Hospital Antibiotics Usage: Environmental Hazard and Promotion of Antibiotic Resistant Bacteria
Keywords:
Antibiotic, hospital wastewater, hazard, antibiotic resistanceAbstract
Introduction. Hospitals constitute a particular source of drug residues emission, especially antibiotics considered as the most critical therapeutic classes used in hospitals. Thus, the hospital wastewater can widely spread both types of emerging pollutants, antibiotic residues and antibiotic resistance bacteria. For this reason, antibiotics usage must be monitored. This study was conducted to investigate potential antibiotic compounds which can present potential environmental hazard and promote antibiotic resistance.
Methods. The consumption-based approach was adopted to calculate predicted antibiotic concentrations in hospital wastewaters. In the process, we assessed the antibiotics potential environmental hazard, with the hazard quotient between predicted concentrations and predicted no effect concentrations intended to be protective of ecological species. In order to evaluate the hospital contribution to antibiotic resistance bacteria promotion, we also compared predicted concentrations with predicted no effect concentrations as theoretical selective resistance bacteria.
Results. The highest expected concentrations in hospital wastewater were found for Penicillins and Cephalosporins being the most prescribed antibiotics in our context. We noted that among this class, Ampicillin is the most hazardous compound followed by Imipenem and Gentamicin as exclusive hospital use antibiotics, in spite of their low consumption. The results showed also that Ampicillin, Amoxicillin, and Ceftriaxone had a high ratio of potential antibiotic resistance bacteria promotion, confirming the correlation found previously between abundance of resistant bacteria and the corresponding effluent antibiotic concentrations. Nevertheless, the promotion of resistance selection can also be attributed to Imipenem and Ciprofloxacin as little-used antibiotics and occur at low to moderate levels in hospital wastewater. Conclusion. This study identified the profile antibiotics consumption and their potential environmental hazard contribution and antibiotic resistant bacteria promotion. It can help decision-makers make appropriate management decisions, especially preventive measures related to antibiotic use pattern, as neither dilution nor treatment can eliminate antibiotic residues and antibiotic resistance genes.
References
1. European Environmental Bureau (EEP). Policy options for regulating pharmaceuticals in the environment. Releases of pharmaceuticals into the environment: an issue of growing concern. 2018. Available on: https://mk0eeborgicuypctuf7e. kinstacdn.com/wp-content/uploads/2019/07/ Position-paper-on-options-for-regulatingpharmaceuticals-in-the-environment.pdf [Last accessed: 2021 Apr 5].
2. Luo Y, Guo W, Ngo HH, et al. A review on the occurrence of micropollutants in the aquatic environment and their fate and removal during wastewater treatment. Sci Total Environ.
2014 Mar; 473-474: 619-41. doi: 10.1016/j. scitotenv.2013.12.065.
3. Silva B, Costa F, Neves IC, Tavares T. Psychiatric Pharmaceuticals as Emerging Contaminants in Wastewater. Springer International Publishing; 2015.
4. Dulio V, Morin A, Staub P. Les substances emergentes dans l’environment. Note de synthèse sur l’état de l’art concernant les produits pharmaceutiques, les cosmétiques et les produits d’hygiène corporelle, 2009. Available on: https://www. aquaref.fr/system/files/R_09_06381C_Action29_VF.pdf [Last accessed: 2021 Apr 5].
5. Helwig K. Micropollutant Point Sources in the Built Environment: Identification and Monitoring of Priority Pharmaceutical Substances in Hospital Effluents. J Environ Anal Toxicol. 2013; 3(4): 1-10. doi: 10.4172/2161-0525.1000177.
6. Yilmaz G, Kaya Y, Vergili I, et al. Characterization and toxicity of hospital wastewaters in Turkey. Environ Monit Assess. 2017 Feb. 189(2): 55. doi: 10.1007/s10661-016-5732-2.
7. Coalition Clean Baltic. Draft CCB Report on pharmaceutical pollution in the Baltic Sea Region. 2017. Available on: https://portal.helcom.fi/meetings/PRESSURE%206-2017-431/ MeetingDocuments/64%20Draft%20CCB%20 Report%20on%20pharmaceutical%20pollution%20in%20the%20Baltic%20Sea%20 Region.pdf [Last accessed: 2021 Apr 5].
