Adverse human health effects of climate change: an update

Adverse human health effects of climate change: an update

Authors

  • Tommaso Filippini
  • Stefania Paduano
  • Federica Veneri
  • Giulia Barbolini
  • Gianluca Fiore
  • Marco Vinceti

Keywords:

Climate change; adverse health effects; infectious disease; mental health

Abstract

Background. The world is currently facing a process of climate change, which may adversely impact human health in many different ways. The safety of food, water and urban environments is endangered by the consequences of climate change. Sea level and temperature rise, along with more frequent and longer heat waves, represent only a few of the effects of climate change. The increased risk of extreme climate events (e.g., cyclones, droughts and floods) is another serious public health issue. These adverse effects are enhanced in areas and countries not having the capacity to effectively deal with climate change.

Study design. We primarily aimed at summarizing the impacts of climate change on public health. A further aim was to identify the most concerning consequences of this phenomenon and the vulnerability factors that amplify the negative effects of climate change.

Methods. PubMed and other literature databases were used as literature sources for this narrative review based on the search terms ‘climate change’ and ‘diseases categories’ up to January 2024, in order to assess the most recent and relevant scientific evidence about the relation between climate change and public health, identify knowledge gaps and priorities for future research. We also screened the websites of major agencies devoted to human health protection and environmental health.

Results and Conclusions. Climate change appears to induce a broad spectrum of generally adverse effects on public health. It may increase the risk of infectious diseases, psychiatric disorders, cancer and other diseases. Currently, we are not effectively counteracting this phenomenon, since pollutant and greenhouse gas emissions have been increasing alongside temperatures. A host of measures are required in order to prevent and fight climate change and related health effects. These include the adoption of a holistic approach and the collaboration of different kinds of expertise in order to design more effective strategies. Special attention should be paid to those who live in disadvantaged countries, and those who are more vulnerable to the adverse health consequences of climate change.

References

1. Patterson DW, Harvey R, Matkovic V, Hesselman M, Tahzib F. Post COP26: legal action now part of public health’s environment and climate change toolbox. Eur J Public Health. 2022; 32(4): 519-520. doi: 10.1093/eurpub/ckac057.

2. Centers for Disease Control and Prevention (CDC). Precipitation extremes: heavy rainfall, flooding, and droughts; 2020. Available from: https://www.cdc.gov/climateandhealth/effects/precipitation_extremes.htm. [Last accessed: 2024 January 4].

3. Centers for Disease Control and Prevention (CDC). Climate effects on health; 2022. Available from: https://www.cdc. gov/climateandhealth/effects/default.htm. [Last accessed: 2024 January 4].

4. United Nations (UN). Sustainable Development Goals Report; 2022. Available from: https://unstats.un.org/sdgs/ report/2022/The-Sustainable-Development-Goals-Report2022.pdf. [Last accessed: 2024 January 4].

5. United Nations (UN). Paris Agreement; 2015. Available from: https://unfccc.int/sites/default/files/english_paris_ agreement.pdf. [Last accessed: 2024 January 4].

6. Henry BM, Skinningsrud B, Vikse J, Pekala PA, Walocha JA, Loukas M, et al. Systematic reviews versus narrative reviews in clinical anatomy: methodological approaches in the era of evidence-based anatomy. Clin Anat. 2018; 31(3): 364-367. doi: 10.1002/ca.23042.

7. Gregory AT, Denniss AR. An introduction to writing narrative and systematic reviews - Tasks, tips and traps for aspiring authors. Heart Lung Circ. 2018; 27(7): 893-898. doi: 10.1016/j.hlc.2018.03.027.

8. Sukhera J. Narrative reviews in medical education: key steps for researchers. J Grad Med Educ. 2022; 14(4): 418-419.

doi: 10.4300/JGME-D-22-00481.1.

9. World Health Organization (WHO). Climate change; 2023. Available from: https://www.who.int/health-topics/climatechange. [Last accessed: 2024 January 4].

10. World Meteorological Organization (WMO). WMO Air quality and climate bulletin; 2023. Available from: https:// wmo.int/publication-series/wmo-air-quality-and-climatebulletin. [Last accessed: 2024 January 4].

