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Abstract. Idiopathic pulmonary fibrosis (IPF) is a fatal lung disease. Lung cancer (LC) is among the most 
crucial comorbidity factors in patients with IPF. IPF patients that are diagnosed with LC have a reduced mean 
survival time. Therapeutic strategies for LC in patients with IPF need to be adapted according to the individual 
treatment risk. Life-threatening acute exacerbation (AE) of IPF may occur in association with cancer treatment, 
thereby severely restricting the therapeutic options for IPF-associated LC. Because LC and anticancer treat-
ments can worsen the prognosis of IPF, the prevention of LC is as critical as managing patients with IPF.
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Introduction

Idiopathic pulmonary fibrosis (IPF) is a fa-
tal lung disease that is characterized by progressive 
dyspnea and decrease in lung function. The delayed 
disease progression in IPF patients has led to an in-
creased prevalence of comorbidities. Among the sig-
nificant comorbidities in IPF patients is lung cancer 
(LC), with an incidence density of 25.2 cases per 
1000 person-years (1). The links between pulmonary 
fibrosis and LC are based on the shared genetic, mo-
lecular, and cellular processes that connect both dis-
eases. Management of IPF patients with LC need to 
be tailored based on individual risks and the progno-
sis of both LC and underlying IPF. It is important to 
note that life-threatening acute exacerbation (AE) of 
IPF may occur in association with cancer treatment. 

Given the known negative impact of LC and anti-
cancer treatments on the prognosis of IPF, the pre-
vention of LC is of utmost importance in managing 
patients with IPF. This review article aims to consoli-
date the current state of knowledge especially on the 
pathogenetic commonalities between IPF and LC. 
Additionally, it will focus on the therapeutic data 
pertaining to both diseases, providing a comprehen-
sive overview of the interplay between IPF and LC.

Epidemiology

The incidence of LC in individuals with IPF is 
higher compared to the general population, with a 
relative risk ranging from 7 to 14 (2,3). A multicenter, 
retrospective study conducted across seven Euro-
pean countries identified 324 cases of LC among 
3178 IPF patients, and the authors reported cumu-
lative incidence rates of 5.5%, 11.4%, 14.1%, and 
26.6% at 1, 3, 5, and 10 years, respectively (4). The 
estimated prevalence of LC in individuals with IPF 
was found to be 6.4% to 13.74% (4-6). Predispos-
ing factors for the development of LC in individuals 
with IPF encompasses diverse features in different 
studies; high pack-years of smoking, concomitant 
emphysema, high % vital capacity (7), male gender, 
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current smoking at the time of IPF diagnosis, rapid 
annual decline of 10% or more in forced vital capac-
ity (FVC) (8). Lung cancer in IPF patients is closely 
related with short survival, the median survival time 
is reported to be 38.7 months (9). A recent study 
found that patients with IPF and LC had a higher 
risk of all-cause mortality compared to IPF patients 
without LC, with a hazard ratio (HR) of 1.51 ([95% 
CI: 1.22–1.86], p < 0.0001) (4). Not only the sub-
group of ILD, but also presence of any interstitial 
lung abnormality (ILA) is a predictor for survival. 
Zhu et al. (10) reported 765 newly diagnosed non-
small cell lung cancer (NSCLC) cases, 101 (13.2%) 
cases experienced ILA at the time of NSCLC di-
agnosis. Authors showed that the presence of ILA 
in NSCLC patients was significantly associated 
with a shorter overall survival (OS) period than 
those without ILA (751 days vs. 445 days, HR 0.6,  
p = 0.001) (10).

Pathogenesis

The pathogenesis of ILDs, specifically IPF, 
shares similarities with cancer development, a vari-
ety of genetic and epigentic alterations that promote 
aberrant activation of the same transduction path-
ways, such as Wnt/b-catenin and phosphoinositide 
3-kinase/protein kinase B. They involve various fac-
tors such as abnormalities in epithelial cells ranging 
from metaplasia to carcinomatous transformation, 
alterations in cellular bioenergetics, release of solu-
ble mediators, and aging-related processes including 
telomere attrition and aberrant activation of devel-
opmental pathways and alterations in several essen-
tial biological processes for cellular functions such 
as autophagy, endoplasmic reticulum (ER) stress/
unfolded protein response (UPR) and apoptosis, that 
are also hallmarks of ageing (Figure 1).

