Exploring future perspectives and pipeline progression in vaccine research and development

Exploring future perspectives and pipeline progression in vaccine research and development

Authors

  • Riccardo Vecchio
  • Leandro Gentile
  • Silvia Tafuri
  • Claudio Costantino
  • Anna Odone

Keywords:

Vaccine R&D, vaccines pipeline, new vaccine platforms

Abstract

Background. The COVID-19 pandemic had a profound impact on vaccines’ Research and Development, on vaccines’ market, and on immunization programmes and policies. The need to promptly respond to the health emergency boostered resources’ allocation and innovation, while new technologies were made available. Regulatory procedures were revised and expedited, and global production and distribution capacities significantly increased. Aim of this review is to outline the trajectory of research in vaccinology and vaccines’ pipeline, highlighting major challenges and opportunities, and projecting future perspectives in vaccine preventables diseases’ prevention and control.

Study Design. Narrative review.

Methods. We comprehensively consulted key biomedical databases including “Medline” and “Embase”, preprint platforms, including”MedRxiv” and “BioRxiv”, clinical trial registries, selected grey literature sources and scientific reports. Further data and insights were collected from experts in the field. We first reflect on the impact that the COVID-19 had on vaccines’ Research and Development, regulatory frameworks, and market, we then present updated figures of vaccines pipeline, by different technologies, comparatively highlighting advantages and disadvantages. We conclude summarizing future perspectives in vaccines’ development and immunizations strategies, outlining key challenges, knowledge gaps and opportunities for prevention strategies.

Results. COVID-19 vaccines’ development has been largely supported by public funding. New technologies and expetited authorization and distribution processes allowed to control the pandemic, leading vaccines’ market to grow exponentially. In the postpandemic era investments in prevention are projected to decrease but advancements in technology offer great potential to future immunization strategies. [....]

References

1. Roncati L, Roncati M. Emergency use authorization (EUA), conditional marketing authorization (CMA), and the precautionary principle at the time of COVID-19 pandemic. J Public Health Policy. 2021 Sep;42(3):518–21. doi: 10.1057/s41271-021-00299-6.

2. McKinsey. Fast-forward: Will the speed of COVID-19 vaccine development reset industry norms? 2021. Available from: [https://www.mckinsey.com/industries/life-sciences/our-insights/fast-forward-will-the-speed-of-covid-19-vaccine-development-reset-industry-norms#/](https://www.mckinsey.com/industries/life-sciences/our-insights/fast-forward-will-the-speed-of-covid-19-vaccine-development-reset-industry-norms#/) [Last accessed: 2023 December 10].

3. Marinus R, Mofid S, Mpandzou M, Kühler TC. Rolling Reviews During COVID-19: The European Union Experience in a Global Context. Clin Ther. 2022 Mar;44(3):352–63. doi: 10.1016/j.clinthera.2022.01.001.

4. Cavaleri M, Enzmann H, Straus S, Cooke E. The European Medicines Agency’s EU conditional marketing authorisations for COVID-19 vaccines. Lancet. 2021 Jan;397(10272):355–7. doi: 10.1016/S0140-6736-(21)00085-4.

5. Ghadanian M, Schafheutle E. Comparison between European Medicines Agency and US Food and Drug Administration in Granting Accelerated Marketing Authorizations for Covid-19 Medicines and their Utilized Regulations. Ther Innov Regul Sci. 2023 Oct 20. Available from: [https://link.springer.com/10.1007/s43441-023-00574-6](https://link.springer.com/10.1007/s43441-023-00574-6) [Last accessed: 2023 December 10].

6. Kashoki M, Hanaizi Z, Yordanova S, Veselý R, Bouygues C, Llinares J, et al. A Comparison of EMA and FDA Decisions for New Drug Marketing Applications 2014–2016: Concordance, Discordance, and Why. Clin Pharmacol Ther. 2020 Jan;107(1):195–202. doi: 10.1002/cpt.1565.

7. World Health Organization (WHO). Global vaccine market report 2022: a shared understanding for equitable access to vaccines. 2023 May 8. Available from: [https://www.who.int/publications/i/item/9789240062726](https://www.who.int/publications/i/item/9789240062726) [Last accessed: 2023 December 10].

8. Pecetta S, Tortorice D, Scorza FB, Pizza M, Dougan G, Hatchett R, et al. The trillion dollar vaccine gap. Sci Transl Med. 2022 Mar 30;14(638):eabn4342. doi: 10.1126/scitranslmed.abn4342.

9. Galkina Cleary E, Beierlein JM, Khanuja NS, McNamee LM, Ledley FD. Contribution of NIH funding to new drug approvals 2010–2016. Proc Natl Acad Sci. 2018 Mar 6;115(10):2329–34. doi: 10.1073/pnas.1715368115.

10. Florio M, Gamba S, Pancotti C. Mapping of long-term public and private investments in the development of Covid-19 vaccines. Policy Department for Economic, Scientific and Quality of Life Policies, European Parliament; 2023. Available from: [https://www.europarl.europa.eu/thinktank/en/document/IPOL_STU(2023)740072](https://www.europarl.europa.eu/thinktank/en/document/IPOL_STU%282023%29740072) [Last accessed: 2023 December 10].

11. IQVIA Institute for Human Data Science. Global Medicine Spending and Usage Trends: outlook to 2025. 2021 Apr. Available from: [https://www.iqvia.com/insights/the-iqvia-institute/reports-and-publications/reports/globalmedicine-spending-and-usage-trends-outlook-to-2025-#:~:text=Report%20Summary,projected%20to%20be%20%24157%20billion](https://www.iqvia.com/insights/the-iqvia-institute/reports-and-publications/reports/globalmedicine-spending-and-usage-trends-outlook-to-2025-#:~:text=Report%20Summary,projected%20to%20be%20%24157%20billion) [Last accessed: 2023 December 10].

