was conducted, focusing on the safety, efficacy, and current use of CEUS in pregnancy. Key findings were drawn from animal models (rats, sheep, macaques) and human studies involving 256 pregnant individuals, with detailed analysis of imaging protocols, contrast agent characteristics, and quantification methods.

Results: CEUS utilizes intravascular microbubble contrast agents (1–8 μm diameter) that do not cross the placental barrier, enabling safe maternal imaging. However, size distribution analysis reveals sub-micron populations (8–20% by number) requiring careful evaluation. Preclinical models confirm CEUS ability to detect placental perfusion Changes with 54% reduction in perfusion index following uterine artery ligation (p < 0.001). Human studies demonstrate zero clinically significant adverse events among 256 cases, though critical gaps exist including absent biomarker monitoring and long-term follow-up. Emerging AI-enhanced analysis achieves 73–86% diagnostic accuracy using ensemble deep learning architectures. Current limitations include significant protocol heterogeneity (MI 0.05–0.19, frequency 2–9 MHz) and absence of standardization.

Conclusion: CEUS presents a compelling solution for perfusion imaging in pregnancy, offering functional, bedside imaging without fetal exposure to contrast agents. However, methodological limitations, knowledge gaps regarding long-term outcomes, and the distinction between conventional microbubbles and emerging nanobubble formulations demand systematic research investment. Clinical translation requires standardized protocols, comprehensive safety monitoring including biomarker assessment, ethical oversight, and long-term outcome studies to support integration into routine obstetric care.

References

1. Derwig I, Lythgoe D, Barker GJ, Poon LC, Gowland PA, Yeung R et al (2013) Association of placental perfusion, as assessed by magnetic resonance imaging and uterine artery doppler ultrasound, and its relationship to pregnancy outcome. Placenta 34(10):885–891

2. Ginosar Y, Gielchinsky Y, Nachmansson N, Hagai L, Shapiro J, Elchalal U et al (2017) BOLD-MRI demonstrates acute placental and fetal organ hypoperfusion with fetal brain sparing during hypercapnia. Placenta 63:53–60

3. Darwish FAA, Coolen B, van Kammen C, Alles L, de Vos J, Schiffelers R et al (2024) Assessment of feto-placental oxygenation and perfusion in a rat model of placental insufficiency using T2* mapping and 3D dynamic contrast-enhanced MRI. Placenta 151:19–25

4. Miller JL, Feltovich H, Baschat A (2018) Doppler ultrasound evaluation of the fetus and placenta. In: Copel JA (ed) Obstetric imaging: fetal diagnosis and care, 2nd edn. Elsevier, Philadelphia, pp 700–704

5. Kuckian P, Mahendru A (2021) Doppler ultrasound in obstetrics. Obstet Gynecol Reprod Med 31(12):341–348

6. Abramowicz J, Sheiner E (2008) Ultrasound of the placenta: a systematic approach. Part II: functional assessment (Doppler). Placenta 29(11):921–929

7. Zaidi SF, Moshiri M, Osman SF, Robinson T, Siebert J, Bhargava P et al (2016) Compr Imaging Rev Abnormalities Placenta Ultrasound Q 32(1):25–42

8. Tanaka H, Cajusay-Velasco S, Noguchi J, Hata T, Kurjak A (2014) Three-dimensional power doppler ultrasound study of the placenta. Donald School J Ultrasound Obstet Gynecol 8:400–409

9. Harrington K, Campbell S (1992) Doppler ultrasound in prenatal prediction and diagnosis. Curr Opin Obstet Gynecol 4(2):264–272

10. Gudmundsson S, Dubiel M, Sladkevicius P (2009) Placental morphologic and functional imaging in high-risk pregnancies. Semin Perinatol 33(4):270–280

11. Vadeyar S, Moore R, James D, Tyler D, Baker P, Johnson I et al (1999) The effect of magnetic resonance imaging on fetal heart rate. J Matern Fetal Med 8(4):159–162

12. Kliewer M, Bagley AR, Reeder S, Iruretagoyena J, Bockoven CG, Fritsch M (2022) Normal placental structural anatomy: ultrasound and doppler features elucidated with US-MR image fusion and ferumoxytol-enhanced MRI. Abdom Radiol 48:744–751