8. Herrmann M, Olsson O, Fiehn R, Herrel M, Kümmerer K. The significance of different health institutions and their respective contributions of active pharmaceutical ingredients to wastewater. Environment Int. 2015 Dec; 85: 61-76. doi: 10.1016/j.envint.2015.07.020
9. Verlicchi P, Al Aukidy M, Galletti A, Petrovic M, Barceló D. Hospital effluent: Investigation of the concentrations and distribution of pharmaceuticals and environmental risk assessment. Sci Total Environment 2012 Jul; 430: 109-18. doi:
10.1016/j.scitotenv.2012.04.055.
10. Kummerer K, Henninger A. Promoting resistance by the emission of antibiotics from hospitals and households into effluent. Clin Microbiol Infect. 2003; 9: 1203-14. doi: 10.1111 / J.1469-0691.2003.00739.X.
11. Collette-Bregand M, James A, Munshy C, Bocquenē G. Contamination des milieux aquatiques par les substances pharmaceutiques et cosmétiques Etat des lieux et perspectives. 2009. Available on: https://archimer.ifremer.fr/ doc/00066/17773/ [Last accessed: 2021 Apr 5].
12. Agerstrand M, Berg C, Björlenius B, et al. Improving Environmental Risk Assessment of Human Pharmaceuticals. Environ Sci Technol.
2015 May 5; 49(9): 5336-45. doi/10.1021/acs.
est.5b00302.
13. Le Page G, Gunnarsson L, Snape J, Tyler CR. Integrating human and environmental health in antibiotic risk assessment: A critical analysis of protection goals, species sensitivity and antimicrobial resistance. Environ Int. 2017 Dec; 109: 155-69. doi: 10.1016/j.envint.2017.09.013.
14. Al-Khazrajy OSA. Risk-based prioritization of pharmaceuticals in the natural environment in Iraq. Environ Sci Pollut Res 2016; 23: 15712726. doi: 10.1007/s11356-016-6679-0.
15. Rodriguez-Mozaz S, Chamorro S, Marti E, et al. Occurrence of antibiotics and antibiotic resistance genes in hospital and urban wastewaters and their impact on the receiving river.
Water Res. 2015 Feb; 69: 234-42. doi: 10.1016/j. watres.2014.11.021.
16. Lien L, Hoa N, Chuc N, et al. Antibiotics in Wastewater of a Rural and an Urban Hospital before and after Wastewater Treatment, and the Relationship with Antibiotic Use - A One Year Study from Vietnam. Int J Environ Res Public Health. 2016 Jun; 13(6): 588-600. doi: 10.3390/ ijerph13060588.
17. Szekeres E, Baricz A, Chiriac CM, et al. Abundance of antibiotics, antibiotic resistance genes and bacterial community composition in wastewater effluents from different Romanian hospitals. Environ Pollut. 2017 Jun; 225: 304-15. doi: 10.1016/j.envpol.2017.01.054.
18. Sharma P, Mathur N, Singh A, et al. Monitoring hospital wastewaters for their probable genotoxicity and mutagenicity. Environ Monit Assess. 2015 Jan; 187(1): 4180. doi: 10.1007/ s10661-014-4180-0.
19. Asmaa Q, Latifa M, Said BM. Application d’une méthode d’étude quantitative et qualitative des rejets liquides hospitaliers au niveau de la Région de Marrakech Tensift El Haouz, Maroc. Eur Sci J. 2016 Nov 30; 12(32): 110-30. doi: 10.19044/esj.2016.v12n32p110.
20. El-Ogri F, Ouazzani, Boraâm. A survey of wastewaters generated by a hospital in Marrakech city and their characterization, Desalination and Water Treatment. Desalination and Water Treat. 2016; 57: 17061-74. doi: 10.1080/19443994.2016.1138328.
21. Alhamed H, Biad H, Saad S, Masaki M. Business Opportunities Report for Reuse of Wastewater in Morocco. 2018; 98. Available on: file:///C:/ Users/hp/Downloads/business-opportunitiesreport-for-reuse-of-wastewater-in-morocco.pdf [Last accessed: 2021 Apr 5].
22. Souza FS, Féris LA. Consumption-based approach for pharmaceutical compounds in a large hospital. Environ Technol. 2017 Sep 2; 38(17): 2217-23. doi/ full/10.1080/09593330.2016.1255262.
