Characteristics of Clostridioides difficile colonization in Ilamian children
Keywords:
Clostridioides difficile, bacterial colonization, childrenAbstract
Background. The increasing colonization with Clostridioides difficile in paediatric hospitalized population is a well known event; however, its prevalence in Iranian children has not effectively been identified yet. Objective. The objective of this study was to determine the intestinal-carriage rates of C. difficile and molecular characterization of C. difficile in the Ilamian pediatric population from May 22, 2018, until September 22, 2018.
Materials and Methods. Eighty samples were obtained from 40 children aged <5 years, at day 0 of their hospitalization (N=40 samples), to determine community-associated colonization, and then at day 5 days after hospitalization (N=40 samples), to determine healthcare associated colonization. The stool samples were examined for C. difficile, and isolated strains were evaluated for production of Clostridial toxins A/B and molecular characterizations.
Results. The colonization rates of C. difficile and toxigenic C. difficile were 10% (8/80) and 3.75% (3/80), respectively. Based on the age group, the intestinal-carriage rates of C. difficile were 37.5, 50, and 12.5% in children ≤ 1, 1-3, and 3-5 years old, respectively. Our findings have revealed eight distinct ribotypes. Our findings have revealed eight distinct ribotypes of C. difficile isolates. Three out of 8 (37.5%) of C. difficile isolates were considered as community-associated colonization and belonged to ribotypes 7, 8, and 9. Conclusion. Our findings suggest the need of confirmation by further epidemiological studies in Iranian children. Given that the 37.5% of cases observed were community-associated, estimates of the incidence of C. difficile infections, that include only hospitalized children, may largely underestimate the burden of disease in children.
References
1. Hall IC, O’Toole E. Intestinal flora in new-born infants: with a description of a new pathogenic anaerobe, Bacillus difficilis. Am J Dis Children 1935; 49(2): 390-402. doi:10.1001/ archpedi.1935.01970020105010.
2. Papatheodorou P, Barth H, Minton N, Aktories K. Cellular Uptake and Mode-of-Action of Clostridium difficile Toxins. In: Mastrantonio P, Rupnik M, eds. Updates on Clostridium difficile in Europe. Adv Exp Med Biol 2018; 1050: 7796. doi: 10.1007/978-3-319-72799-8_6.
3. Kouhsari E, Abbasian S, Sedighi M, et al. Clostridium difficile infection: a review. Rev Med Microbiol 2018; 29(3): 103-9. doi: 10.1097/MRM.0000000000000135.
4. Kouhsari E, Douraghi M, Barati M, et al. Rapid Simultaneous Molecular Stool-Based Detection of Toxigenic Clostridioides difficile by Quantitative TaqMan Real-Time PCR Assay. Clin Lab 2019; 65(4). doi: 10.7754/Clin. Lab.2018.180735.
5. Kouhsari E, Douraghi M, Krutova M, et al. The emergence of metronidazole and vancomycin reduced susceptibility in Clostridium difficile isolates in Iran. J Glob Antimicrob Resist 2019; 18: 28-33. doi: 10.1016/j.jgar.2019.01.027. Epub 2019 Jan 28.
6. Wang R, Suo L, Chen HX, Song LJ, Shen YY, Luo YP. Molecular epidemiology and antimicrobial susceptibility of Clostridium difficile isolated from the Chinese People’s Liberation Army General Hospital in China. Int J Infect Dis 2018; 67: 86-91. doi: 10.1016/j.ijid.2017.07.010. Epub 2017 Jul 20.
7. Lessa FC, Mu Y, Bamberg WM, et al. Burden of Clostridium difficile infection in the United
States. N Engl J Med 2015; 372(9): 825-34. doi:
10.1056/NEJMoa1408913.
8. Noor A, Krilov LR. Clostridium difficile infection in children. Pediatr Ann 2018; 47(9): e35965. doi: 10.3928/19382359-20180803-01.
9. Gritz EC, Bhandari V. The human neonatal gut microbiome: a brief review. Front Pediatr 2015; 3: 60. doi: 10.3389/fped.2015.00060. Erratum for: Front Pediatr 2015; 3: 17.