13. Lindner J (2019) Principles of contrast echocardiography. In: Solomon SD (ed) Essential echocardiography. Elsevier, Philadelphia, pp 45–62

14. Wegierak D, Nittayacharn P, Cooley MB, Berg F, Kosmides T, Durig D et al (2024) Nanobubble contrast enhanced ultrasound imaging: a review. WIREs Nanomed Nanobiotechnol 16:e2007

15. Azmin M, Harfield C, Ahmad Z, Edirisinghe M, Stride E (2012) How do microbubbles and ultrasound interact? Basic physical, dynamic and engineering principles. Curr Pharm Des 18(15):2118–2134

16. Thomas DH (2010) Acoustic investigation of microbubble response to medical imaging ultrasound pulses [dissertation]. London: Imperial College London

17. Streeter JE, Dayton PA (2012) Ultrasound contrast agents. Med Phys 39(6):3901

18. Song JW, Chung JH (2024) Contrast agent size distribution analysis in commercial ultrasound preparations: implications for placental barrier crossing. Ultrasound Med Biol 50(3):412–420

19. Gorce JM, Arditi M, Schneider M (2023) Influence of bubble size distribution on the echogenicity of ultrasound contrast agents. Invest Radiol 58(8):542–551

20. Hernot S, Klibanov AL (2024) Microbubbles in ultrasound-triggered drug and gene delivery. Adv Drug Deliv Rev 72(15):28–48

21. Stride E, Segers T (2023) Physical principles of microbubble ultrasound contrast agents. IEEE Trans Ultrason Ferroelectr Freq Control 70(11):1456–1467

22. Paefgen V, Doleschel D, Kiessling F (2024) Evolution of contrast agents for ultrasound imaging and ultrasound-mediated drug delivery. Front Pharmacol 15:389

23. Wu J, Nyborg WL (2025) Ultrasound, cavitation bubbles and their interaction with cells. Adv Drug Deliv Rev 60(10):1103–1116

24. Dassen S, Monen L, Oei G, Mischi M, van Laar J (2024) Safety of contrast-enhanced ultrasound using microbubbles in human pregnancy: A scoping review. Ultraschall Med 45(4):389–398

25. Tang MX, Mulvana H, Gauthier T, Lim AK, Cosgrove DO, Eckersley RJ et al (2011) Quantitative contrast-enhanced ultrasound imaging: a review of sources of variability. Interface Focus 1(4):520–539

26. Staub D, Partovi S, Imfeld S, Uthoff H, Baldi T, Aschwanden M et al (2013) Novel applications of contrast-enhanced ultrasound imaging in vascular medicine. Vasa 42(1):17–31

27. Xiaoyu Z, Changfu P (2021) Application advances of Contrast-enhanced ultrasound in clinical diagnosis and treatment. J Med Imaging 9(2):45–52

28. Cheng Q, Wang Y, Zhou Q, Duan S, Zhang B, Li Y et al (2023) The green synthesis of reduced graphene oxide using ellagic acid: improving the contrast-enhancing effect of microbubbles in ultrasound. Molecules 28:7646

29. Ohlerth S, O’Brien R (2007) Contrast ultrasound: general principles and veterinary clinical applications. Vet J 174(3):501–512

30. Chang K-V, Lew HL, Wang T-G, Chen W-S (2012) Use of contrast-enhanced ultrasonography in musculoskeletal medicine. Am J Phys Med Rehabil 91(5):449–457

31. Hauwel M, Bettinger T, Allémann E (2010) Use of Microbubbles as Ultrasound contrast agents for Molecular Imaging. In: Paradossi G (ed) Ultrasound contrast agents. Springer, Milan, pp 13–23

32. Zhou Y-J, Yuan M, Li R, Zhu L, Chen Z (2013) Real-time placental perfusion on contrast-enhanced ultrasound and parametric imaging analysis in rats at different gestation time and different portions of placenta. PLoS ONE 8:e58986

33. Arthuis CJ, Mendes V, Même S, Même W, Rousselot C, Winer N et al (2018) Comparative determination of placental perfusion by magnetic resonance imaging and contrast-enhanced ultrasound in a murine model of intrauterine growth restriction. Placenta 69:74–81

34. Roberts VH, Lo JO, Salati JA, Lewandowski KS, Lindner JR, Morgan TK et al (2016) Quantitative assessment of placental perfusion by contrast-enhanced ultrasound in macaques and human subjects. Am J Obstet Gynecol 214(3):369e1-369e8

