Persistence of SARS-CoV-2: a new paradigm of COVID-19 management
Keywords:
SARS-CoV-2, cytokine storm, re-infection, reservoir, survivorsAbstract
Full attention must be given to the follow-up of patients recovered from Coronavirus disease 2019, which developed in Wuhan, China in December 2019. Among the most serious issues since the emergence of the Severe Acute Respiratory Syndrome Coronavirus 2 has been whether those who had it can experience a second episode of infection and what that implies for immunity. The earlier studies on COVID-19 disease focused primarily on the epidemiological, clinical, and radiological characteristics of patients with COVID-19. However, conclusions of these studies still require to be warranted by more careful design, larger sample size and statistically well structured studies. COVID-19 is an under-studied infection, and several aspects of viral transmission and clinical progress remain at present unclear. There is a concern about the persistence of SARS-CoV-2 on various surfaces and in the respiratory system of patients who have survived. One of the most concerning issues since the emergence of the SARS-CoV-2 is persistence in patients and whether patients can be re-infected. After hospital discharge, recovered patients were reported to have positive SARS-CoV-2 test in China, Japan, and South Korea. In addition to the persistence of the virus, SARS-CoV-2 re-infection may occur in survivors. In this paper, we focused on the evidence of persistence and re-infection of SARS-CoV-2.
References
1. Rodriguez-Morales AJ, Cardona-Ospina JA, Gutiérrez-Ocampo E, et al. Clinical, laboratory and imaging features of COVID-19: A systematic review and meta-analysis. Med Infect Dis 2020; 34: 101623. doi: 10.1016/j.tmaid.2020.101623. Epub 2020 Mar 13.
2. Dong Y, Mo X, Hu Y, et al. Epidemiological characteristics of 2143 pediatric patients with 2019 coronavirus disease in China. Pediatrics 2020. doi: 10.1542/peds.2020-0702.
3. Wu Z, McGoogan JM. Characteristics of and important lessons from the coronavirus disease 2019 (COVID-19) outbreak in China: summary of a report of 72,314 cases from the Chinese Center for Disease Control and Prevention. JAMA 2020; 323(13): 1239-42. doi:10.1001/ jama.2020.2648.
4. Li Q, Guan X, Wu P, Wang X, et al. Early transmission dynamics in Wuhan, China, of novel coronavirus–infected pneumonia. N Engl J Med 2020; 382(13): 1199-207. doi: 10.1056/ NEJMoa2001316. Epub 2020 Jan 29.
5. Lan L, Xu D, Ye G, et al. Positive RT-PCR test results in patients recovered from COVID-19. JAMA 2020; 323(15):1502-3. doi: 10.1001/ jama.2020.2783.
6. MacIntyre CR, Chughtai AA. Recurrence and reinfection—a new paradigm for the management of Ebola virus disease. Int J Infect Dis 2016; 43: 58-61. doi: 10.1016/j.ijid.2015.12.011. Epub 2015 Dec 19.
7. Gousseff M, Penot P, Gallay L, et al. Clinical recurrences of COVID-19 symptoms after recovery: Viral relapse, reinfection or inflammatory rebound? J Infect. 2020. doi.org/10.1016/j. jinf.2020.06.073.
8. Chang T-W. Recurrent viral infection (reinfection). N Engl J Med 1971; 284(14): 765-73. doi: 10.1056/NEJM197104082841406.
9. Zar HJ, Dawa J, Fischer GB, Castro-Rodriguez JA. Challenges of COVID-19 in children in lowand middle-income countries. Paediatr Respir Rev 2020. doi.org/10.1016/j.prrv.2020.06.016.
10. Guan W-j, Ni Z-y, Hu Y, et al. Clinical characteristics of coronavirus disease 2019 in China. N Engl J Med 2020; 382(18): 1708-20. doi: 10.1056/NEJMoa2002032.
11. Harmer D, Gilbert M, Borman R, Clark KL. Quantitative mRNA expression profiling of ACE 2, a novel homologue of angiotensin converting enzyme. FEBS 2002; 532(1-2): 107-10. doi:
10.1016/s0014-5793(02)03640-2.
12. Letko M, Marzi A, Munster V. Functional assessment of cell entry and receptor usage for SARSCoV-2 and other lineage B betacoronaviruses. Nat Microbiol 2020; 5(4):562-9. doi: 10.1038/ s41564-020-0688-y. Epub 2020 Feb 24.