12. Odone A, Fara GM, Giammaco G, Blangiardi F, Signorelli C. The future of immunization policies in Italy and in the European Union: The Declaration of Erice. Hum Vaccines Immunother. 2015 May 4;11(5):1268–71. doi: 10.1080/21645515.2015.1019980.

13. Geeraedts F, Goutagny N, Hornung V, Severa M, De Haan A, Pool J, et al. Superior Immunogenicity of Inactivated Whole Virus H5N1 Influenza Vaccine is Primarily Controlled by Toll-like Receptor Signalling. Subbarao K, editor. PLoS Pathog. 2008 Aug 29;4(8):e1000138. doi: 10.1371/journal.ppat.1000138.

14. Castrodeza-Sanz J, Sanz-Muñoz I, Eiros JM. Adjuvants for COVID-19 Vaccines. Vaccines. 2023 Apr 26;11(5):902. doi: 10.3390/vaccines11050902.

15. Pasquale A, Preiss S, Silva F, Garçon N. Vaccine Adjuvants: from 1920 to 2015 and Beyond. Vaccines. 2015 Apr 16;3(2):320–43. doi: 10.3390/vaccines3020320.

16. Kester KE, Cummings JF, Ofori‐Anyinam O, Ockenhouse CF, Krzych U, Moris P, et al. Randomized, Double‐Blind, Phase 2a Trial of Falciparum Malaria Vaccines RTS,S/AS01B and RTS,S/AS02A in Malaria‐Naive Adults: Safety, Efficacy, and Immunologic Associates of Protection. J Infect Dis. 2009 Aug;200(3):337–46. doi: 10.1086/600120.

17. Didierlaurent AM, Morel S, Lockman L, Giannini SL, Bisteau M, Carlsen H, et al. AS04, an Aluminum Salt-and TLR4 Agonist-Based Adjuvant System, Induces a Transient Localized Innate Immune Response Leading to Enhanced Adaptive Immunity. J Immunol. 2009 Nov 15;183(10):6186–97. doi: 10.4049/jimmunol.0901474.

18. Garçon N, Van Mechelen M. Recent clinical experience with vaccines using MPL- and QS-21-containing Adjuvant Systems. Expert Rev Vaccines. 2011 Apr;10(4):471–86. doi: 10.1586/erv.11.29.

19. Alving CR, Peachman KK, Matyas GR, Rao M, Beck Z. Army Liposome Formulation (ALF) family of vaccine adjuvants. Expert Rev Vaccines. 2020 Mar 3;19(3):279–92. doi: 10.1080/14760584.2020.1745636.

20. Stertman L, Palm AKE, Zarnegar B, Carow B, Lunderius Andersson C, Magnusson SE, et al. The Matrix-MTM adjuvant: A critical component of vaccines for the 21st century. Hum Vaccines Immunother. 2023 Jan 2;19(1):2189885. doi: 10.1080/21645515.2023.2189885.

21. Datoo MS, Natama MH, Somé A, Traoré O, Rouamba T, Bellamy D, et al. Efficacy of a low-dose candidate malaria vaccine, R21 in adjuvant Matrix-M, with seasonal administration to children in Burkina Faso: a randomised controlled trial. Lancet. 2021 May;397(10287):1809–18. doi: 10.1016/S0140-6736(21)00943-0.

22. Magnusson SE, Reimer JM, Karlsson KH, Lilja L, Bengtsson KL, Stertman L. Immune enhancing properties of the novel Matrix-MTM adjuvant leads to potentiated immune responses to an influenza vaccine in mice. Vaccine. 2013 Mar;31(13):1725–33. doi: 10.1016/j.vaccine.2013.01.039.

23. Yue J, Liu Y, Zhao M, Bi X, Li G, Liang W. The R&D landscape for infectious disease vaccines. Nat Rev Drug Discov. 2023 Nov;22(11):867–8. doi: 10.1038/d41573-023-00119-4.

24. Agyei D, Ahmed I, Akram Z, M. N. Iqbal H, K. Danquah M. Protein and Peptide Biopharmaceuticals: An Overview. Protein Pept Lett. 2017 Jan 4;24(2):94–101. doi: 10.2174/0929866523666161222150444.

25. Ferrer-Miralles N, Domingo-Espín J, Corchero JL, Vázquez E, Villaverde A. Microbial factories for recombinant pharmaceuticals. Microb Cell Factories. 2009 Dec;8(1):17. doi: 10.1186/1475-2859-8-17.

26. Pollet J, Chen WH, Strych U. Recombinant protein vaccines, a proven approach against coronavirus pandemics. Adv Drug Deliv Rev. 2021 Mar;170:71–82. doi: 10.1016/j.addr.2021.01.001.

27. Puetz J, Wurm FM. Recombinant Proteins for Industrial versus Pharmaceutical Purposes: A Review of Process and Pricing. Processes. 2019 Jul 24;7(8):476. doi: 10.3390/pr7080476.

28. Sayin L, Peters T, Xinfang Wang, Fox T, Hossain I, Greening P, et al. Understanding the cold-chain challenge for Covid-19 vaccination. 2020. Available from: [http://rgdoi.net/10.13140/RG.2.2.27202.20164](http://rgdoi.net/10.13140/RG.2.2.27202.20164) [Last accessed: 2023 December 10].

