Insects and SARS-CoV-2: Analysis of the Potential Role of Vectors in European Countries

Insects and SARS-CoV-2: Analysis of the Potential Role of Vectors in European Countries

Authors

  • M. Dutto
  • G. Lauria
  • A. Drago
  • S. Martini
  • I. Gorrasi
  • G. Gilli

Keywords:

Virus, transmission, urban pests, COVID-19

Abstract

SARS-CoV-2 is a coronavirus responsible for the pandemic that developed in China in late 2019. Transmission of the virus is predominantly direct, through exposure to infected respiratory secretions. As far as we know, arthropods play a key role in the transmission and spread of several viruses, and thus their role in the spread of COVID-19 deserves to be studied.

The biological transmission of viral agents through insects is very complex. While mechanical transmission is more likely to happen, biological transmission is possible via blood-sucking arthropods, but this requires a high grade of compatibility between the vector and the pathogen. If the biological and mechanical transmission of SARS-CoV-2 by blood-sucking arthropods is excluded, a mechanical transmission by urban pests could take place. This risk is very low but it could be important in isolated environmental conditions, where other means of transmission are not possible. The presence of SARS-CoV-2 in non-blood-sucking arthropods in infected buildings, like hospitals and retirement homes, should be investigated.

References

1. Andersen KG, Rambaut A, Lipkin WI, Holmes

Insects and COVID-19 Insects and COVID-19 587

EC, Garry RF. The proximal origin of SARSCoV-2. Nat Med 2020; 26(4): 450-5. doi: 10.1038/s41591-020-0820-9.

2. Singhal T. A review of Coronavirus Disease- 2019 (COVID-19). Indian J Pediatr 2020; 87(4): 281-6. doi: 10.1007/s12098-020-03263-6. Epub 2020 Mar 13.

3. Goldman E. Exaggerated risk of transmission of COVID-19 by fomites. Lancet Infect Dis 2020; 20(8): 892-3. doi: https://doi.org/10.1016/ S1473-3099(20)30561-2.

4. Han J, Zhang X, He S, Jia P. Can the coronavirus disease be transmitted from food? A review of evidence, risks, policies and knowledge gaps. Environ Chem Lett 2020 Oct 1: 1-12. doi:

10.1007/s10311-020-01101-x.

5. Mondelli MU, Colaneri M, Seminari EM, Baldanti F, Bruno R. Low risk of SARS-CoV-2 transmission by fomites in real-life conditions. Lancet Infect Dis 2020: S1473-3099(20)30678-2. doi: 10.1016/S1473-3099(20)30678-2.

6. Thippareddi H, Balamurugan S, Patel J, Singh M, Brassard J. Coronaviruses - Potential human threat from foodborne transmission? Lebensm Wiss Technol 2020: 110147. doi: 10.1016/j. lwt.2020.110147.

7. Casanova L, Soyoung J, Rutala WA, Weber DJ, Sobsey M. Effects of air temperature and relative humidity on Coronavirus survival on surfaces. Appl Environ Microbiol 2010; 76(9): 2712-7. doi: 10.1128/AEM.02291-09.

8. van Doremalen N, Bushmaker T, Morris DH, et al. Aerosol and surface stability of SARSCoV-2 as compared with SARS-CoV-1. N Engl J Med 2020; 382(16): 1564-7. doi: 10.1056/ NEJMc2004973.

9. El-Sherbini GT. The role of insects in mechanical transmission of human parasites. Iran Red Crescent Med J 2011; 13(9): 678-9. doi: 10.5812/ kowsar.20741804.2253.

10. Laroche M, Raoult D, Parola P. Insect and the transmission of bacterial agents. Microbiol Spectr 2018; 6(5): 1-6. doi: 10.1128/microbiolspec.MTBP-0017-2016.

11. Kuno G, Chang GJ. Biological transmission of arboviruses: reexamination of and new insights into components, mechanisms, and unique traits as well as their evolutionary trends. Clin Microbiol Rev 2005; 18(4): 608-37. doi: 10.1128/ CMR.18.4.608-637.2005.

12. Muñoz ML, Cisneros A, Cruz J, Das P, Tovar R, Ortega A. Putative dengue virus receptors from mosquito cells. FEMS Microbiol Lett 1998; 168(2): 251-8. doi: 10.1111/j.1574-6968.1998.

tb13281.x.

13. Amraoui F, Failloux AB. Chikungunya: an unexpected emergence in Europe. Curr Opin Virol 2016; 21: 146-50. doi: 10.1016/j. coviro.2016.09.014.