13. Leap J, Villgran V, Cheema T. COVID-19: Epidemiology, Pathophysiology, Transmission, Symptoms. Crit Care Nurs Q 2020; 43(4): 33842. doi: 10.1097/CNQ.0000000000000319.
14. Ke Z, Oton J, Qu K, et al. Structures and distributions of SARS-CoV-2 spike proteins on intact virions. Nat. 2020: 1-7. doi.org/10.1038/ s41586-020-2665-2.
15. Wu J, Chen ZJ. Innate immune sensing and signaling of cytosolic nucleic acids. Annu Rev Immunol 2014; 32: 461-88. doi: 10.1146/ annurev-immunol-032713-120156.
16. Yoo J-S, Kato H, Fujita T. Sensing viral invasion by RIG-I like receptors. Curr Opin Microbiol 2014; 20: 131-8. doi: 10.1016/j. mib.2014.05.011. Epub 2014 Jun 23.
17. Seth RB, Sun L, Ea C-K, Chen ZJ. Identification and characterization of MAVS, a mitochondrial antiviral signaling protein that activates NFκB and IRF3. Cell 2005; 122(5): 669-82. doi: 10.1016/j.cell.2005.08.012.
18. Wu J, Sun L, Chen X, et al. Cyclic GMP-AMP is an endogenous second messenger in innate immune signaling by cytosolic DNA. Science 2013; 339(6121): 826-30. doi: 10.1126/science.1229963. Epub 2012 Dec 20.
19. Ishikawa H, Barber GN. STING is an endoplasmic reticulum adaptor that facilitates innate immune signalling. Nature 2008; 455(7213): 674-8. doi: 10.1038/nature07317. Epub 2008 Aug 24.
20. Amor S, Fernández Blanco L, Baker D. Innate immunity during SARS-CoV-2: evasion strategies and activation trigger hypoxia and vascular damage. Clin Exp Immunol 2020; 202(2): 193-
209. epub 2020 Oct 12. doi: 10.1111/cei.13523.
21. Kawai T, Akira S. The role of pattern-recognition receptors in innate immunity: update on Toll-like receptors. Nat Immunol 2010; 11(5): 373-84.
doi: 10.1038/ni.1863. Epub 2010 Apr 20.
22. Takeuchi O, Akira S. Innate immunity to virus infection. Immunol Rev 2009; 227(1): 75-86.
doi: 10.1111/j.1600-065X.2008.00737.x.
23. Tiwari V, Beer JC, Sankaranarayanan NV, Swanson-Mungerson M, Desai UR. Discovering small-molecule therapeutics against SARSCoV-2. Drug Discov Today 2020; 25(8): 153544. doi:10.1016/j.drudis.2020.06.017.
24. Chen C, Zhang X, Ju Z, He W. [Advances in the research of cytokine storm mechanism induced by Corona Virus Disease 2019 and the corresponding immunotherapies]. Zhonghua shao shang za zhi= Zhonghua shaoshang zazhi= Chinese J of Burns 2020; 36(6): 471-5. doi: 10.3760/cma.j.cn501120-20200224-00088.
25. Liu Y, Gayle AA, Wilder-Smith A, Rocklöv J. The reproductive number of COVID-19 is higher compared to SARS coronavirus. J Travel Med. 2020; 27(2): taaa021. doi: 10.1093/jtm/taaa021.
26. Alijotas-Reig J, Esteve-Valverde E, Belizna C, et al. Immunomodulatory therapy for the management of severe COVID-19. Beyond the anti-viral therapy: A comprehensive review. Autoimm Rev. 2020; 19(7): 102569. doi: 10.1016/j. autrev.2020.102569. Epub 2020 May 3.
27. Guihot A, Litvinova E, Autran B, Debré P, Vieillard V. Cell-Mediated Immune Responses to COVID-19 Infection. Front Immunol 2020; 11: 1662. doi: 10.3389/fimmu.2020.01662.
28. Guo Y-R, Cao Q-D, Hong Z-S, et al. The origin, transmission and clinical therapies on coronavirus disease 2019 (COVID-19) outbreak–an update on the status. Mil Med Res 2020; 7(1): 11-10. doi: 10.1186/s40779-020-00240-0.
29. Lei J, Kusov Y, Hilgenfeld R. Nsp3 of coronaviruses: Structures and functions of a large multidomain protein. Antivir Res. 2018; 149: 58-74.
doi.org/10.1016/j.antiviral.2017.11.001.
