The malformed Non-adult Human Skeletal Remains of the Anthropology Museum of Naples: reading the past writes the future

Main Article Content

Lucia Borrelli
Mariailaria Verderame


Craniosynostosis, malformations, non-adult human skeletal remains, anthropology museum


Human skeleton remains provide data to reconstruct the history of human evolution and allow to retrace the lifestyle, culture and habits of ancient and modern populations. Bones and teeth retain the traces of growth and aging processes and their morphology can be influenced by internal and external factors including metabolic, nutritional and infectious diseases or traumatic events. The skeleton therefore represents an interesting biological archive. In this study, by anthropometric and morphological analyses, we have examined the non-adult human skeletal remains of the Anthropology Museum of the University Federico II in Naples to derive information regarding the process of skull ossification and skeletal development during prenatal and neonatal life. Then we have crossed our results with those deriving from a bibliographic survey to determine if the observed malformed status met the criteria of any pathological diagnosis of genetic nature, possibly incompatible with life. The research was conducted through a non-invasive method to safeguard the integrity of finds considered their rarity and historic importance.


Abstract 36 | PDF Downloads 27


1. Borrelli L, Verderame M. Malformed skulls from criminal Anthropology: a preliminary study on the Cranioteca of the Anthropology Museum of Naples. Med Histor 2021; Available from:

2. Beederman M, Farina EM, Reida RR. Molecular basis of cranial suture biology and disease: Osteoblastic and osteoclastic perspectives. Genes Dis 2014; 1(1): 120–125.

3. Proctor MRG, Meara JG. A review of the management of single-suture craniosynostosis, past, present, and future. J Neurosurg Pediatr 2019; 24: 622–631.

4. Vu HL, Panchal J, Parker EE, Levine NS, Francel P. The timing of physiologic closure of the metopic suture: a review of 159 patients using reconstructed 3D CT scans of the craniofacial region. J Craniofac Surg 2001; 12(6): 527-532.

5. Cunningham ML, Heike CL. Evaluation of the infant with an abnormal skull shape. Curr Opin Pediatr 2007; 19(6),645e651.

6. Teager SJ, Constantine S, Lottering N Anderson PJ. In South Australian infants from 3D CT scans, Child's Nervous System Physiologic closure time of the metopic suture. 2019; 35: 329–335.

7. Cohen MM Jr. Diagnosis, evaluation and management. In Craniosynostosis, edited by Cohen MMJ, MacLean RE, Oxford University Press, New York; 2000: 112–118.

8. Jin SW, Sim KB, Kim SD. Development and growth of the normal cranial vault: an embryologic review. J Korean Neurosurg Soc 2016; 59: 192–196.

9. Gracia A, Martínez-Lage JF, Arsuaga JL, Martínez I, Lorenzo C, Pérez-Espejo MA. The earliest evidence of true lambdoid craniosynostosis: the case of "Benjamina", a Homo heidelbergensis child. Childs Nerv Syst 2010; 26(6): 723-7.

10. Kiserud T, Piaggio G, Carroli G, Widmer M, Carvalho J, Jensen LN, Giordano D, Cecatti JG, Aleem HA, Talegawkar SA, Benachi A, Diemert A, Kitoto AT, Thinkhamrop J, Lumbiganon P, Tabor A, Kriplani A, Perez RG, Hecher K, Hanson MA, Gülmezoglu AM, Platt LD. Correction: The World Health Organization Fetal Growth Charts: A Multinational Longitudinal Study of Ultrasound Biometric Measurements and Estimated Fetal Weight. Plos Medicine 2021;

11. Fedele FG. Il Museo di Antropologia: origini, sviluppo e riscoperta. In Fratta A (ed) I Musei Scientifici dell’Università di Napoli Federico II, Napoli: Fridericiana Editrice Universitaria; 1999: 185-259.
12. Brunetti L. Scuola di Anatomia Patologica della R. Università di Padova. La tannizzazione dei tessuti animali. Racheotomia anteriore e posteriore. Invagimento intestinale. L’organo della parola. Premiata Tipografia alla Minerva dei fratelli Salmin, Padova; 1878: 79, 2 pls.
13. Ortner DJ, Putschar WGJ. Identification of Pathological Condition In: Smithsonian Contribution to Antrhopology, Human Skeletal Remains. 1985; 1-488.
14. Marin-Padilla M, Marin-Padilla TM. Morphogenesis of experimentally induced Arnold—Chiari malformation. J Neurol Sci 1981; 50(1): 29–55.
15. Stovner LJ, Bergan U, Nilsen G, Sjaastad O. Posterior cranial fossa dimensions in the Chiari I malformation: relation to pathogenesis and clinical presentation. Neuroradiology 1993; 35(2):113–118.

16. Nishikawa M, Sakamoto H, Hakuba A, Nakanishi N, Inoue Y. Pathogenesis of Chiari malformation: a morphometric study of the posterior cranial fossa. J Neurosurg 1997; 86(1): 40–47.

17. Rhodes JL, Tye GW, Fearon, JA. Craniosynostosis of the Lambdoid Suture. Semin Plast Surg 2014; 28(3): 138–143.
18. Persing JA. Management considerations in the treatment of craniosynostosis. Plast Reconstr Surg 2008; 121 (4): 1–11.

19. Blount JP, Louis RG, Tubbs RS. Pan-synostosis: a review. Childs Nerv Syst 2007; 23: 1103–09.

20. Kimonis V, Gold JA, Hoffman T, Panchal J, Boyadjiev S. Genetics of Craniosynostosis. Semin Pediatr Neurol 2007; 4: 150-161.
21. Lamy M, Maroteaux P. Diastrophic dwarfism. Presse Med 1960; 68: 1977-80.
22. Hastbacka J, Kaitila I, Sistonen P, de la Chapelle A. Diastrophic dysplasia gene maps to the distal long arm of chromosome 5. Proc Natl Acad Sci USA 1990; 87: 8056-8059.

23. Meyer S, Galassi FM, Böni T, Seiler R, Bickel S, Rühli F. Mummified proportionate dwarfs from the Valley of the Kings. Lancet D.iabetes Endocrinol 2019; 7(3): 173-174.

24. Turnpenny PD, Sloman M, Dunwoodie S. Spondylocostal Dysostosis, Autosomal Recessive In: Adam MP, Ardinger HH, Pagon RA, Wallace SE, Bean LJH, Gripp KW, Mirzaa GM, Amemiya A (ed.) GeneReviews® [Internet]. Seattle (WA), University of Washington, Seattle: 2017:1993-2020.

25. Rekate HL. Pathogenesis of hydrocephalus in achondroplastic dwarfs: a review and presentation of a case followed for 22 years. Child's Nervous System 2019; 35: 1295–1301.

26. Golla A, Lichtner P, von Gernet S, Winterpacht A, Fairley J, Murken J, Schuffenhauer S. Phenotypic expression of the fibroblast growth factor receptor 3 (FGFR3) mutation P250R in a large craniosynostosis family. J Med Genet 1997; 34: 683-684.

27. Thomas GPL, Wilkie AOM, Richards PG, Wall SA. FGFR3 P250R mutation increases the risk of reoperation in apparent ‘nonsyndromic’ coronal craniosynostosis. J Craniofac Sur 2005; 16(3): 347-352.