11. National Aeronautics and Space Administration (NASA). Earthdata - NASA’s Earth science data collections. Sea level change data pathfinder; 2023. Available from: https://www. earthdata.nasa.gov/learn/pathfinders/sea-level-change. [Last accessed: 2024 January 4].

12. Baldwin JW, Benmarhnia T, Ebi KL, Jay O, Lutsko NJ, Vanos JK. Humidity’s role in heat-related health outcomes: a heated debate. Environ Health Perspect. 2023; 131(5): 55001. doi: 10.1289/EHP11807.

13. Faurie C, Varghese BM, Liu J, Bi P. Association between high temperature and heatwaves with heat-related illnesses: a systematic review and meta-analysis. Sci Total Environ. 2022; 852: 158332. doi: 10.1016/j.scitotenv.2022.158332.

14. Marazziti D, Cianconi P, Mucci F, Foresi L, Chiarantini I, Della Vecchia A. Climate change, environment pollution, COVID-19 pandemic and mental health.

Sci Total Environ. 2021; 773: 145182. doi: 10.1016/j. scitotenv.2021.145182.

15. Borg MA, Xiang J, Anikeeva O, Ostendorf B, Varghese B, Dear K, et al. Current and projected heatwave-attributable occupational injuries, illnesses, and associated economic burden in Australia. Environ Res. 2023; 236(Pt 2): 116852. doi: 10.1016/j.envres.2023.116852.

16. Gariazzo C, Taiano L, Bonafede M, Leva A, Morabito M, De’ Donato F, et al. Association between extreme temperature exposure and occupational injuries among construction workers in Italy: an analysis of risk factors. Environ Int. 2023; 171: 107677. doi: 10.1016/j.envint.2022.107677.

17. Cheng J, Xu Z, Bambrick H, Prescott V, Wang N, Zhang Y, et al. Cardiorespiratory effects of heatwaves: a systematic review and meta-analysis of global epidemiological evidence. Environ Res. 2019; 177: 108610. doi: 10.1016/j. envres.2019.108610.

18. Guihenneuc J, Ayraud-Thevenot S, Roschnik S, Dupuis A, Migeot V. Climate change and health care facilities: a risk analysis framework through a mapping review.

Environ Res. 2023; 216(Pt 3): 114709. doi: 10.1016/j. envres.2022.114709.

19. Liu J, Varghese BM, Hansen A, Zhang Y, Driscoll T, Morgan G, et al. Heat exposure and cardiovascular health outcomes: a systematic review and meta-analysis. Lancet Planet Health. 2022; 6(6): e484-e495. doi: 10.1016/S25425196(22)00117-6.

20. Song X, Wang S, Hu Y, Yue M, Zhang T, Liu Y, et al. Impact of ambient temperature on morbidity and mortality: an overview of reviews. Sci Total Environ. 2017; 586: 241-254. doi: 10.1016/j.scitotenv.2017.01.212.

21. Tran HM, Tsai FJ, Lee YL, Chang JH, Chang LT, Chang TY, et al. The impact of air pollution on respiratory diseases in an era of climate change: a review of the current evidence. Sci Total Environ. 2023; 898: 166340. doi: 10.1016/j.

scitotenv.2023.166340.

22. Biagioni B, Cecchi L, D’Amato G, Annesi-Maesano I. Environmental influences on childhood asthma: climate change. Pediatr Allergy Immunol. 2023; 34(5): e13961. doi: 10.1111/pai.13961.

23. D’Amato G, D’Amato M. Climate change, air pollution, pollen allergy and extreme atmospheric events. Curr Opin Pediatr. 2023; 35(3): 356-361. doi: 10.1097/ MOP.0000000000001237.

24. Kline O, Prunicki M. Climate change impacts on children’s respiratory health. Curr Opin Pediatr. 2023; 35(3): 350-355. doi: 10.1097/MOP.0000000000001253.

25. Wulandari RA, Fauzia S, Kurniasari F. Investigations on the risk factors of Acute Respiratory Infections (ARIs) among under-five children in Depok City, Indonesia. Ann Ig. 2024; 36(1): 15-25. doi: 10.7416/ai.2023.2580.

26. Buser JM, Lake K, Ginier E. Environmental risk ractors for childhood cancer in an era of global climate change: a scoping review. J Pediatr Health Care. 2022; 36(1): 46-56. doi: 10.1016/j.pedhc.2021.05.005.