30. Wang Q, Zhang Y, Wu L, et al. Structural and Functional Basis of SARS-CoV-2 Entry by Using Human ACE2. Cell. 2020; 181(4): 894904.e9. doi:10.1016/j.cell.2020.03.045.
31. Shereen MA, Khan S, Kazmi A, Bashir N, Siddique R. COVID-19 infection: Origin, transmission, and characteristics of human coronaviruses. J Adv Res 2020; 24: 91-8. doi:10.1016/j. jare.2020.03.005.
32. Ren SY, Wang WB, Hao YG, et al. Stability and infectivity of coronaviruses in inanimate environments. World J Clin Cases 2020; 8(8): 1391-9. doi:10.12998/wjcc.v8.i8.1391.
33. Carraturo F, Del Giudice C, Morelli M, et al. Persistence of SARS-CoV-2 in the environment and COVID-19 transmission risk from environmental matrices and surfaces. Environ Pollut 2020; 265(Pt B): 115010. doi:10.1016/j. envpol.2020.115010.
34. Signer J, Jonsdottir HR, Albrich WC, et al. In vitro virucidal activity of Echinaforce®, an Echinacea purpurea preparation, against coronaviruses, including common cold coronavirus 229E and SARS-CoV-2. Virol J 2020; 17(1): 136. doi:10.1186/s12985-020-01401-2.
35. Mecenas P, Bastos RT da RM, Vallinoto ACR, Normando D. Effects of temperature and humidity on the spread of COVID-19: A systematic review. PLoS One 2020; 15(9): 1-21. doi:10.1371/journal.pone.0238339.
36. Sun J, Xiao J, Sun R, et al. Prolonged Persistence of SARS-CoV-2 RNA in Body Fluids. Emerg Infect Dis 2020; 26(8): 1834-8. doi:10.3201/ eid2608.201097.
37. Song W, Gui M, Wang X, Xiang Y. Cryo-EM structure of the SARS coronavirus spike glycoprotein in complex with its host cell receptor ACE2. PLoS Pathog 2018; 14(8): e1007236. doi: 10.1371/journal.ppat.1007236. eCollection 2018 Aug.
38. Held L, Hens N, D O’Neill P, Wallinga J. Handbook of infectious disease data analysis. CRC Press, 2019.
39. Kampf G, Todt D, Pfaender S, Steinmann E. Persistence of coronaviruses on inanimate surfaces and their inactivation with biocidal agents. J Hosp Infect 2020; 104(3): 246-51. doi. org/10.1016/j.jhin.2020.01.022.
40. Riddell S, Goldie S, Hill A, Eagles D, Drew TW. The effect of temperature on persistence of SARS-CoV-2 on common surfaces. Virol J 2020; 17(1): 1-7. doi:10.1186/s12985-020-01418-7.
41. Van Doremalen N, Bushmaker T, Morris DH, et al. Aerosol and surface stability of SARSCoV-2 as compared with SARS-CoV-1. N Engl J Med 2020; 382(16): 1564-7. doi: 10.1056/ NEJMc2004973. Epub 2020 Mar 17.
42. World Health Organization (WHO). First data on stability and resistance of SARS coronavirus compiled by members of WHO laboratory network. WHO, 2020.
43. To KK-W, Hung IF-N, Ip JD, et al. COVID19 re-infection by a phylogenetically distinct SARS-coronavirus-2 strain confirmed by whole genome sequencing. Clin Infect Dis Aug 25: ciaa1275. doi: 10.1093/cid/ciaa1275. Epub ahead of print.
44. Van Doremalen N, Bushmaker T, Morris DH, et al. Aerosol and surface stability of SARSCoV-2 as compared with SARS-CoV-1. N Engl J Med 2020; 382(16): 1564-7. doi:
10.1101/2020.03.09.20033217.
45. Smith, J. South Korea reports more recovered coronavirus patients testing positive again. Reuters, 2020. Available on: https://www.reuters.com/ article/us-health-coronavirus-southkorea/southkorea-reports-more-recovered-coronavirus-patients-testing-positive-again-idUSKCN21V0JQ.
(2020). [Last accessed: 2020, Nov 7].
Downloads
Published
Issue
Section
License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by-nc/4.0) which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Transfer of Copyright and Permission to Reproduce Parts of Published Papers.
Authors retain the copyright for their published work. No formal permission will be required to reproduce parts (tables or illustrations) of published papers, provided the source is quoted appropriately and reproduction has no commercial intent. Reproductions with commercial intent will require written permission and payment of royalties.