29. Yan Y, Pang Y, Lyu Z, Wang R, Wu X, You C, et al. The COVID-19 Vaccines: Recent Development, Challenges and Prospects. Vaccines. 2021 Apr 5;9(4):349. doi: 10.3390/vaccines9040349.

30. Heath PT, Galiza EP, Baxter DN, Boffito M, Browne D, Burns F, et al. Safety and Efficacy of NVX-CoV2373 Covid-19 Vaccine. N Engl J Med. 2021 Sep 23;385(13):1172–83. doi: 10.1056/NEJMoa2107659.

31. Dunkle LM, Kotloff KL, Gay CL, Áñez G, Adelglass JM, Barrat Hernández AQ, et al. Efficacy and Safety of NVX-CoV2373 in Adults in the United States and Mexico. N Engl J Med. 2022 Feb 10;386(6):531–43. doi: 10.1056/NEJMoa2116185.

32. Rousculp M, Ziemiecki R, Marchese AM. Protein Vaccine Demonstrates Less Reactogenicity than mRNA – A Real World Study. Infectious Diseases (except HIV/AIDS); 2023 Jun. Available from: [http://medrxiv.org/lookup/doi/10.1101/2023.05.31.23290594](http://medrxiv.org/lookup/doi/10.1101/2023.05.31.23290594) [Last accessed: 2023 December 10].

33. Mateo-Urdiales A, Sacco C, Petrone D, Bella A, Riccardo F, Del Manso M, et al. Estimated Effectiveness of a Primary Cycle of Protein Recombinant Vaccine NVX-CoV2373 Against COVID-19. JAMA Netw Open. 2023 Oct 4;6(10):e2336854. doi: 10.1001/jamanetworkopen.2023.36854.

34. Fabiani M, Puopolo M, Morciano C, Spuri M, Spila Alegiani S, Filia A, et al. Effectiveness of mRNA vaccines and waning of protection against SARS-CoV-2 infection and severe covid-19 during predominant circulation of the delta variant in Italy: retrospective cohort study. BMJ. 2022 Feb 10;e069052. doi: 10.1136/bmj-2021-069052.

35. European Medicines Agency (EMA). Bimervax. COVID-19 Vaccine (recombinant, adjuvanted). 2023. Available from: [https://www.ema.europa.eu/en/medicines/human/EPAR/bimervax](https://www.ema.europa.eu/en/medicines/human/EPAR/bimervax) [Last Accessed: 2024 January 19].

36. Borralleras C, Castrodeza Sanz J, Arrazola P, Cámara Hijón C, Eiros JM, Fernández-Prada M, et al. The PHH-1V HIPRA vaccine: a new tool in the vaccination strategy against COVID-19. Rev Esp Quimioter. 2023 Sep 20;36(5):507–15. doi: 10.37201/req/046.2023.

37. Borralleras C, Castrodeza Sanz J, Arrazola P, Cámara Hijón C, Eiros JM, Fernández-Prada M, et al. Update on Bimervax® immunogenicity amplitude. Insights on humoral response against XBB.1.5 from an extension study (NTC05142553). Rev Esp Quimioter. 2023 Nov 27;36(6):658–60. doi: 10.37201/req/085.2023.

38. Corominas J, Garriga C, Prenafeta A, Moros A, Cañete M, Barreiro A, et al. Safety and immunogenicity of the protein-based PHH-1V compared to BNT162b2 as a heterologous SARS-CoV-2 booster vaccine in adults vaccinated against COVID-19: a multicentre, randomised, double-blind, non-inferiority phase IIb trial. Lancet Reg Health - Eur. 2023 May;28:100613. doi: 10.1016/j.lanepe.2023.100613.

39. Tricco AC, Zarin W, Cardoso R, Veroniki AA, Khan PA, Nincic V, et al. Efficacy, effectiveness, and safety of herpes zoster vaccines in adults aged 50 and older: systematic review and network meta-analysis. BMJ. 2018 Oct 25;k4029. doi: 10.1136/bmj.k4029.

40. Harbecke R, Cohen JI, Oxman MN. Herpes Zoster Vaccines. J Infect Dis. 2021 Sep 30;224(Supplement_4):S429–42. doi: 10.1093/infdis/jiab387.

41. World Health Organization. WHO recommends R21/Matrix-M vaccine for malaria prevention in updated advice on immunization. 2023. Available from: [https://www.who.int/news/item/02-10-2023-who-recommends-r21-matrixm-vaccine-for-malaria-prevention-in-updated-advice-on-immunization](https://www.who.int/news/item/02-10-2023-who-recommends-r21-matrixm-vaccine-for-malaria-prevention-in-updated-advice-on-immunization) [Last accessed: 2024 Jan 29].

42. Papi A, Ison MG, Langley JM, Lee DG, Leroux-Roels I, Martinon-Torres F, et al. Respiratory Syncytial Virus Prefusion F Protein Vaccine in Older Adults. N Engl J Med. 2023 Feb 16;388(7):595–608. doi: 10.1056/NEJMoa2209604.

43. Walsh EE, Pérez Marc G, Zareba AM, Falsey AR, Jiang Q, Patton M, et al. Efficacy and Safety of a Bivalent RSV Prefusion F Vaccine in Older Adults. N Engl J Med. 2023 Apr 20;388(16):1465–77. doi: 10.1056/NEJMoa2213836.