27. Filippini T, Hatch EE, Rothman KJ, Heck JE, Park AS, Crippa A, et al. Association between outdoor air pollution and childhood leukemia: a systematic review and doseresponse meta-analysis. Environ Health Perspect. 2019; 127(4): 46002. doi: 10.1289/EHP4381.

28. Chang AY, Tan AX, Nadeau KC, Odden MC. Aging hearts in a hotter, more turbulent world: the impacts of climate change on the cardiovascular health of older adults. Curr Cardiol Rep. 2022; 24(6): 749-760. doi: 10.1007/s11886022-01693-6.

29. Balboni E, Filippini T, Crous-Bou M, Guxens M, Erickson LD, Vinceti M. The association between air pollutants and hippocampal volume from magnetic resonance imaging: a systematic review and meta-analysis. Environ Res. 2022; 204(Pt A): 111976. doi: 10.1016/j.envres.2021.111976.

30. Bongioanni P, Del Carratore R, Corbianco S, Diana A, Cavallini G, Masciandaro SM, et al. Climate change and neurodegenerative diseases. Environ Res. 2021; 201: 111511. doi: 10.1016/j.envres.2021.111511.

31. Bosi M, Malavolti M, Garuti C, Tondelli M, Marchesi C, Vinceti M, et al. Environmental and lifestyle risk factors for early-onset dementia: a systematic review. Acta Biomed. 2022; 93(6): e2022336. doi: 10.23750/abm.v93i6.13279.

32. Urbano T, Chiari A, Malagoli C, Cherubini A, Bedin

R, Costanzini S, et al. Particulate matter exposure from motorized traffic and risk of conversion from mild cognitive impairment to dementia: an Italian prospective cohort study. Environ Res. 2023; 222: 115425. doi: 10.1016/j. envres.2023.115425.

33. Parums DV. Editorial: climate change and the spread of vector-borne diseases, including Dengue, malaria, Lyme disease, and West Nile virus infection. Med Sci Monit. 2024; 29: e943546. doi: 10.12659/MSM.943546.

34. D’Amore C, Grimaldi P, Ascione T, Conti V, Sellitto C, Franci G, et al. West Nile Virus diffusion in temperate regions and climate change. A systematic review. Infez Med. 2023; 31(1): 20-30. doi: 10.53854/liim-3101-4.

35. Amelinda YS, Wulandari RA, Asyary A. The effects of climate factors, population density, and vector density on the incidence of dengue hemorrhagic fever in South Jakarta Administrative City 2016-2020: an ecological study.

Acta Biomed. 2022; 93(6): e2022323. doi: 10.23750/abm. v93i6.13503.

36. Dutto M, Mosca A. Preliminary considerations about the presence of Aedes albopictus (Skuse 1897) (Diptera: Culicidae) during winter in the Northwestern Italy. Ann Ig. 2017; 29(1): 86-90. doi: 10.7416/ai.2017.2135.

37. Liu-Helmersson J, Brannstrom A, Sewe MO, Semenza JC, Rocklov J. Estimating past, present, and future trends in the global distribution and abundance of the arbovirus vector Aedes aegypti under climate change scenarios. Front Public Health. 2019; 7: 148. doi: 10.3389/fpubh.2019.00148.

38. Semenza JC, Tran A, Espinosa L, Sudre B, Domanovic D, Paz S. Climate change projections of West Nile virus infections in Europe: implications for blood safety practices. Environ Health. 2016; 15 Suppl 1(Suppl 1): 28. doi: 10.1186/s12940-016-0105-4.

39. Wu X, Lu Y, Zhou S, Chen L, Xu B. Impact of climate change on human infectious diseases: empirical evidence and human adaptation. Environ Int. 2016; 86: 14-23. doi:

10.1016/j.envint.2015.09.007.

40. Uwishema O, Masunga DS, Naisikye KM, Bhanji FG, Rapheal AJ, Mbwana R, et al. Impacts of environmental and climatic changes on future infectious diseases. Int J Surg. 2023; 109(2): 167-170. doi: 10.1097/JS9.0000000000000160.

41. Miron IJ, Linares C, Diaz J. The influence of climate change on food production and food safety. Environ Res. 2023; 216(Pt 3): 114674. doi: 10.1016/j.envres.2022.114674.