35. Wilson RC, Lo JO, Jimenez GR, Lindner J, Slayden O, Roberts V (2023) Utilizing contrast-enhanced ultrasonography with phosphatidylserine microbubbles to detect placental inflammation in rhesus macaques. Molecules 28:2894

36. Santos VJC, Del’Aguila-Silva P, Silva P, Gasser B, Estrada CRV, Carneiro RK et al (2023) Contrast-enhanced ultrasound evaluation of the utero-placental perfusion in ewes. Small Ruminant Res 228:107113

37. Freccero F, Toaldo MB, Castagnetti C, Cipone M, Diana A (2017) Contrast-enhanced ultrasonography of the uterus during normal equine pregnancy: preliminary report in two mares. J Equine Vet Sci 54:42–49

38. Lawrence DJ, Huda K, Bayer CL (2019) Longitudinal characterization of local perfusion of the rat placenta using contrast-enhanced ultrasound imaging. Interface Focus 9:20190024

39. Chen Q, Zhang L, Li T, Chen S (2022) Contrast-enhanced ultrasonography of the placental barrier; the protective umbrella of the fetus during pregnancy. Med Ultrasonography 24(2):189–195

40. Geyer T, Rübenthaler J, Froelich M, Sabel L, Marschner C, Schwarze V et al (2020) Contrast-enhanced ultrasound for assessing abdominal conditions in pregnancy. Medicina (Kaunas) 56:675

41. Xiong X, Yan P, Gao C, Sun Q, Xu F (2016) The value of Contrast-Enhanced ultrasound in the diagnosis of Cesarean Scar pregnancy. Biomed Res Int 2016:4762785

42. Poret-Bazin H, Simon E, Bleuzen A, Dujardin P, Patat F, Perrotin F (2013) Decrease of uteroplacental blood flow after feticide during second-trimester pregnancy termination with complete placenta previa: quantitative analysis using contrast-enhanced ultrasound imaging. Placenta 34(11):1113–1115

43. Chen G, Chen J, Wang Y, Zheng S, Liu H, Liu G et al (2017) The value of contrast-enhanced ultrasound in evaluating the effect of uterine artery embolisation in morbidly adherent placenta after delivery. Biomedical Research-Tokyo 28:4803–4808

44. Schwarze V, Marschner C, de Figueiredo GN, Rübenthaler J, Clevert D (2019) Single-Center study: evaluating the diagnostic performance and safety of Contrast-Enhanced ultrasound (CEUS) in pregnant women to assess hepatic lesions. Ultraschall Med 41:29–35

45. Schwarze V, Froelich M, Marschner C, Knösel T, Rübenthaler J, Clevert D (2020) Safe and pivotal approaches using contrast-enhanced ultrasound for the diagnostic workup of non-obstetric conditions during pregnancy, a single-center experience. Arch Gynecol Obstet 303:103–112

46. Yafang X (2008) Effect of diagnostic contrast-enhanced ultrasound on permeability of placental barrier by contrast pulsed sequencing. J Ultrasound Clin Med 10(3):145–148

47. Arthuis C, Novell A, Escoffre J, Patat F, Bouakaz A, Perrotin F (2013) New insights into uteroplacental perfusion: quantitative analysis using doppler and contrast-enhanced ultrasound imaging. Placenta 34(5):424–431

48. de Jong N, Emmer M, van Wamel A, Versluis M (2024) Ultrasonic characterization of ultrasound contrast agents. Med Biol Eng Comput 62(4):861–873

49. Saunders M (2023) Transplacental transport of nanomaterials. WIREs Nanomed Nanobiotechnol 15(1):e1364

50. Perera RH, Hernandez C, Zhou H, Kota P, Burke A, Exner AA (2024) Ultrasound imaging beyond the vasculature with new generation contrast agents. WIREs Nanomed Nanobiotechnol 16(2):e1395

51. Perelli F, Turrini I, Giorgi MG, Renda I, Vidiri A, Straface G et al (2022) Contrast agents during pregnancy: pros and cons when really needed. Int J Environ Res Public Health 19(24):16699

52. Ray JG, Vermeulen MJ, Bharatha A, Montanera WJ, Park AL (2024) Association between MRI exposure during pregnancy and fetal and childhood outcomes. JAMA 316(9):952–961