10. Terveer EM, Crobach MJ, Sanders IM, Vos MC, Verduin CM, Kuijper EJ. Detection of Clostridium difficile in feces of asymptomatic patients admitted to the hospital. J Clin Microbiol 2017; 55(2): 403-11. doi: 10.1128/JCM.01858-16. Epub 2016 Nov 16.
11. Truong C, Schroeder LF, Gaur R, et al. Clostridium difficile rates in asymptomatic and symptomatic hospitalized patients using nucleic acid testing. Diagn Microbiol Infect Dis 2017; 87(4): 365-70. doi: 10.1016/j.
diagmicrobio.2016.12.014. Epub 2017 Jan 3.
12. Kim J, Smathers SA, Prasad P, Leckerman KH, Coffin S, Zaoutis T. Epidemiological features of Clostridium difficile-associated disease among inpatients at children’s hospitals in the United States, 2001–2006. Pediatrics 2008; 122(6): 1266-70. doi: 10.1542/peds.2008-0469.
13. Bobulsky GS, Al-Nassir WN, Riggs MM, Sethi AK, Donskey CJ. Clostridium difficile skin contamination in patients with C. difficile– associated disease. Clin Infect Dis 2008; 46(3): 447-50. doi: 10.1086/525267.
14. Verity P, Wilcox MH, Fawley W, Parnell P.
218
Prospective evaluation of environmental contamination by Clostridium difficile in isolation side rooms. J Hosp Infect 2001; 49(3): 204-9. doi: 10.1053/jhin.2001.1078.
15. Anjewierden S, Han Z, Foster CB, Pant C, Deshpande A. Risk factors for Clostridium difficile infection in pediatric inpatients: A meta-analysis and systematic review. Infect Control Hosp Epidemiol 2019; 40(4): 420-6. doi: 10.1017/ ice.2019.23. Epub 2019 Mar 7.
16. Enoch DA, Butler MJ, Pai S, Aliyu SH, Karas JA. Clostridium difficile in children: colonisation and disease. J Infect 2011; 63(2): 105-13. doi: 10.1016/j.jinf.2011.05.016. Epub 2011 Jun 12.
17. Carson KC, Boseiwaqa LV, Thean SK, Foster NF, Riley TV. Isolation of Clostridium difficile from faecal specimens–a comparison of chromID C. difficile agar and cycloserine-cefoxitin-fructose agar. J Med Microbiol 2013; 62(9): 1423-7. doi: 10.1099/jmm.0.056515-0. Epub 2013 Apr 11.
18. Kouhsari E, Douraghi M, Fakhre Yaseri H, et al. Molecular typing of Clostridioides difficile isolates from clinical and non‐clinical samples in Iran. APMIS 2019; 127(4): 222-7. doi: 10.1111/ apm.12937.
19. Ribeiro JC Junior, Tamanini R, Soares BF, et al. Efficiency of boiling and four other methods for genomic DNA extraction of deteriorating sporeforming bacteria from milk. Semina: Ciências Agrárias 2016; 37(5): 3069-78. doi: http://dx.doi.
org/10.5433/1679-0359.2016v37n5p3069.
20. Stubbs S, Rupnik M, Gibert M, Brazier J, Duerden B, Popoff M. Production of actin-specific ADP-ribosyltransferase (binary toxin) by strains of Clostridium difficile. FEMS Microbiol Lett 2000; 186(2): 307-12. doi: 10.1111/j.15746968.2000.tb09122.x.
21. Bidet P, Barbut F, Lalande V, Burghoffer B, Petit J-C. Development of a new PCR-ribotyping method for Clostridium difficile based on ribosomal RNA gene sequencing. FEMS Microbiol Lett 1999; 175(2): 261-6. doi: 10.1111/j.15746968.1999.tb13629.x.
22. Borali E, De Giacomo C. Clostridium difficile infection in children: a review. J Pediatr Gatroenterol Nutr 2016; 63(6): e130-e40. doi: 10.1097/ MPG.0000000000001264.