42. Siraj AS, Santos-Vega M, Bouma MJ, Yadeta D, Ruiz Carrascal D, Pascual M. Altitudinal changes in malaria incidence in highlands of Ethiopia and Colombia. Science. 2014; 343(6175): 1154-1158. doi: 10.1126/science.1244325.

43. Williams PC, Bartlett AW, Howard-Jones A, McMullan B, Khatami A, Britton PN, et al. Impact of climate change and biodiversity collapse on the global emergence and spread of infectious diseases. J Paediatr Child Health. 2021; 57(11): 1811-1818. doi: 10.1111/jpc.15681.

44. Critselis E, Nastos PT, Theodoridou K, Theodoridou M, Tsolia MN, Hadjichristodoulou C, et al. Time trends in pediatric hospitalizations for varicella infection are associated with climatic changes: a 22-year retrospective study in a tertiary Greek referral center. PLoS One. 2012; 7(12): e52016. doi: 10.1371/journal.pone.0052016.

45. Nardell E, Lederer P, Mishra H, Nathavitharana R, Theron G. Cool but dangerous: how climate change is increasing the risk of airborne infections. Indoor Air. 2020; 30(2): 195-197. doi: 10.1111/ina.12608.

46. Balboni E, Filippini T, Rothman KJ, Costanzini S, Bellino S, Pezzotti P, et al. The influence of meteorological factors on COVID-19 spread in Italy during the first and second wave. Environ Res. 2023; 228: 115796. doi: 10.1016/j. envres.2023.115796.

47. Chen S, Huang L, Cai D, Li B, Yang J. Association between meteorological factors and COVID-19: a systematic review. Int J Environ Health Res. 2023; 33(12): 1254-1268. doi: 10.1080/09603123.2022.2083090.

48. Copat C, Cristaldi A, Fiore M, Grasso A, Zuccarello P, Signorelli SS, et al. The role of air pollution (PM and NO2) in COVID-19 spread and lethality: a systematic review. Environ Res. 2020; 191: 110129. doi: 10.1016/j. envres.2020.110129.

49. Filippini T, Rothman KJ, Goffi A, Ferrari F, Maffeis G, Orsini N, et al. Satellite-detected tropospheric nitrogen dioxide and spread of SARS-CoV-2 infection in Northern Italy. Sci Total Environ. 2020; 739: 140278. doi: 10.1016/j. scitotenv.2020.140278.

50. Filippini T, Rothman KJ, Cocchio S, Narne E, Mantoan D,

Saia M, et al. Associations between mortality from COVID19 in two Italian regions and outdoor air pollution as assessed through tropospheric nitrogen dioxide. Sci Total Environ. 2021; 760: 143355. doi: 10.1016/j.scitotenv.2020.143355.

51. Li HL, Yang BY, Wang LJ, Liao K, Sun N, Liu YC, et al. A meta-analysis result: ineven influences of season, geo-spatial scale and latitude on relationship between meteorological factors and the COVID-19 transmission. Environ Res. 2022; 212(Pt B): 113297. doi: 10.1016/j.envres.2022.113297.

52. Sciannameo V, Goffi A, Maffeis G, Gianfreda R, Jahier Pagliari D, Filippini T, et al. A deep learning approach for spatio-temporal forecasting of new cases and new hospital admissions of COVID-19 spread in Reggio Emilia, Northern Italy. J Biomed Inform. 2022; 132: 104132. doi: 10.1016/j. jbi.2022.104132.

53. Walker JT. The influence of climate change on waterborne disease and Legionella: a review. Perspect Public Health. 2018; 138(5): 282-286. doi: 10.1177/1757913918791198.

54. Andrade L, O’Dwyer J, O’Neill E, Hynds P. Surface water flooding, groundwater contamination, and enteric disease in developed countries: a scoping review of connections and consequences. Environ Pollut. 2018; 236: 540-549. doi: 10.1016/j.envpol.2018.01.104.

55. Levy K, Smith SM, Carlton EJ. Climate change impacts on waterborne diseases: moving toward designing interventions. Curr Environ Health Rep. 2018; 5(2): 272-282. doi: 10.1007/s40572-018-0199-7.