44. Simões EAF, Center KJ, Tita ATN, Swanson KA, Radley D, Houghton J, et al. Prefusion F Protein–Based Respiratory Syncytial Virus Immunization in Pregnancy. N Engl J Med. 2022 Apr 28;386(17):1615–26. doi: 10.1056/NEJMoa2106062.

45. Kampmann B, Madhi SA, Munjal I, Simões EAF, Pahud BA, Llapur C, et al. Bivalent Prefusion F Vaccine in Pregnancy to Prevent RSV Illness in Infants. N Engl J Med. 2023 Apr 20;388(16):1451–64. doi: 10.1056/NEJMoa2216480.

46. Shinde V, Cho I, Plested JS, Agrawal S, Fiske J, Cai R, et al. Comparison of the safety and immunogenicity of a novel Matrix-M-adjuvanted nanoparticle influenza vaccine with a quadrivalent seasonal influenza vaccine in older adults: a phase 3 randomised controlled trial. Lancet Infect Dis. 2022 Jan;22(1):73–84. doi: 10.1016/S1473-3099(21)00192-4.

47. Luchner M, Reinke S, Milicic A. TLR Agonists as Vaccine Adjuvants Targeting Cancer and Infectious Diseases. Pharmaceutics. 2021 Jan 22;13(2):142. doi: 10.3390/pharmaceutics13020142.

48. Heil F, Hemmi H, Hochrein H, Ampenberger F, Kirschning C, Akira S, et al. Species-Specific Recognition of Single-Stranded RNA via Toll-like Receptor 7 and 8. Science. 2004 Mar 5;303(5663):1526–9. doi: 10.1126/science.1093620.

49. Diebold SS, Kaisho T, Hemmi H, Akira S, Reis E Sousa C. Innate Antiviral Responses by Means of TLR7-Mediated Recognition of Single-Stranded RNA. Science. 2004 Mar 5;303(5663):1529–31. doi: 10.1126/science.1093616.

50. Alameh MG, Tombácz I, Bettini E, Lederer K, Ndeupen S, Sittplangkoon C, et al. Lipid nanoparticles enhance the efficacy of mRNA and protein subunit vaccines by inducing robust T follicular helper cell and humoral responses. Immunity. 2021 Dec;54(12):2877-2892.e7. doi: 10.1016/j.immuni.2021.11.001.

51. Weide B, Carralot JP, Reese A, Scheel B, Eigentler TK, Hoerr I, et al. Results of the First Phase I/II Clinical Vaccination Trial With Direct Injection of mRNA. J Immunother. 2008 Feb;31(2):180–8. doi: 10.1097/CJI.0b013e31815ce501.

52. Andrews N, Stowe J, Kirsebom F, Toffa S, Rickeard T, Gallagher E, et al. Covid-19 Vaccine Effectiveness against the Omicron (B.1.1.529) Variant. N Engl J Med. 2022 Apr 21;386(16):1532–46. doi: 10.1056/NEJMoa2119451.

53. Ball R, Bajaj P, Whitehead K. Achieving long-term stability of lipid nanoparticles: examining the effect of pH, temperature, and lyophilization. Int J Nanomedicine. 2016 Dec;12:305–15. doi: 10.2147/IJN.S123062.

54. Uddin MN, Roni MA. Challenges of Storage and Stability of mRNA-Based COVID-19 Vaccines. Vaccines. 2021 Sep 17;9(9):1033. doi: 10.3390/vaccines9091033.

55. Zhang Z, Mateus J, Coelho CH, Dan JM, Moderbacher CR, Gálvez RI, et al. Humoral and cellular immune memory to four COVID-19 vaccines. Cell. 2022 Jul;185(14):2434–2451.e17. doi: 10.1016/j.cell.2022.05.022.

56. Stumpf J, Siepmann T, Lindner T, Karger C, Schwöbel J, Anders L, et al. Humoral and cellular immunity to SARS-CoV-2 vaccination in renal transplant versus dialysis patients: A prospective, multicenter observational study using mRNA-1273 or BNT162b2 mRNA vaccine. Lancet Reg Health - Eur. 2021 Oct;9:100178. doi: 10.1016/j.lanepe.2021.100178.

57. Kavikondala S, Haeussler K, Wang X, Spellman A, Bausch-Jurken MT, Sharma P, et al. Immunogenicity of mRNA-1273 and BNT162b2 in Immunocompromised Patients: Systematic Review and Meta-Analysis Using GRADE. Infectious Diseases (except HIV/AIDS); 2023 Aug. Available from: [http://medrxiv.org/lookup/doi/10.1101/2023.08.09.23293898](http://medrxiv.org/lookup/doi/10.1101/2023.08.09.23293898) [Last accessed: 2023 December 10].

58. Sigal A, Milo R, Jassat W. Estimating disease severity of Omicron and Delta SARS-CoV-2 infections. Nat Rev Immunol. 2022 May;22(5):267–9. doi: 10.1038/s41577-022-00720-5.

59. Wang X, Haeussler K, Spellman A, Phillips LE, Ramiller A, Bausch-Jurken MT, et al. Comparative effectiveness of mRNA-1273 and BNT162b2 COVID-19 vaccines in immunocompromised individuals: a systematic review and meta-analysis using the GRADE framework. Front Immunol. 2023 Sep 12;14:1204831. doi: 10.3389/fimmu.2023.1204831.

60. Harris DA, Hayes KN, Zullo AR, Mor V, Chachlani P, Deng Y, et al. Comparative Risks of Potential Adverse Events Following COVID-19 mRNA Vaccination Among Older US Adults. JAMA Netw Open. 2023 Aug 2;6(8):e2326852. doi: 10.1001/jamanetworkopen.2023.26852.