23. Verlicchi P, Al Aukidy M, Jelic A, Petrović M, Barceló D. Comparison of measured and predicted concentrations of selected pharmaceuticals in wastewater and surface water: A case study of a catchment area in the Po Valley (Italy). Sci Total Environ. 2014 Feb; 470-471: 844-54. doi: 10.1016/j.scitotenv.2013.10.026.
24. Aga DS, Lenczewski M, Snow D, Muurinen J, Sallach JB, Wallace JS. Challenges in the Measurement of Antibiotics and in Evaluating Their Impacts in Agroecosystems: A Critical Review. J Environ Qual. 2016 Mar; 45(2): 407-19. doi: 10.2134/jeq2015.07.0393.
25. German Environment Agency. Pharmaceuticals in the environment – the global perspective. 2014. Available on: https://www.umweltbundesamt.de/sites/default/files/medien/378/publikationen/pharmaceuticals_in_the_environment_0. pdf [Last accessed: 2021 Apr 5].
26. aus der Beek T, Weber F-A, Bergmann A, et al. Pharmaceuticals in the environment-Global occurrences and perspectives: Pharmaceuticals in the global environment. Environ Toxicol Chem. 2016 Apr; 35(4): 823-35. doi: 10.1002/ etc.3339.
27. AMR Industry Alliance. AMR Industry Alliance Antibiotic Discharge Targets List of Predicted No-Effect Concentrations (PNECs). 2018. Available on: https://www.amrindustryalliance. org/wp-content/uploads/2018/09/AMR_Industry_Alliance_List-of-Predicted-No-EffectConcentrations-PNECs.pdf [Last accessed: 2021 Apr 5].
28. Bengtsson-Palme J, Larsson DGJ. Concentrations of antibiotics predicted to select for resistant bacteria: Proposed limits for environmental regulation. Environ Int. 2016; 86: 140-9. doi:10.1016/j.envint.2015.10.015.
29. FASS.se. Environmental classification of pharmaceuticals at www.fass.se. 2012. https://www. fass.se/pdf/Environmental_classification_of_ pharmaceuticals-120816.pdf [Last accessed: 2021 Apr 5].
30. Ory J. Effluents hospitaliers : source de pollution en antibiotiques et de résistances bactériennes potentiellement transmissibles via un biofilm?. Université Clermont Auvergne; 2017.
31. Pazda M, Kumirska J, Stepnowski P, Mulkiewicz E. Antibiotic resistance genes identified in wastewater treatment plant systems – A review. Sci Total Environ. 2019 Dec; 697: 134023. doi: 10.1016/j.scitotenv.2019.134023.
32. De Souza SML, de Vasconcelos EC, Dziedzic M, de Oliveira CMR. Environmental risk assessment of antibiotics: An intensive care unit analysis. Chemosphere. 2009 Nov; 77(7): 962-7.
doi: 10.1016/j.chemosphere.2009.08.010.
33. Daouk S, Chèvre N, Vernaz N, Bonnabry P, Dayer P, Daali Y, et al. Prioritization methodology for the monitoring of active pharmaceutical ingredients in hospital effluents. J Environ Manage. 2015 Sep; 160: 324-32. doi: 10.1016/j. jenvman.2015.06.037.
34. Gómez-Canela C, Pueyo V, Barata C, Lacorte S, Marcé RM. Development of predicted environmental concentrations to prioritize the occurrence of pharmaceuticals in rivers from Catalonia. Sc Total Environ. 2019 May; 666: 57-67. doi: 10.1016/j.scitotenv.2019.02.078.
35. Ory J, Bricheux G, Togola A, et al. Ciprofloxacin residue and antibiotic-resistant biofilm bacteria in hospital effluent. Environ Pollut. 2016 Jul; 214: 635-45. doi: 10.1016/j.envpol.2016.04.033
36. Burns EE, Carter LJ, Snape J, Thomas-Oates J, Boxall ABA. Application of prioritization approaches to optimize environmental monitoring and testing of pharmaceuticals. J Toxicol Environ Health Part B. 2018 Apr; 21(3): 115-41.
doi: 10.1080/10937404.2018.1465873.
37. Escher BI, Baumgartner R, Koller M, Treyer K, Lienert J, McArdell CS. Environmental toxicology and risk assessment of pharmaceuticals from hospital wastewater. Water Res. 2011 Jan; 45(1): 75-92. doi: 10.1016/j.watres.2010.08.019.