56. Fleury M, Charron DF, Holt JD, Allen OB, Maarouf AR. A time series analysis of the relationship of ambient temperature and common bacterial enteric infections in two Canadian provinces. Int J Biometeorol. 2006; 50(6): 385-391. doi: 10.1007/s00484-006-0028-9.

57. Kovats RS. El Nino and human health. Bull World Health Organ. 2000; 78(9): 1127-1135.

58. Lal A, Ikeda T, French N, Baker MG, Hales S. Climate variability, weather and enteric disease incidence in New Zealand: time series analysis. PLoS One. 2013; 8(12): e83484. doi: 10.1371/journal.pone.0083484.

59. Cisse G. Food-borne and water-borne diseases under climate change in low- and middle-income countries: further efforts needed for reducing environmental health exposure risks. Acta Trop. 2019; 194: 181-188. doi: 10.1016/j. actatropica.2019.03.012.

60. Fisman DN, Lim S, Wellenius GA, Johnson C, Britz P, Gaskins M, et al. It’s not the heat, it’s the humidity: wet weather increases legionellosis risk in the greater Philadelphia metropolitan area. J Infect Dis. 2005; 192(12): 2066-2073. doi: 10.1086/498248.

61. O’Keeffe J. Climate change and opportunistic pathogens (OPs) in the built environment. Environ Health Rev. 2022; 65(3): 69-76. doi: 10.5864/d2022-016.

62. Brandsema PS, Euser SM, Karagiannis I, Den Boer JW, Van Der Hoek W. Summer increase of Legionnaires’ disease 2010 in The Netherlands associated with weather conditions and implications for source finding. Epidemiol Infect. 2014; 142(11): 2360-2371. doi: 10.1017/ S0950268813003476.

63. Montagna MT, Brigida S, Fasano F, Leone CM, D’Ambrosio M, Spagnuolo V, et al. The role of air temperature in Legionella water contamination and legionellosis incidence rates in southern Italy (2018-2023). Ann Ig. 2023; 35(6): 631-640. doi: 10.7416/ai.2023.2578.

64. European Center for Disease Control (ECDC). Annual epidemiological report Legionnaires’ disease; 2023. Available from: https://www.ecdc.europa.eu/en/publications-data/ legionnaires-disease-annual-epidemiological-report-2021. [Last accessed: 2024 January 4].

65. Paduano S, Valeriani F, Romano-Spica V, Bargellini A, Borella P, Marchesi I. Microbial biodiversity of thermal water and mud in an Italian spa by metagenomics: a pilot study. Water Supply. 2017; 18(4): 1456-1465. doi: 10.2166/ ws.2017.209.

66. Paduano S, Marchesi I, Casali ME, Valeriani F, Frezza G, Vecchi E, et al. Characterisation of microbial community associated with different disinfection treatments in hospital hot water networks. Int J Environ Res Public Health. 2020; 17(6): 2158. doi: 10.3390/ijerph17062158.

67. Karunanidhi D, Subramani T, Srinivasamoorthy K, Yang Q. Environmental chemistry, toxicity and health risk assessment of groundwater: environmental persistence and management strategies. Environ Res. 2022; 214: 113884. doi: 10.1016/j.envres.2022.113884.

68. Shittu E, Lakhanpaul M, Vigurs C, Sarkar K, Koch M, Parikh P, et al. A rapid systematic scoping review of research on the impacts of water contaminated by chemicals on very young children. Sci Total Enviton. 2023; 891: 164604. doi: 10.1016/j.scitotenv.2023.164604.

69. Zuccarello P, Ferrante M, Cristaldi A, Copat C, Grasso A, Sangregorio D, et al. Exposure to microplastics (<10 mum) associated to plastic bottles mineral water consumption: the first quantitative study. Water Res. 2019; 157: 365-371. doi:

10.1016/j.watres.2019.03.091.

70. Filippini T, Wise LA, Vinceti M. Cadmium exposure and risk of diabetes and prediabetes: a systematic review and doseresponse meta-analysis. Environ Int. 2022; 158: 106920. doi: 10.1016/j.envint.2021.106920.

71. Tinkov AA, Filippini T, Ajsuvakova OP, Skalnaya MG, Aaseth J, Bjorklund G, et al. Cadmium and atherosclerosis: a review of toxicological mechanisms and a meta-analysis of epidemiologic studies. Environ Res. 2018; 162: 240-260. doi: 10.1016/j.envres.2018.01.008.