61. Dickerman BA, Madenci AL, Gerlovin H, Kurgansky KE, Wise JK, Figueroa Muñiz MJ, et al. Comparative Safety of BNT162b2 and mRNA-1273 Vaccines in a Nationwide Cohort of US Veterans. JAMA Intern Med. 2022 Jul 1;182(7):739. doi: 10.1001/jamainternmed.2022.2109.

62. Naveed Z, Li J, Wilton J, Spencer M, Naus M, Velásquez García HA, et al. Comparative Risk of Myocarditis/Pericarditis Following Second Doses of BNT162b2 and mRNA-1273 Coronavirus Vaccines. J Am Coll Cardiol. 2022 Nov;80(20):1900–8. doi: 10.1016/j.jacc.2022.08.799.

63. Chou OHI, Zhou J, Lee TTL, Kot T, Lee S, Wai AKC, et al. Comparisons of the risk of myopericarditis between COVID-19 patients and individuals receiving COVID-19 vaccines: a population-based study. Clin Res Cardiol. 2022 Oct;111(10):1098–103. doi: 10.1007/s00392-022-02007-0.

64. Imazio M, Klingel K, Kindermann I, Brucato A, De Rosa FG, Adler Y, et al. COVID-19 pandemic and troponin: indirect myocardial injury, myocardial inflammation or myocarditis? Heart. 2020 Aug;106(15):1127–31. doi: 10.1136/heartjnl-2020-317186.

65. Gao J, Feng L, Li Y, Lowe S, Guo Z, Bentley R, et al. A Systematic Review and Meta-analysis of the Association Between SARS-CoV-2 Vaccination and Myocarditis or Pericarditis. Am J Prev Med. 2023 Feb;64(2):275–84. doi: 10.1016/j.amepre.2022.09.002.

66. ModernaTX, Inc. A Study of mRNA-1345 Vaccine Targeting Respiratory Syncytial Virus (RSV) in Adults ≥50 Years of Age (RSVictory). NCT05330975, (last update). Available from: [https://clinicaltrials.gov/study/NCT05330975](https://clinicaltrials.gov/study/NCT05330975) [Last accessed: 2023 December 10].

67. Focosi D. From Co-Administration to Co-Formulation: The Race for New Vaccines against COVID-19 and Other Respiratory Viruses. Vaccines. 2023 Jan 2;11(1):109. doi: 10.3390/vaccines11010109.

68. Lorentzen CL, Haanen JB, Met Ö, Svane IM. Clinical advances and ongoing trials of mRNA vaccines for cancer treatment. Lancet Oncol. 2022 Oct;23(10):e450–8. doi: 10.1016/S1470-2045(22)00372-2.

69. Sahin U, Oehm P, Derhovanessian E, Jabulowsky RA, Vormehr M, Gold M, et al. An RNA vaccine drives immunity in checkpoint-inhibitor-treated melanoma. Nature. 2020 Sep 3;585(7823):107–12. doi: 10.1038/s41586-020-2537-9.

70. Burris HA, Patel MR, Cho DC, Clarke JM, Gutierrez M, Zaks TZ, et al. A phase I multicenter study to assess the safety, tolerability, and immunogenicity of mRNA-4157 alone in patients with resected solid tumors and in combination with pembrolizumab in patients with unresectable solid tumors. J Clin Oncol. 2019 May 20;37(15_suppl):2523–2523. doi: 10.1200/JCO.2019.37.15_suppl.2523.

71. Merck & Co. Moderna and Merck Announce mRNA-4157/V940, an Investigational Personalized mRNA Cancer Vaccine, in Combination With KEYTRUDA® (pembrolizumab), Met Primary Efficacy Endpoint in Phase 2b KEYNOTE-942 Trial. 2022. Available from: [https://www.merck.com/news/moderna-and-merck-announce-mrna-4157-v940-an-investigational-personalized-mrna-cancer-vaccine-in-combination-with-keytruda-pembrolizumabmet-primary-efficacy-endpoint-in-phase-2b-keynote-94/](https://www.merck.com/news/moderna-and-merck-announce-mrna-4157-v940-an-investigational-personalized-mrna-cancer-vaccine-in-combination-with-keytruda-pembrolizumabmet-primary-efficacy-endpoint-in-phase-2b-keynote-94/) [Last accessed: 2023 December 10].

72. Jackson DA, Symons RH, Berg P. Biochemical Method for Inserting New Genetic Information into DNA of Simian Virus 40: Circular SV40 DNA Molecules Containing Lambda Phage Genes and the Galactose Operon of Escherichia coli. Proc Natl Acad Sci. 1972 Oct;69(10):2904–9. doi: 10.1073/pnas.69.10.2904.

73. Ura T, Okuda K, Shimada M. Developments in Viral Vector-Based Vaccines. Vaccines. 2014 Jul 29;2(3):624–41. doi: 10.3390/vaccines2030624.

74. Deng S, Liang H, Chen P, Li Y, Li Z, Fan S, et al. Viral Vector Vaccine Development and Application during the COVID-19 Pandemic. Microorganisms. 2022 Jul 18;10(7):1450. doi: 10.3390/microorganisms10071450.

75. Vrba SM, Kirk NM, Brisse ME, Liang Y, Ly H. Development and Applications of Viral Vectored Vaccines to Combat Zoonotic and Emerging Public Health Threats. Vaccines. 2020 Nov 13;8(4):680. doi: 10.3390/vaccines8040680.