38. Daouk S, Chèvre N, Vernaz N, Widmer C, Daali Y, Fleury-Souverain S. Dynamics of active pharmaceutical ingredients loads in a Swiss university hospital wastewaters and prediction of the related environmental risk for the aquatic ecosystems. Sci Total Environ. 2016; 547: 24453. doi:10.1016/j.scitotenv.2015.12.117.
39. Ioannou-Ttofa L, Raj S, Prakash H, Fatta-Kassinos D. Solar photo-Fenton oxidation for the removal of ampicillin, total cultivable and resistant E. coli and ecotoxicity from secondary-treated wastewater effluents. Chem Engin J. 2019 Jan; 355: 91-102. doi: 10.1016/j.cej.2018.08.057.
40. Elizalde-Velázquez A, Gómez-Oliván LM, GalarMartínez M, Islas-Flores H, Dublán-García O, SanJuan-Reyes N. Amoxicillin in the Aquatic Environment, Its Fate and Environmental Risk. InTech 2016: 247-267. doi: 10.5772/62049.
41. Aubakirova B, Beisenova R, Boxall AB. Prioritization of pharmaceuticals based on risks to aquatic environments in Kazakhstan: Prioritization of Pharmaceuticals in Kazakhstan. Integr Environ Assess Manag. 2017 Sep; 13(5): 832-9. doi: 10.1002/ieam.1895.
42. Mao D, Yu S, Rysz M, et al. Prevalence and proliferation of antibiotic resistance genes in two municipal wastewater treatment plants. Water Res. 2015 Nov; 85: 458-66. doi: 10.1016/j. watres.2015.09.010.
43. Asfaw T, Negash L, Kahsay A, Weldu Y. Antibiotic Resistant Bacteria from Treated and Untreated Hospital Wastewater at Ayder Referral Hospital, Mekelle, North Ethiopia. Adv Microbiol. 2017; 07(12): 871-86. doi: 10.4236/ aim.2017.712067.
44. Petrovich ML, Zilberman A, Kaplan A, et al. Microbial and Viral Communities and Their Antibiotic Resistance Genes Throughout a Hospital Wastewater Treatment System. Front Microbiol. 2020 Feb 19; 11: 153-65. doi: 10.3389/ fmicb.2020.00153.
45. Zhang X-X, Zhang T, Fang HHP. Antibiotic resistance genes in water environment. Appl Microbiol Biotechnol. 2009 Mar; 82(3): 397414. doi: 10.1007/s00253-008-1829-z.
46. Guessennd NK, Ouattara MB, Ouattara ND, Dosso M. Étude des bactéries multirésistantes des effluents hospitaliers d’un centre hospitalier et universitaire (CHU) de la ville d’Abidjan (Côte d’Ivoire). J Appl Biosci. 2013; 69: 545664. doi: 10.4314/jab.v69i0.95071.
47. Es-Saoudy I. Profil bactériologique des infections urinaires à l’hôpital militaire Avicenne de Marrakech. These. Faculté de Medecine et de Pharmacie de Marrakech; 2019. Available on: http://wd.fmpm.uca.ma/biblio/theses/anneehtm/FT/2019/these237-19.pdf [Last accessed: 2021 Apr 5].
48. Manaia CM, Macedo G, Fatta-Kassinos D, Nunes OC. Antibiotic resistance in urban aquatic environments: can it be controlled? Appl Microbiol Biotechnol. 2016 Feb; 100(4): 1543-57. doi: 10.1007/s00253-015-7202-0.
49. Harris S, Cormican M, Cummins E. The effect of conventional wastewater treatment on the levels of antimicrobial-resistant bacteria in effluent: a meta-analysis of current studies. Environ Geochem Health. 2012 Dec; 34(6): 749-62. doi:
10.1007/s10653-012-9493-8.
Downloads
Published
Issue
Section
License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by-nc/4.0) which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Transfer of Copyright and Permission to Reproduce Parts of Published Papers.
Authors retain the copyright for their published work. No formal permission will be required to reproduce parts (tables or illustrations) of published papers, provided the source is quoted appropriately and reproduction has no commercial intent. Reproductions with commercial intent will require written permission and payment of royalties.