72. Filippini T, Torres D, Lopes C, Carvalho C, Moreira P, Naska A, et al. Cadmium exposure and risk of breast cancer: a dose-response meta-analysis of cohort studies. Environ Int. 2020; 142: 105879. doi: 10.1016/j.envint.2020.105879.

73. Vinceti M, Venturelli M, Sighinolfi C, Trerotoli P, Bonvicini F, Ferrari A, et al. Case-control study of toenail cadmium and prostate cancer risk in Italy. Sci Total Environ. 2007; 373(1): 77-81. doi: 10.1016/j.scitotenv.2006.11.005.

74. Fiore G, Veneri F, Di Lorenzo RD, Generali L, Vinceti M, Filippini T. Fluoride exposure and ADHD: a systematic review of epidemiological studies. Medicina. 2023; 59(4): 797. doi: 10.3390/medicina59040797.

75. Iamandii I, De Pasquale L, Giannone ME, Veneri F, Generali L, Consolo U, et al. Does fluoride exposure affect thyroid function? A systematic review and dose-response metaanalysis. Environ Res. 2024; 242: 117759. doi: 10.1016/j. envres.2023.117759.

76. Veneri F, Iamandii I, Vinceti M, Birnbaum LS, Generali L, Consolo U, et al. Fluoride exposure and skeletal fluorosis: a systematic review and dose-response meta-analysis. Curr Environ Health Rep. 2023. doi: 10.1007/s40572-02300412-9.

77. Veneri F, Vinceti M, Generali L, Giannone ME, Mazzoleni E, Birnbaum LS, et al. Fluoride exposure and cognitive neurodevelopment: systematic review and dose-response metaanalysis. Environ Res. 2023; 221: 115239. doi: 10.1016/j. envres.2023.115239.

78. Veneri F, Vinceti SR, Filippini T. Fluoride and caries prevention: a scoping review of public health policies. Ann Ig. 2024 Jan 17. doi: 10.7416/ai.2024.2593. Epub ahead of print.

79. Vinceti SR, Veneri F, Filippini T. Water fluoridation between public health and public law: an assessment of regulations across countries and their preventive medicine implications. Ann Ig. 2024 Jan 23. doi: 10.7416/ai.2024.2594. Epub ahead of print.

80. Duchenne-Moutien RA, Neetoo H. Climate change and emerging food safety issues: a review. J Food Prot. 2021; 84(11): 1884-1897. doi: 10.4315/JFP-21-141.

81. De Giglio O, Caggiano G, Apollonio F, Marzella A, Brigida S, Ranieri E, et al. The aquifer recharge: an overview of the legislative and planning aspect. Ann Ig. 2018; 30(1): 34-43. doi: 10.7416/ai.2018.2193.

82. Ebi KL, Loladze I. Elevated atmospheric CO(2) concentrations and climate change will affect our food’s quality and quantity. Lancet Planet Health. 2019; 3(7): e283-e284. doi:

10.1016/S2542-5196(19)30108-1.

83. United States Environmental Protection Agency (US-EPA). Climate impacts on agriculture and food supply; 2023. Available from: https://climatechange.chicago.gov/climateimpacts/climate-impacts-agriculture-and-food-supply. [Last accessed: 2024 January 4].

84. Founou LL, Founou RC, Essack SY. Antimicrobial resistance in the farm-to-plate continuum: more than a food safety issue. Future Sci OA. 2021; 7(5): FSO692. doi: 10.2144/ fsoa-2020-0189.

85. Schmidhuber J, Tubiello FN. Global food security under climate change. Proc Natl Acad Sci U S A. 2007; 105: 19703-19708. doi: 10.1073/pnas.070197610.

86. Clayton S. Climate change and mental health. Curr Environ Health Rep. 2021; 8(1): 1-6. doi: 10.1007/s40572-02000303-3.

87. Lowe SR, Bonumwezi JL, Valdespino-Hayden Z, Galea S. Posttraumatic stress and depression in the aftermath of environmental disasters: a review of quantitative studies published in 2018. Curr Environ Health Rep. 2019; 6(4): 344-360. doi: 10.1007/s40572-019-00245-5.