76. Travieso T, Li J, Mahesh S, Mello JDFRE, Blasi M. The use of viral vectors in vaccine development. Npj Vaccines. 2022 Jul 4;7(1):75. doi: 10.1038/s41541-022-00503-y.

77. Meeraus W, De Munter L, Gray CM, Dwivedi A, Wyndham-Thomas C, Ouwens M, et al. Protection against COVID-19 hospitalisation conferred by primary-series vaccination with AZD1222 in non-boosted individuals: first vaccine effectiveness results of the European COVIDRIVE study and meta-regression analysis. Lancet Reg Health - Eur. 2023 Aug;31:100675. doi: 10.1016/j.lanepe.2023.100675.

78. Van Gils MJ, Lavell A, Van Der Straten K, Appelman B, Bontjer I, Poniman M, et al. Antibody responses against SARS-CoV-2 variants induced by four different SARS-CoV-2 vaccines in health care workers in the Netherlands: A prospective cohort study. PLOS Med. 2022 May 17;19(5):e1003991. doi: 10.1371/journal.pmed.1003991.

79. Li M, Wang H, Tian L, Pang Z, Yang Q, Huang T, et al. COVID-19 vaccine development: milestones, lessons and prospects. Signal Transduct Target Ther. 2022 May 3;7(1):146. doi: 10.1038/s41392-022-00996-y.

80. Klugar M, Riad A, Mekhemar M, Conrad J, Buchbender M, Howaldt HP, et al. Side Effects of mRNA-Based and Viral Vector-Based COVID-19 Vaccines among German Healthcare Workers. Biology. 2021 Aug 5;10(8):752. doi: 10.3390/biology10080752.

81. Menni C, Valdes AM, Freidin MB, Sudre CH, Nguyen LH, Drew DA, et al. Real-time tracking of self-reported symptoms to predict potential COVID-19. Nat Med. 2020 Jul;26(7):1037–40. doi: 10.1038/s41591-020-0916-2.

82. Menni C, Klaser K, May A, Polidori L, Capdevila J, Louca P, et al. Vaccine side-effects and SARS-CoV-2 infection after vaccination in users of the COVID Symptom Study app in the UK: a prospective observational study. Lancet Infect Dis. 2021 Jul;21(7):939–49. doi: 10.1016/S1473-3099(21)00224-3.

83. Al‐Ali D, Elshafeey A, Mushannen M, Kawas H, Shafiq A, Mhaimeed N, et al. Cardiovascular and haematological events post COVID‐19 vaccination: A systematic review. J Cell Mol Med. 2022 Feb;26(3):636–53. doi: 10.1111/jcmm.17137.

84. Makris M, Pavord S, Lester W, Scully M, Hunt B. Vaccine-induced Immune Thrombocytopenia and Thrombosis (VITT). Res Pract Thromb Haemost. 2021 Jul;5(5):e12529. doi: 10.1002/rth2.12529.

85. Klok FA, Pai M, Huisman MV, Makris M. Vaccine-induced immune thrombotic thrombocytopenia. Lancet Haematol. 2022 Jan;9(1):e73–80. doi: 10.1016/S2352-3026-(21)00306-9.

86. Greinacher A, Thiele T, Warkentin TE, Weisser K, Kyrle PA, Eichinger S. Thrombotic Thrombocytopenia after ChAdOx1 nCov-19 Vaccination. N Engl J Med. 2021 Jun 3;384(22):2092–101. doi: 10.1056/NEJMoa2104840.

87. Schultz NH, Sørvoll IH, Michelsen AE, Munthe LA, Lund-Johansen F, Ahlen MT, et al. Thrombosis and Thrombocytopenia after ChAdOx1 nCoV-19 Vaccination. N Engl J Med. 2021 Jun 3;384(22):2124–30. doi: 10.1056/NEJMoa2104882.

88. Scully M, Singh D, Lown R, Poles A, Solomon T, Levi M, et al. Pathologic Antibodies to Platelet Factor 4 after ChAdOx1 nCoV-19 Vaccination. N Engl J Med. 2021 Jun 10;384(23):2202–11. doi: 10.1056/NEJMoa2105385.

89. Suhaimi SNAA, Zaki IAH, Noordin ZM, Hussin NSM, Ming LC, Zulkifly HH. COVID-19 vaccine-induced immune thrombotic thrombocytopenia: a review. Clin Exp Vaccine Res. 2023;12(4):265. doi: 10.7774/cevr.2023.12.4.265.

90. Kolahchi Z, Khanmirzaei M, Mowla A. Acute ischemic stroke and vaccine-induced immune thrombotic thrombocytopenia post COVID-19 vaccination; a systematic review. J Neurol Sci. 2022 Aug;439:120327. doi: 10.1016/j.jns.2022.120327.

91. Crommelin DJA, Anchordoquy TJ, Volkin DB, Jiskoot W, Mastrobattista E. Addressing the Cold Reality of mRNA Vaccine Stability. J Pharm Sci. 2021 Mar;110(3):997–1001. doi: 10.1016/j.xphs.2020.12.006.

92. Sadoff J, Gray G, Vandebosch A, Cárdenas V, Shukarev G, Grinsztejn B, et al. Safety and Efficacy of Single-Dose Ad26.COV2.S Vaccine against Covid-19. N Engl J Med. 2021 Jun 10;384(23):2187–201. doi: 10.1056/NEJMoa2101544.