23. Rousseau C, Poilane I, De Pontual L, Maherault A-C, Le Monnier A, Collignon A. Clostridium difficile carriage in healthy infants in the community: a potential reservoir for pathogenic strains. Clin Infect Dis 2012; 55(9): 1209-15.
doi: 10.1093/cid/cis637. Epub 2012 Jul 25.
24. Schutze GE, Willoughby RE; Committee on Infectious Diseases; American Academy of Pediatrics. Clostridium difficile infection in infants and children. Pediatrics 2013; 131(1): 196-200. doi: 10.1542/peds.2012-2992. Epub 2012 Dec 31.
25. Antonara S, Leber AL. Diagnosis of Clostridium difficile infections in children. J Clin Microbiol 2016; 54(6): 1425-33. doi: 10.1128/JCM.0301415. Epub 2016 Feb 24.
26. Crobach MJ, Vernon JJ, Loo VG, et al. Understanding Clostridium difficile colonization. Clin Microbiol Rev 2018; 31(2): e00021-17. doi: 10.1128/CMR.00021-17.
27. Furuichi M, Imajo E, Sato Y, Tanno S, Kawada M, Sato S. Characteristics of Clostridium difficile colonization in Japanese children. J Infect Chemother 2014; 20(5): 307-11. doi: 10.1016/j. jiac.2014.01.009.
28. Faden HS, Dryja D. Importance of asymptomatic shedding of Clostridium difficile in environmental contamination of a neonatal intensive care unit. Am J Infect Control 2015; 43(8): 887-8. doi: 10.1016/j.ajic.2015.04.187. Epub 2015 May 26.
29. Matsuki S, Ozaki E, Shozu M, et al. Colonization by Clostridium difficile of neonates in a hospital, and infants and children in three day-care facilities of Kanazawa, Japan. Int Microbiol 2005; 8(1): 43-8.
30. Benson L, Song X, Campos J, Singh N. Changing epidemiology of Clostridium difficileassociated disease in children. Infect Control Hosp Epidemiol 2007; 28(11): 1233-5. doi: 10.1086/520732. Epub 2007 Aug 27.
31. Khanna S, Baddour LM, Huskins WC, et al. The epidemiology of Clostridium difficile infection in children: a population-based study. Clin Infect Dis 2013; 56(10): 1401-6. doi: 10.1093/cid/ cit075. Epub 2013 Feb 13.
32. Jalali M, Khorvash F, Warriner K, Weese JS. Clostridium difficile infection in an Iranian hospital. BMC Res Notes 2012; 5(1): 159. doi: 10.1186/1756-0500-5-159.
33. Sadeghifard N, Salari MH, Ghassemi MR, Eshraghi S, Amin Harati F. The incidence of nosocomial toxigenic Clostridium difficile associated diarrhea in Tehran tertiary medical centers. Acta Med Iran 2010; 48(5): 320-5.
34. Khoshdel A, Habibian R, Parvin N, et al. Molecular characterization of nosocomial Clostridium difficile infection in pediatric ward in Iran. Springerplus 2015; 4(1): 627. doi: 10.1186/ s40064-015-1268-0.
35. Goudarzi M, Goudarzi H, Alebouyeh M, et al. Antimicrobial susceptibility of Clostridium difficile clinical isolates in Iran. Iran Red Crescent Med J 2013; 15(8): 704-11. doi: 10.5812/ ircmj.5189. Epub 2013 Aug 5.
36. Barbut F, Mastrantonio P, Delmee M, et al. Prospective study of Clostridium difficile infections in Europe with phenotypic and genotypic characterisation of the isolates. Clin Microbiol Infect 2007; 13(11): 1048-57. doi: 10.1111/j.14690691.2007.01824.x. Epub 2007 Sep 11.
37. Delmée M, Verellen G, Avesani V, Francois G. Clostridium difficile in neonates: serogrouping and epidemiology. Eur J Pediatr 1988; 147(1): 36-40. doi: 10.1007/BF00442608.