88. Anderson CA, Anderson KB, Dorr N, DeNeve KM, Flanagan M. Temperature and aggression. Adv Exp Soc Psychol. 2000; 32: 63-133. doi: 10.1016/S0065-2601(00)80004-0.

89. Miles-Novelo A, Anderson CA. Climate change and psychology: effects of rapid global warming on violence and aggression. Curr Clim Change Rep. 2019; 5(1): 36-46. doi: 10.1007/s40641-019-00121-2.

90. Burke M, González F, Baylis P, Heft-Neal S, Baysan C, Basu S, et al. Higher temperatures increase suicide rates in the United States and Mexico. Nature Clim Change. 2018; 8(8): 723-729. doi: 10.1038/s41558-018-0222-x.

91. Chan EYY, Lam HCY, So SHW, Goggins WB, Ho JY, Liu S, et al. Association between ambient temperatures and mental disorder hospitalizations in a subtropical city: a time-series study of Hong Kong Special Administrative Region. Int J Environ Res Public Health. 2018; 15(4): 754. doi: 10.3390/ ijerph15040754.

92. Obradovich N, Migliorini R, Mednick SC, Fowler JH. Nighttime temperature and human sleep loss in a changing climate. Sci Adv. 2017; 3(5): e1601555. doi: 10.1126/ sciadv.1601555.

93. Shultz JM, Rechkemmer A, Rai A, McManus KT. Public health and mental health implications of environmentally induced forced migration. Disaster Med Public Health Prep. 2019; 13(2): 116-122. doi: 10.1017/dmp.2018.27.

94. Rosenthal T. Immigration and acculturation: impact on health and well-being of immigrants. Curr Hypertens Rep. 2018; 20(8): 70. doi: 10.1007/s11906-018-0872-0.

95. Clayton S. Climate anxiety: psychological responses to climate change. J Anxiety Disord. 2020; 74: 102263. doi: 10.1016/j.janxdis.2020.102263.

96. The Lancet Child Adolescent Health. A climate of anxiety.

Lancet Child Adolesc Health. 2021; 5(2): 91. doi: 10.1016/ S2352-4642(21)00001-8.

97. Owino V, Kumwenda C, Ekesa B, Parker ME, Ewoldt L, Roos N, et al. The impact of climate change on food systems, diet quality, nutrition, and health outcomes: a narrative review. Front Clim. 2022; 4: 941842. doi: 10.3389/ fclim.2022.941842.

98. Paduano S, Borsari L, Salvia C, Arletti S, Tripodi A, Pinca J, et al. Risk factors for overweight and obesity in children attending the first tyear of primary schools in Modena, Italy. J Community Health. 2020; 45(2): 301-309. doi: 10.1007/ s10900-019-00741-7.

99. Paduano S, Greco A, Borsari L, Salvia C, Tancredi S, Pinca J, et al. Physical and sedentary activities and childhood overweight/obesity: a cross-sectional study among first-year children of primary schools in Modena, Italy. Int J Environ Res Public Health. 2021; 18(6): 3221. doi: 10.3390/ijerph18063221.

100. Urbano T, Zagnoli F, Malavolti M, Halldorsson TI, Vinceti M, Filippini T. Dietary intake of potentially toxic elements and children’s chemical exposure. Curr Opin Environ Sci Health. 2022; 30: 100393. doi: 10.1016/j. coesh.2022.100393.

101. Deshmukh CV, Dodamani AS, Mistry VD. Climate change on oral health and dentistry: association and mitigation. Acta Sci Dent Sci. 2023; 7(1): 78-85. doi: 10.31080/ ASDS.2023.07.1538.

102. Hackley DM. Climate change and oral health. Int Dent J. 2021; 71(3): 173-177. doi: 10.1111/idj.12628.

103. Psoter WJ, Reid BC, Katz RV. Malnutrition and dental caries: a review of the literature. Caries Res. 2005; 39(6): 441-447. doi: 10.1159/000088178.

104. Ligtenberg AJM, Meuffels M, Veerman ECI. Effects of environmental temperature on saliva flow rate and secretion of protein, amylase and mucin 5B. Arch Oral Biol. 2020; 109: 104593. doi: 10.1016/j.archoralbio.2019.104593.

105. Patil VS. Addressing the impact of the climate crisis on oral health. Int J Prev Clin Dent Res. 2023; 10(1): 20-22. doi: 10.4103/ijpcdr.ijpcdr_6_23.