93. Therapeutic vaccination: A Phase I/II Randomized, Placebo-Controlled Trial of ChAdOx1.tHIVconsvX prime-MVA.tHIVconsvX Boost Vaccination Regimen in Early-treated durably-controlling HIV-1 positive Adults. HIV-CORE007. Available from: [https://www.clinicaltrialsregister.eu/ctr-search/trial/2019-003102-26/IT](https://www.clinicaltrialsregister.eu/ctr-search/trial/2019-003102-26/IT) [Last accessed: 2023 December 10].

94. Sabbaghi A, Miri SM, Keshavarz M, Zargar M, Ghaemi A. Inactivation methods for whole influenza vaccine production. Rev Med Virol. 2019 Nov;29(6):e2074. doi: 10.1002/rmv.2074.

95. Yang L, Tang L, Zhang M, Liu C. Recent Advances in the Molecular Design and Delivery Technology of mRNA for Vaccination Against Infectious Diseases. Front Immunol. 2022 Jul 15;13:896958. doi: 10.3389/fimmu.2022.896958.

96. Kyriakidis NC, López-Cortés A, González EV, Grimaldos AB, Prado EO. SARS-CoV-2 vaccines strategies: a comprehensive review of phase 3 candidates. Npj Vaccines. 2021 Feb 22;6(1):28. doi: 10.1038/s41541-021-00292-w.

97. Falsey AR. More is better: influenza vaccines in patients with rheumatoid arthritis. Lancet Rheumatol. 2020 Jan;2(1):e2–3. doi: [https://doi.org/10.1016/S2665-9913(19)30112-2](https://doi.org/10.1016/S2665-9913%2819%2930112-2).

98. Sanders B, Koldijk M, Schuitemaker H. Inactivated Viral Vaccines. In: Nunnally BK, Turula VE, Sitrin RD, editors. Vaccine Analysis: Strategies, Principles, and Control. Berlin, Heidelberg: Springer Berlin Heidelberg; 2015. p. 45–80. Available from: [http://link.springer.com/10.1007/978-3-662-45024-6_2](http://link.springer.com/10.1007/978-3-662-45024-6_2) [Last accessed: 2023 December 10].

99. Christensen D. Vaccine adjuvants: Why and how. Hum Vaccines Immunother. 2016 Oct 2;12(10):2709–11. doi: 10.1080/21645515.2016.1219003.

100. McGovern I, Sardesai A, Taylor A, Toro-Diaz H, Haag M. Additional Burden Averted in the United States From Use of MF59-Adjuvanted Seasonal Influenza Vaccine Compared With Standard Seasonal Influenza Vaccine Among Adults ≥65 Years. Open Forum Infect Dis. 2023 Aug 1;10(8):ofad429. doi: 10.1093/ofid/ofad429.

101. Lazarus R, Querton B, Corbic Ramljak I, Dewasthaly S, Jaramillo JC, Dubischar K, et al. Immunogenicity and safety of an inactivated whole-virus COVID-19 vaccine (VLA2001) compared with the adenoviral vector vaccine ChAdOx1-S in adults in the UK (COV-COMPARE): interim analysis of a randomised, controlled, phase 3, immunobridging trial. Lancet Infect Dis. 2022 Dec;22(12):1716–27. doi: 10.1016/S1473-3099(22)00502-3.

102. Vaccines Europe. Vaccines Europe pipeline review 2023. 2023. Available from: [https://www.vaccineseurope.eu/wp-content/uploads/2023/11/VaccinesEurope-PipelineReview2023.pdf](https://www.vaccineseurope.eu/wp-content/uploads/2023/11/VaccinesEurope-PipelineReview2023.pdf) [Last accessed: 2023 December 10].

103. Huang M, Zhang M, Zhu H, Du X, Wang J. Mucosal vaccine delivery: A focus on the breakthrough of specific barriers. Acta Pharm Sin B. 2022 Sep;12(9):3456–74. doi: 10.1016/j.apsb.2022.07.002.

104. Lykins WR, Fox CB. Practical Considerations for Next-Generation Adjuvant Development and Translation. Pharmaceutics. 2023 Jun 29;15(7):1850. doi: 10.3390/pharmaceutics15071850.

105. Lavelle EC, Ward RW. Mucosal vaccines — fortifying the frontiers. Nat Rev Immunol. 2022 Apr;22(4):236–50. doi: 10.1038/s41577-021-00583-2.

106. NIH. Vaccine Types. 2019. Available from: [https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8779282/pdf/vaccines-10-00062.pdf](https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8779282/pdf/vaccines-10-00062.pdf) [Last accessed: 2023 December 10].

107. Rappuoli R, De Gregorio E, Costantino P. On the mechanisms of conjugate vaccines. Proc Natl Acad Sci. 2019 Jan 2;116(1):14–6. doi: 10.1073/pnas.1819612116.

108. Davies LRL, Cizmeci D, Guo W, Luedemann C, Alexander-Parrish R, Grant L, et al. Polysaccharide and conjugate vaccines to Streptococcus pneumoniae generate distinct humoral responses. Sci Transl Med. 2022 Aug 3;14(656):eabm4065. doi: 10.1126/scitranslmed.abm4065.

109. Kumru OS, Joshi SB, Smith DE, Middaugh CR, Prusik T, Volkin DB. Vaccine instability in the cold chain: Mechanisms, analysis and formulation strategies. Biologicals. 2014 Sep;42(5):237–59. doi: 10.1016/j.biologicals.2014.05.007.

110. Stark JC, Jaroentomeechai T, Moeller TD, Hershewe JM, Warfel KF, Moricz BS, et al. On-demand biomanufacturing of protective conjugate vaccines. Sci Adv. 2021 Feb 5;7(6):eabe9444. doi: 10.1126/sciadv.abe9444.

