Deep learning approaches to predict late gadolinium enhancement and clinical outcomes in suspected cardiac sarcoidosis.
Keywords:
cardiac sarcoidosis, cardiac magnetic resonance, deep learningAbstract
-
References
Trivieri MG, Spagnolo P, Birnie D, et al. Challenges in cardiac and pulmonary sarcoidosis. J Am Coll Cardiol. 2020;76(16):1878-901. doi:10.1016/j.jacc.2020.08.042.
Kazmirczak F, Chen K-HA, Adabag S, et al. Assessment of the 2017 AHA/ACC/HRS guideline recommendations for implantable cardioverter-defibrillator implantation in cardiac sarcoidosis. Circ Arrhythm Electrophysiol. 2019;12(9):e007488. doi:10.1161/CIRCEP.119.007488.
Mei X, Lee HC, Diao K, et al. Artificial intelligence-enabled rapid diagnosis of patients with COVID-19. Nat Med. 2020;26(8):1224-8. doi:10.1038/s41591-020-0931-3.
Dweck MR, Abgral R, Trivieri MG, et al. Hybrid magnetic resonance imaging and positron emission tomography with fluorodeoxyglucose to diagnose active cardiac sarcoidosis. JACC Cardiovasc Imaging. 2018;11(1):94-107. doi:10.1016/j.jcmg.2017.02.021.
Szegedy C, Liu W, Jia Y, et al. Going deeper with convolutions. In: Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Boston, MA, USA: IEEE; 2015. p. 1-9. doi:10.1109/CVPR.2015.7298594.
He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. arXiv. 2015. doi:10.48550/arXiv.1512.03385.
Mei X, Liu Z, Robson PM, et al. RadImageNet: an open radiologic deep learning research dataset for effective transfer learning. Radiol Artif Intell. 2022;4(5):e210315. doi:10.1148/ryai.210315.
Litjens G, Ciompi F, Wolterink JM, et al. State-of-the-art deep learning in cardiovascular image analysis. JACC Cardiovasc Imaging. 2019;12(8):1549-65. doi:10.1016/j.jcmg.2019.06.009.
Downloads
How to Cite
Issue
Section
License
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by-nc/4.0) which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Transfer of Copyright and Permission to Reproduce Parts of Published Papers.
Authors retain the copyright for their published work. No formal permission will be required to reproduce parts (tables or illustrations) of published papers, provided the source is quoted appropriately and reproduction has no commercial intent. Reproductions with commercial intent will require written permission and payment of royalties.
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.