Contrast-ultrasound dispersion imaging for renal cell carcinoma diagnostics

Contrast-ultrasound dispersion imaging for renal cell carcinoma diagnostics

Authors

  • Peiran Chen Department of Electrical Engineering, Eindhoven University of Technology, De Groene Loper 19, Eindhoven 5612 AP, the Netherlands
  • Simona Turco Department of Electrical Engineering, Eindhoven University of Technology, De Groene Loper 19, Eindhoven 5612 AP, the Netherlands
  • Zhaohan Liu Department of Electrical Engineering, Eindhoven University of Technology, De Groene Loper 19, Eindhoven 5612 AP, the Netherlands
  • Christiaan Widdershoven Department of Urology, Amsterdam University Medical Centers, De Boelelaan 1117, Amsterdam 1081 HV, the Netherlands
  • Jorg Oddens Department of Urology, Amsterdam University Medical Centers, De Boelelaan 1117, Amsterdam 1081 HV, the Netherlands
  • Hessel Wijkstra Department of Electrical Engineering, Eindhoven University of Technology, De Groene Loper 19, Eindhoven 5612 AP, the Netherlands
  • Massimo Mischi Department of Electrical Engineering, Eindhoven University of Technology, De Groene Loper 19, Eindhoven 5612 AP, the Netherlands
  • Patricia Zondervan Department of Urology, Amsterdam University Medical Centers, De Boelelaan 1117, Amsterdam 1081 HV, the Netherlands

Keywords:

Urology, Renal cell carcinoma diagnostics, Angiogenesis, Dynamic contrast-enhanced ultrasound, Contrast-ultrasound dispersion imaging

Abstract

Cost-effective screening methods for Renal Cell Carcinoma (RCC) are still lacking. Angiogenesis is a recognized hallmark of cancer growth, leading to distinguishable perfusion patterns in tumors from those in normal tissue. This establishes the basis for diagnostic imaging solutions by dynamic contrast-enhanced ultrasound (DCE-US). In the past years, we have developed contrast-ultrasound dispersion imaging (CUDI) techniques to quantify prostate DCE-US acquisitions, obtaining promising results for prostate cancer localization. In this pilot study, we investigated for the first time its feasibility for RCC localization. DCE-US acquisitions of the kidney in 5 patients were used to perform CUDI analysis. With the obtained CUDI parameters and the delineated tumor and parenchyma regions, we performed pixel-based classification, from which the highest area under the receiver-operating-characteristic curve (AUC) = 0.96 was obtained for an individual patient, and an average AUC = 0.68 was obtained for the full patient dataset, showing the potential of CUDI for solid RCC localization. Further validation in a larger dataset and evaluation of the compatibility of point-of-care diagnosis are required.

References

1. Sung H, Ferlay J, Siegel RL et al (2021) Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 71:209–249. https://doi.org/10.3322/caac.21660

2. Thurnher M, Putz T, Rahm A et al (2008) Renal cell carcinoma. Handb Dendritic Cells 3:1117–1127. https://doi.org/10.1002/9783527619696.ch53

3. Ljungberg B, Albiges L, Abu-Ghanem Y et al (2019) European association of urology guidelines on renal cell carcinoma: the 2019 update. Eur Urol 75:799–810. https://doi.org/10.1016/j.eururo.2019.02.011

4. Tosaka A, Ohya K, Yamada K et al (1990) Incidence and properties of renal masses and asymptomatic renal cell carcinoma detected by abdominal ultrasonography. J Urol 144:1097–1099. https://doi.org/10.1016/S0022-5347(17)39667-2

5. Usher-Smith J, Simmons RK, Rossi SH, Stewart GD (2020) Current evidence on screening for renal cancer. Nat Rev Urol 2020 1711 17:637–642. https://doi.org/10.1038/s41585-020-0363-3

6. FOLKMAN J (2002) Role of angiogenesis in tumor growth and metastasis. Semin Oncol 29:15–18. https://doi.org/10.1016/S0093-7754(02)70065-1

7. Weidner N, Carroll PR, Flax J et al (1993) Tumor angiogenesis correlates with metastasis in invasive prostate carcinoma. Am J Pathol 143:401

8. Russo G, Mischi M, Scheepens W et al (2012) Angiogenesis in prostate cancer: onset, progression and imaging. BJU Int 110:E794–E808. https://doi.org/10.1111/J.1464-410X.2012.11444.X

9. Miles KA, Lee TY, Goh V et al (2012) Current status and guidelines for the assessment of tumour vascular support with dynamic contrast-enhanced computed tomography. Eur Radiol 22:1430–1441. https://doi.org/10.1007/S00330-012-2379-4/TABLES/7