111. Platt H, Omole T, Cardona J, Fraser NJ, Mularski RA, Andrews C, et al. Safety, tolerability, and immunogenicity of a 21-valent pneumococcal conjugate vaccine, V116, in healthy adults: phase 1/2, randomised, double-blind, active comparator-controlled, multicentre, US-based trial. Lancet Infect Dis. 2023 Feb;23(2):233–46. doi: 10.1016/S1473-3099(22)00526-6.

112. Micoli F, Romano MR, Carboni F, Adamo R, Berti F. Strengths and weaknesses of pneumococcal conjugate vaccines. Glycoconj J. 2023 Apr;40(2):135–48. doi: 10.1007/s10719-023-10100-3.

113. Fairman J, Agarwal P, Barbanel S, Behrens C, Berges A, Burky J, et al. Non-clinical immunological comparison of a Next-Generation 24-valent pneumococcal conjugate vaccine (VAX-24) using site-specific carrier protein conjugation to the current standard of care (PCV13 and PPV23). Vaccine. 2021 May;39(23):3197–206. doi: 10.1016/j.vaccine.2021.03.070.

114. Chichili GR, Smulders R, Santos V, Cywin B, Kovanda L, Van Sant C, et al. Phase 1/2 study of a novel 24-valent pneumococcal vaccine in healthy adults aged 18 to 64 years and in older adults aged 65 to 85 years. Vaccine. 2022 Jul;40(31):4190–8. doi: 10.1016/j.vaccine.2022.05.079.

115. Zhang F, Boerth EM, Gong J, Ma N, Lucas K, Ledue O, et al. A Bivalent MAPS Vaccine Induces Protective Antibody Responses against Salmonella Typhi and Paratyphi A. Vaccines. 2022 Dec 30;11(1):91. doi: 10.3390/vaccines11010091.

116. Duke JA, Avci FY. Emerging vaccine strategies against the incessant pneumococcal disease. Npj Vaccines. 2023 Aug 17;8(1):122. doi: 10.1038/s41541-023-00715-w.

117. ICH Good Clinical Practice. A Phase 2, Randomized, Double-blind, Multi-dose, Dose Finding Study to Evaluate the Safety, Tolerability and Immunogenicity of AFX3772 Compared With PCV13 in Healthy Infants. 2023. Available from: [https://ichgcp.net/clinical-trials-registry/NCT05412030](https://ichgcp.net/clinical-trials-registry/NCT05412030) [Last accessed: 2023 January 19].

118. Signorelli C, Odone A, Gianfredi V, Bossi E, Bucci D, Oradini-Alacreu A, et al. The spread of COVID-19 in six western metropolitan regions: a false myth on the excess of mortality in Lombardy and the defense of the city of Milan. Acta Bio Medica Atenei Parm. 2020 May 11;91(2):23–30. doi: 10.23750/abm.v91i2.9600.

119. Odone A, Salvati S, Bellini L, Bucci D, Capraro M, Gaetti G, et al. The runaway science: a bibliometric analysis of the COVID-19 scientific literature: How COVID-19 has changed academic publishing. Acta Biomed. 2020 Jul 20;91(9-S):34–9. doi: 10.23750/abm.v91i9-S.10121.

120. Gianfredi V, Pennisi F, Lume A, Ricciardi GE, Minerva M, Riccò M, et al. Challenges and Opportunities of Mass Vaccination Centers in COVID-19 Times: A Rapid Review of Literature. Vaccines. 2021 Jun 1;9(6):574. doi: 10.3390/vaccines9060574.

121. Comes JDG, Pijlman GP, Hick TAH. Rise of the RNA machines – self-amplification in mRNA vaccine design. Trends Biotechnol. 2023 Nov;41(11):1417–29. doi: 10.1016/j.tibtech.2023.05.007.

122. Bai Y, Liu D, He Q, Liu J, Mao Q, Liang Z. Research progress on circular RNA vaccines. Front Immunol. 2023 Jan 12;13:1091797. doi: 10.3389/fimmu.2022.1091797.

123. Moderna, Inc. Moderna Announces First Participant Dosed in Phase 3 Study of mRNA-1083, a Combination Vaccine Against Influenza and COVID-19. 2023. Available from: [https://investors.modernatx.com/news/news-details/2023/Moderna-Announces-First-Participant-Dosed-in-Phase-3-Study-of-mRNA-1083-a-Combination-Vaccine-Against-Influenza-and-COVID-19/default.aspx](https://investors.modernatx.com/news/news-details/2023/Moderna-Announces-First-Participant-Dosed-in-Phase-3-Study-of-mRNA-1083-a-Combination-Vaccine-Against-Influenza-and-COVID-19/default.aspx) [Last accessed: 2023 December 10].

124. Odone A, Vecchio R, Brogonzoli L, Sala E, Vigezzi GP, Muzzi A, et al. Vaccination strategies for high-risk and fragile populations in Lombardy (Italy): a region-wide assessment of hospital-based models and best practices. Ann Ig. 2024 Mar-Apr;36(2):215–26. doi:10.7416/ai.2024.2607. Epub 2024 Jan 31. PMID: 38299733.

Downloads

Published

2024-08-30

Issue

Section

Review

How to Cite

1.
Vecchio R, Gentile L, Tafuri S, Costantino C, Odone A. Exploring future perspectives and pipeline progression in vaccine research and development. Ann Ig. 2024;36(4):446-461. doi:10.7416/ai.2024.2614