14. Brady OJ, Hay SI. The first local cases of Zika virus in Europe. Lancet 2019; 394(102139: 1991-2. doi: 10.1016/S0140-6736(19)32790-4.

15. Sambri V, Capobianchi M, Charrel R, et al. West Nile virus in Europe: emergence, epidemiology, diagnosis, treatment, and prevention. Clin Microbiol Infect 2013; 19(8): 699-704. doi: 10.1111/1469-0691.12211.

16. Chang L, Yan Y. Coronavirus Disease 2019: Coronaviruses and blood safety. Transfus Med Rev 2020; 32(2): 75-80. doi: 10.1016/j. tmrv.2020.02.003.

17. Gu J, Gong E, Zhang B, et al. Multiple organ infection and the pathogenesis of SARS. J Exp Med 2005; 202(3): 415-24. doi: 10.1084/ jem.20050828.

18. Dehghani R, Kassiri H. A brief review on the possible role of houseflies and cockroaches in the mechanical transmission of coronavirus disease 2019 (COVID-19). Arch Clin Infect Dis 2020; 15(COVID-19): e102863. doi: 10.5812/ archcid.102863.

19. Xia H, Atoni E, Zhao L, et al. SARS-CoV-2 does not replicate in Aedes mosquito cells nor present in field-caught mosquitoes from Wuhan. Virol Sin 2020; 35(3): 355-8. doi: 10.1007/s12250020-00251-0.

20. Huang YJS, Vanlandingham DL, Bilyeu AN, Sharp HM, Hettenbach SM, Higgs S. SARS-CoV-2 failure to infect or replicate in mosquitoes: an extreme challenge. Sci Rep 2020; 10(1):11915. doi: 10.1038/s41598-020-68882-7.

21. Fortuna C, Montarsi F, Severini F, et al. The common European mosquitoes Culex pipiens and Aedes albopictus are unable to transmit SARS-CoV-2, after a natural-mimicking challenge with infected blood. Parasit Vectors 2021; 14(1): 76. doi: 10.1186/s13071-021-04578-9.

22. Hindson J. COVID-19: fecal-oral transmission? Nat Rev Gastroenterol Hepatol 2020; 17(5): 259. doi: 10.1038/s41575-020-0295-7.

23. Pirtle EC, Beran GW. Virus survival in the environment. Rev Sci Tech 1991; 10(3): 733-48. doi: 10.20506/rst.10.3.570.

24. Jupp PG, McElligott SE, Lecatsas G. The mechanical transmission of hepatitis B virus by the common bedbug (Cimex lectularius L.) in South Africa. S Afr Med J 1983; 63(3): 77-81.

25. Calibeo-Hayes D, Denning SS, Stringham SM, Guy JS, Smith LG, Watson DW. Mechanical transmission of turkey coronavirus by domestic houseflies (Musca domestica Linnaeaus). Avian Dis 2003; 47(1): 149-53. doi: 10.1637/00052086(2003)047[0149:MTOTCB]2.0.CO;2.

26. Duan JH, Wu J, Lin LF. Preliminary report on SARS coronavirus detection from vector rat and cockroach by RT-PCR. Chin J Vector Biol Control 2003; 14(5): 332-4.

27. Montes A, Coronell W, Baldiris R. Can house flies mechanically carry and/or transport sarscov-2? Int J Clin Virol 2020; 4: 076-078. doi: 10.29328/journal.ijcv.1001019.

28. Barbazan P, Thitithanyanont A, Missé D, et al. Detection of H5N1 avian influenza virus from mosquitoes collected in an infected poultry farm in Thailand. Vector Borne Zoonotic Dis 2008; 8(1): 105-9. doi: 10.1089/vbz.2007.0142.

29. Heller L, Mota CR, Greco DB. COVID-19 faecal-oral transmission: Are we asking the right questions?. Sci Total Environ 2020; 729: 138919. doi: 10.1016/j.scitotenv.2020.138919.

30. Liumbruno GM, Calteri D, Petropulacos K, et al. The Chikungunya epidemic in Italy and its repercussion on the blood system. Blood Transfus 2008; 6(4): 199-210. doi: 10.2450/2008.0016-08.

Downloads

Published

2025-09-04

Issue

Section

Original research

How to Cite

1.
Dutto M, Lauria G, Drago A, Martini S, Gorrasi I, Gilli G. Insects and SARS-CoV-2: Analysis of the Potential Role of Vectors in European Countries. Ann Ig. 2025;33(6):583-588. doi:10.7416/ai.2021.2441