106. Bardellini E, Veneri F, Amadori F, Conti G, Majorana A. Photobiomodulation therapy for the management of recurrent aphthous stomatitis in children: clinical effectiveness and parental satisfaction. Med Oral Patol Oral Cir Bucal. 2020; 25(4): e549-e553. doi: 10.4317/medoral.23573.

107. Bardellini E, Amadori F, Veneri F, Conti G, Paderno A, Majorana A. Adolescents and primary herpetic gingivostomatitis: an Italian overview. Ir J Med Sci. 2022; 191(2): 801-805. doi: 10.1007/s11845-021-02621-3.

108. Tranby EP, Heaton LJ, Tomar SL, Kelly AL, Fager GL, Backley M, et al. Oral cancer prevalence, mortality, and costs in Medicaid and commercial insurance claims data. Cancer Epidemiol Biomarkers Prev. 2022; 31(9): 1849-1857. doi:

10.1158/1055-9965.EPI-22-0114.

109. Folayan MO, El Tantawi M, Schroth RJ, Kemoli AM, Gaffar B, Amalia R, et al. Association between environmental health, ecosystem vitality, and early childhood caries. Front Pediatr. 2020; 8: 196. doi: 10.3389/fped.2020.00196.

110. Głódkowska N, Emerich K. The impact of environmental air pollution on the prevalence of molar incisor hypomineralization in schoolchildren: a cross-sectional study. Adv Clin Exp Med. 2020; 29(12): 1469-1477. doi: 10.17219/ acem/128227.

111. World Meteorological Organization (WMO). Past eight years confirmed to be the eight warmest on record; 2023. Available from: https://wmo.int/media/news/past-eightyears-confirmed-be-eight-warmest-record. [Last accessed: 2024 January 4].

112. United Nations (UN). COP28 - The UAE Consensus; 2023. Available from: https://www.cop28.com. [Last accessed: 2024 January 4].

113. Crippa M, Solazzo E, Guizzardi D, Monforti-Ferrario F, Tubiello FN, Leip A. Food systems are responsible for a third of global anthropogenic GHG emissions. Nat Food. 2021; 2(3): 198-209. doi: 10.1038/s43016-021-00225-9.

114. Vinceti SR. The legal status of general practitioners at the dawn of the new primary care in Italy. Ann Ig. 2022; 34(5): 431-438. doi: 10.7416/ai.2021.2492.

115. Vinceti SR. Reorganizing Italy’s territorial healthcare: the Ministerial Decree No. 77/2022 and its comparative significance. Ann Ig. 2023; 35(3): 367-371. doi: 10.7416/ ai.2023.2556.

116. Carducci AL, Agodi A, Ancona C, Angelini P, Bagordo F, Barbone F, et al. Impact of the environment on the health: from theory to practice. Environ Res. 2021; 194: 110517. doi: 10.1016/j.envres.2020.110517.

117. Chambaud L, Chen T, Cadeddu C, Pinho-Gomes A-C, Ádám B, Middleton J, et al. ASPHER Statement for COP28. A Call for Action in Seven Points. Public Health Reviews. 2023; 44. doi.

118. Middleton J, Biberman D, Magana L, Saenz R, Low WY, Adongo P, et al. Global governance for improved human, animal, and planetary health: the essential role of schools and programs of public health. Public Health Rev. 2021; 42: 1604610. doi: 10.3389/phrs.2021.1604610.

119. Palandri L, Urbano T, Pezzuoli C, Miselli F, Caraffi R, Filippini T, et al. The key role of public health in renovating Italian biomedical doctoral programs. Ann Ig. 2024 Jan 17. doi: 10.7416/ai.2024.2592. Epub ahead of print.

120. Vinceti SR. Reshaping EU legislation for air pollution control: main features of the proposed Directive in comparison with the US legislation. Ann Ig. 2023; 35(4): 454-458. doi:

10.7416/ai.2023.2557.

Downloads

Published

2024-05-30

Issue

Section

Original research

How to Cite

1.
Filippini T, Paduano S, Veneri F, Barbolini G, Fiore G, Vinceti M. Adverse human health effects of climate change: an update. Ann Ig. 2024;36(3):281-291. doi:10.7416/ai.2024.2595