10. Sboros V, Tang MX (2010) The assessment of microvascular flow and tissue perfusion using ultrasound imaging. Proc Inst Mech Eng H 224:273–290. https://doi.org/10.1243/09544119JEIM621

11. Mao Y, Mu J, Zhao J et al (2018) The value of Superb microvascular imaging in differentiating benign renal mass from malignant renal tumor: A retrospective study. Br J Radiol 91. https://doi.org/10.1259/bjr.20170601

12. Harvey CJ, Alsafi A, Kuzmich S et al (2015) Role of US contrast agents in the assessment of indeterminate solid and cystic lesions in native and transplant kidneys. 35(1419–1432). https://doi.org/10.1148/rg2015140222

13. Xu ZF, Xu HX, Xie XY et al (2010) Renal cell carcinoma and renal angiomyolipoma: differential diagnosis with real-time contrast-enhanced ultrasonography. J Ultrasound Med 29:709–717. https://doi.org/10.7863/JUM.2010.29.5.709

14. Rübenthaler J, Negrão de Figueiredo G, Mueller-Peltzer K et al (2018) Evaluation of renal lesions using contrast-enhanced ultrasound (CEUS); a 10-year retrospective European single-centre analysis. Eur Radiol 28:4542–4549. https://doi.org/10.1007/S00330-018-5504-1

15. Ignee A, Straub B, Schuessler G, Dietrich CF (2010) Contrast enhanced ultrasound of renal masses. World J Radiol 2:15–31. https://doi.org/10.4329/wjr.v2.i1.15

16. Sun D, Wei C, Li Y et al (2016) Contrast-Enhanced ultrasonography with quantitative analysis allows differentiation of renal tumor histotypes. Sci Rep 2016 61 6:1–7. https://doi.org/10.1038/srep35081

17. Li CX, Lu Q, Huang BJ et al (2016) Quantitative evaluation of contrast-enhanced ultrasound for differentiation of renal cell carcinoma subtypes and Angiomyolipoma. Eur J Radiol 85:795–802. https://doi.org/10.1016/j.ejrad.2016.01.009

18. Delorme S, Knopp MV (1998) Non-invasive vascular imaging: assessing tumour vascularity. Eur Radiol 1998 84 8:517–527. https://doi.org/10.1007/S003300050428

19. Mischi M, Kuenen MPJ, Wijkstra H (2012) Angiogenesis imaging by Spatiotemporal analysis of ultrasound contrast agent dispersion kinetics. IEEE Trans Ultrason Ferroelectr Freq Control 59:621–629. https://doi.org/10.1109/TUFFC.2012.2241

20. Kuenen MPJ, Mischi M, Wijkstra H (2011) Contrast-ultrasound diffusion imaging for localization of prostate cancer. IEEE Trans Med Imaging 30:1493–1502. https://doi.org/10.1109/TMI.2011.2125981

21. Kuenen MPJ, Saidov TA, Wijkstra H et al (2013) Spatiotemporal correlation of ultrasound contrast agent Dilution curves for angiogenesis localization by dispersion imaging. IEEE Trans Ultrason Ferroelectr Freq Control 60:2665–2669. https://doi.org/10.1109/TUFFC.2013.2865

22. Kuenen MPJ, Saidov TA, Wijkstra H, Mischi M (2013) Contrast-Ultrasound dispersion imaging for prostate cancer localization by improved Spatiotemporal similarity analysis. Ultrasound Med Biol 39:1631–1641. https://doi.org/10.1016/J.ULTRASMEDBIO.2013.03.004

23. Schalk SG, Demi L, Bouhouch N et al (2017) Contrast-Enhanced ultrasound angiogenesis imaging by mutual information analysis for prostate cancer localization. IEEE Trans Biomed Eng 64:661–670. https://doi.org/10.1109/TBME.2016.2571624

24. Mannaerts CK, Engelbrecht MRW, Postema AW et al (2020) Detection of clinically significant prostate cancer in biopsy-naïve men: direct comparison of systematic biopsy, multiparametric MRI- and contrast-ultrasound-dispersion imaging-targeted biopsy. BJU Int 126:481–493. https://doi.org/10.1111/BJU.15093

25. Wagner RF, Smith SW, Sandrik JM, Lopez H (1983) Statistics of speckle in ultrasound B-Scans. IEEE Trans Sonics Ultrason 30:156–163. https://doi.org/10.1109/T-SU.1983.31404