38. George R. The carrier state: Clostridium difficile. J Antimicrob Chemoher1986; 18(Suppl A): 4758. doi: 10.1093/jac/18.supplement_a.47.
39. Holst E, Helin I, Mårdh P-A. Recovery of Clostridium difficile from children. Scand J Infect Dis 1981; 13(1): 41-5. doi: 10.1080/00365548.1981.11690365.
40. Spencer RC. Clinical impact and associated costs of Clostridium difficile-associated disease. J Antimicrob Chemother 1998; 41(Suppl 3): 5-12. doi: 10.1093/jac/41.suppl_3.5.
41. Viscidi R, Willey S, Bartlett JG. Isolation rates and toxigenic potential of Clostridium difficile isolates from various patient populations. Gastroenterology 1981; 81(1): 5-9.
42. McFarland LV, Brandmarker SA, Guandalini S. Pediatric Clostridium difficile: a phantom menace or clinical reality? J Pediatr Gastroenterol Nutr 2000; 31(3): 220-31. doi: 10.1097/00005176200009000-00004.
43. Yamamoto-Osaki T, Kamiya S, Sawamura S, Kai M, Ozawa A. Growth inhibition of Clostridium difficile by intestinal flora of infant faeces in continuous flow culture. J Med Microbiol 1994; 40(3):
179-87. doi: 10.1099/00222615-40-3-179.
44. Ferraris L, Couturier J, Eckert C, et al. Carriage and colonization of C. difficile in preterm neonates: A longitudinal prospective study. PloS One 2019; 14(2): e0212568. doi: 10.1371/journal.pone.0212568.
45. Hung Y-P, Lee J-C, Lin H-J, et al. Clinical impact of Clostridium difficile colonization. J Microbiol Immunol Infect 2015; 48(3): 241-8. doi: 10.1016/j.jmii.2014.04.011. Epub 2014 Jun 2.
46. Khalaf N, Crews J, DuPont HL, Koo HL. Clostridium difficile: an emerging pathogen in children. Discov Med 2012; 14(75): 105.
47. Warrack S, Duster M, Van Hoof S, Schmitz M, Safdar N. Clostridium difficile in a children’s hospital: assessment of environmental contamination. Am J Infect Control 2014; 42(7): 802-4. doi: 10.1016/j.ajic.2014.03.008. Epub 2014 Apr 18.
48. Kato H, Kato N, Watanabe K, et al. Application of typing by pulsed-field gel electrophoresis to the study of Clostridium difficile in a neonatal intensive care unit. J Clin Microbiol 1994; 32(9): 2067-70. doi: 10.1128/JCM.32.9.20672070.1994.
49. Clements AC, Magalhães RJ, Tatem AJ, Paterson DL, Riley TV. Clostridium difficile PCR ribotype 027: assessing the risks of further worldwide spread. Lancet Infect Dis 2010; 10(6): 395-404. doi: 10.1016/S1473-3099(10)70080-3.
50. Berger FK, Rasheed SS, Araj GF, et al. Molecular characterization, toxin detection and resistance testing of human clinical Clostridium difficile isolates from Lebanon. Int J Med Microbiol 2018; 308(3): 358-63. doi: 10.1016/j.
ijmm.2018.01.004. Epub 2018 Feb 22.
51. Jamal W, Rotimi V, Grubesic A, Rupnik M, Brazier J, Duerden B. Correlation of multidrug resistance, toxinotypes and PCR ribotypes in Clostridium difficile isolates from Kuwait. J Chemother 2009; 21(5): 521-6. doi: 10.1179/ joc.2009.21.5.521.
Downloads
Published
Issue
Section
License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by-nc/4.0) which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Transfer of Copyright and Permission to Reproduce Parts of Published Papers.
Authors retain the copyright for their published work. No formal permission will be required to reproduce parts (tables or illustrations) of published papers, provided the source is quoted appropriately and reproduction has no commercial intent. Reproductions with commercial intent will require written permission and payment of royalties.