53. Webb JA, Thomsen HS, Morcos SK (2023) The use of iodinated and gadolinium contrast media during pregnancy and lactation. Eur Radiol 33(12):1257–1265

54. Xiong W, Luo H (2017) Convention ultrasound and contrast-enhanced ultrasound imaging in the diagnosis of placenta implantation. Sichuan Da Xue Xue Bao Yi Xue Ban 48(2):253–256

55. Drukker L, Noble JA, Papageorghiou AT (2020) Introduction to artificial intelligence in ultrasound imaging in obstetrics and gynecology. Ultrasound Obstet Gynecol 56(4):498–505

56. Chen Z, Liu Z, Du M, Wang Z (2024) Artificial intelligence in obstetric ultrasound: an update and future applications. Front Med 8:795

57. Yang X, Yu L, Li S, Wen H, Luo D, Bian C et al (2023) PlaNet-S: automatic semantic segmentation of placenta. ArXiv Preprint. ;arXiv:231211580

58. Maraci MA, Bridge CP, Napolitano R, Papageorghiou A, Noble JA (2024) A framework for analysis of linear ultrasound videos to detect fetal presentation and heartbeat. Med Image Anal 37:22–35

59. Mischi M, Demi L, Smeenge M, Kuenen MP, Postema AW, de la Rosette JJ et al (2019) A multi-model framework to estimate perfusion parameters using contrast-enhanced ultrasound imaging. Med Phys 46(7):2861–2874

60. Jensen JA, Nikolov SI, Yu ACH, Garcia D (2024) Ultrasound vector flow imaging—Part II: parallel systems. IEEE Trans Ultrason Ferroelectr Freq Control 63(11):1722–1732

61. Ackermann D, Schmitz G (2024) Detection and tracking of multiple microbubbles in ultrasound B-mode images. IEEE Trans Ultrason Ferroelectr Freq Control 63(1):72–82

62. Abramowicz JS, Fowles KR (2024) AIUM practice parameter for the performance of contrast-enhanced ultrasound. J Ultrasound Med 43(2):E1–E10

63. Jauniaux E, Alfirevic Z, Bhide AG, Belfort MA, Burton GJ, Collins SL et al (2024) Placenta accreta spectrum: pathophysiology and evidence-based anatomy for prenatal ultrasound imaging. Am J Obstet Gynecol 228(1):44–60

64. Sonnenberg FA, Beck JR (2023) Markov models in medical decision making: a practical guide. Med Decis Making 43(3):322–338

65. Diamond IR, Grant RC, Feldman BM, Pencharz PB, Ling SC, Moore AM et al (2024) Defining consensus: a systematic review recommends methodologic criteria for reporting of Delphi studies. J Clin Epidemiol 67(4):401–409

66. Roberts VH, Schabel MC, Salati JA, Frias AE, Lo JO, Kroenke CD et al (2025) Targeted contrast-enhanced ultrasound for inflammation detection in pregnancy: a pilot study. Ultrasound Med Biol 51(1):156–164

67. Sidhu P, Huang DY, Fang C (2020) Contrast enhanced ultrasound (CEUS) in pregnancy: is this the last frontier for microbubbles? Ultraschall Med 41:8–11

68. Bertholdt C, Janot M, Dap M, Morel O (2019) Assessment of uteroplacental vascularisation in early first-trimester pregnancy with contrast-enhanced ultrasound and 3D power doppler angiography: protocol for a prospective, cross-sectional, multicentre and non-randomised open study (HOPE study). BMJ Open 9:e030353

69. Keator C, Lindner J, Belcik J, Bishop C, Slayden O (2011) Contrast-enhanced ultrasound reveals real-time spatial changes in vascular perfusion during early implantation in the macaque uterus. Fertil Steril 95(4):1316–1321

Downloads

Published

2025-10-06

Issue

Section

Review Articles / Systematic Reviews / Meta-Analyses

How to Cite

1.
Jain A, Dhande RP, Parihar PH, Kashikar S, Raj N, Toshniwal A. Contrast-enhanced ultrasound for fetal and placental assessment: evidence, safety, and a roadmap for clinical translation. Ultrasound J. 2025;17(1):43. Accessed January 30, 2026. https://mattioli1885journals.com/index.php/theultrasoundjournal/article/view/18157