26. Ta CN, Eghtedari M, Mattrey RF et al (2014) 2-tier in-plane motion correction and out-of-plane motion filtering for contrast-enhanced ultrasound. Invest Radiol 49:707. https://doi.org/10.1097/RLI.0000000000000074

27. Demené C, Deffieux T, Pernot M et al (2015) Spatiotemporal clutter filtering of ultrafast ultrasound data highly increases doppler and fUltrasound sensitivity. IEEE Trans Med Imaging 34:2271–2285. https://doi.org/10.1109/TMI.2015.2428634

28. Sammali F, Kuijsters NPM, Huang Y et al (2019) Dedicated ultrasound speckle tracking for quantitative analysis of uterine motion outside pregnancy. IEEE Trans Ultrason Ferroelectr Freq Control 66:581–590. https://doi.org/10.1109/TUFFC.2018.2867098

29. Li J, Huang X, Wang L et al (2024) Role of Contrast-Enhanced ultrasound with the enhancement pattern and qualitative analysis for differentiating hypovascular solid renal lesions. Ultrasound Med Biol 50:295–303. https://doi.org/10.1016/j.ultrasmedbio.2023.11.002

30. Tufano A, Drudi FM, Angelini F et al (2022) Contrast-Enhanced ultrasound (CEUS) in the evaluation of renal masses with histopathological Validation—Results from a prospective Single-Center study. Diagnostics 12:1–8. https://doi.org/10.3390/diagnostics12051209

31. Xue LY, Lu Q, Huang BJ et al (2015) Papillary renal cell carcinoma and clear cell renal cell carcinoma: differentiation of distinct histological types with contrast – enhanced ultrasonography. Eur J Radiol 84:1849–1856. https://doi.org/10.1016/J.EJRAD.2015.06.017

32. Cosgrove D (2003) Angiogenesis imaging - Ultrasound. Br J Radiol 76. https://doi.org/10.1259/BJR/86364648

33. Wildeboer RR, Van Sloun RJG, Schalk SG et al (2018) Convective-Dispersion modeling in 3D Contrast-Ultrasound imaging for the localization of prostate cancer. IEEE Trans Med Imaging 37:2593–2602. https://doi.org/10.1109/TMI.2018.2843396

34. van Sloun RJG, Demi L, Schalk SG et al (2018) Contrast-enhanced ultrasound tractography for 3D vascular imaging of the prostate. Sci Rep 8:14640. https://doi.org/10.1038/s41598-018-32982-2

35. Errico C, Pierre J, Pezet S et al (2015) Ultrafast ultrasound localization microscopy for deep super-resolution vascular imaging. Nature 527:499–502. https://doi.org/10.1038/nature16066

36. Bodard S, Denis L, Hingot V et al (2023) Ultrasound localization microscopy of the human kidney allograft on a clinical ultrasound scanner. Kidney Int 103:930–935. https://doi.org/10.1016/j.kint.2023.01.027

37. Chabouh G, Denis L, Bodard S et al (2024) Whole organ volumetric sensing ultrasound localization microscopy for characterization of kidney structure. IEEE Trans Med Imaging. https://doi.org/10.1109/TMI.2024.3411669

38. Christensen-Jeffries K, Couture O, Dayton PA et al (2020) Super-resolution ultrasound imaging. Ultrasound Med Biol 46:865–891. https://doi.org/10.1016/j.ultrasmedbio.2019.11.013

39. Wildeboer RR, Postema AW, Demi L et al (2017) Multiparametric dynamic contrast-enhanced ultrasound imaging of prostate cancer. Eur Radiol 27:3226–3234. https://doi.org/10.1007/s00330-016-4693-8

40. Wildeboer RR, van Sloun RJG, Huang P et al (2019) 3-D Multi-parametric Contrast-Enhanced ultrasound for the prediction of prostate cancer. Ultrasound Med Biol 45:2713–2724. https://doi.org/10.1016/J.ULTRASMEDBIO.2019.05.017

41. Chen P, Turco S, Wang Y et al (2024) Can 3D multiparametric ultrasound imaging predict prostate biopsy outcome? Ultrasound Med Biol 50:1194–1202. https://doi.org/10.1016/J.ULTRASMEDBIO.2024.04.007/ASSET/6DDFED5C-4E05-4535-BEE6-4999423131BF/MAIN.ASSETS/GR4.JPG

Downloads

Published

2025-04-16

How to Cite

1.
Chen P, Turco S, Liu Z, et al. Contrast-ultrasound dispersion imaging for renal cell carcinoma diagnostics. Ultrasound J. 2025;17(1):23. Accessed January 30, 2026. https://mattioli1885journals.com/index.php/theultrasoundjournal/article/view/18129