In IPF an ongoing interaction between meta-
plastic epithelial cells with accumulated genetic al-
terations and activated mesenchymal cells triggers 
cancer initiation and progression, whereas cell trans-
formations to mesenchymal phenotypes, including 
epithelial and endothelial to mesenchymal transi-
tion, significantly contribute to tumor metaplasia, 
invasion, and metastasis. Genetic factors play a role 
in both IPF and lung cancer, with certain genetic loci 
associated with both conditions. Mutations in sur-
factant protein genes (such as SFTPA2) have been 
identified in IPF and have been linked to impaired 

protein secretion, endoplasmic reticular stress, ap-
optosis, and the development of various lung cancer 
types, including bronchoalveolar cell carcinoma and 
adenocarcinoma. These mutations are often observed 
in cases of isolated IPF or IPF with atypical bron-
chiolar epithelial proliferation (11). Additionally, 
genetic alterations in microsatellites located in chro-
mosomal regions 8p21.3-q11.1 and 17q11.2-q2 have 
been implicated in the genetic basis of IPF and are 
also frequently detected in cancer. These alterations 
may help explain the higher risk of tumorigenesis 
observed in IPF patients (12). Imbalances between 
oncogenes and tumor suppressor genes have also 
been observed in IPF. A study analyzing p53 gene 
mutations and expression in tumor tissues from  
LC-IPF patients found that p53 mutations were 
present in 57% of cancer cells and 26% of squamous 
metaplasia cells in the analyzed samples (13). It has 
been demonstrated that those mutations in p53 are 
associated with increased expression and apoptosis 
resistance in patients with IPF and in patients with 
lung cancer (14) (Figure 2).

It should be underlined that a low frequency 
of KRAS mutations in lung cancer which are oth-
erwise known Tobacco-associated KRAS mutations 
characteristic of lung cancer, are detected with low 
frequency in IPF-lung cancer, despite the high per-
centage of smokers, therefore implying other, en-
dogenous carcinogenic mechanisms linked to lung 
fibrosis (15). Advanced molecular techniques, in-
cluding genome-wide association approaches, have 
identified two germline mutations (in TERT and 
CDKN1A genes) that are associated with increased 
risks of IPF in a majority of patients. This suggests 
the presence of common genetic factors that contrib-
ute to the development of both lung cancer and fi-
brosis (16). Telomerase, which plays a differential role 
in fibrosis and tumorigenesis, has been investigated. 
The expression of TERT and TERC genes, which are 
components of telomerase, was significantly lower in 
the lung tissue of IPF patients compared to non-
small cell lung cancer (NSCLC) tissues and controls 
(17) (Figure 1). IPF and lung cancer have common 
environmental risk factors (ie, smoking, occupational 
and environmental exposures), and both are charac-
terized not only by an accelerated aging process (18), 
but they exibit similar methylation profiles as well 
(19,20), with aberrant expression of certain noncod-
ing RNAs such as miR-21, miR-29 and let-7d, that 
either up- or downregulated play an important role 
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Figure 2. Common Genetic and Epigenetic Pathogenic Mechanisms between IPF and LC
Modified from Tzouvelekis A. et al. Common Pathogenic Mechanisms Between Idiopathic Pulmonary Fibrosis and 
Lung Cancer. CHEST 2019; 156(2):383-391.

Figure 1. Pathogenetic similarities between IPF and cancer.
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as the resistance to systemic therapy. In both diseases, 
fibroblasts activated through inflammatory mediators 
and characterized by paracrine and autocrine sign-
aling, play key role in development and progression 
 (Figure 1). IPF is characterized by uncontrolled acti-
vation of fibroblasts, caused by increased inflamma-
tory cytokines, (e.g. TNFα, IFNγ and IL-6) which are 
at the start secreted by inflammatory cells (e.g. mac-
rophages). Activated IPF fibroblasts can secrete a 
variety of pro-fibrotic and pro-angiogenic signals 
that promote disease progression (31). Pro-fibrotic 
mediators secreted by activated fibroblasts continue 
to act on fibroblasts causing a positive feedback, and 
thus leading to production and deposition of ECM 
and myofibroblast differentiation (32). IPF fibroblast 
can activate healthy neighboring cells in IPF and this 
paracrine signaling in IPF fibroblasts is linked to 
overexpression of proinflammatory cytokine  IL-6R,  
suppressor of cytokine signaling 3 (SOCS3), phospho- 
STAT3-Y705 and phospho-Smad3, while in addi-
tion fibroblasts proliferate faster, secrete more IL-6 
and express higher levels of the soluble  IL-6R. The  
IL-6/STAT3/Smad3 axis further ease cells’ responses 
that could potentially promote fibrotic process. 
 Interleukin-6 (IL-6) produced mostly by fibroblasts 
is elevated in lungs of IPF patients (33) and can foster 
fibrosis by governing chronic inflammation (34) and  
by activation of the TGFβ pathway (35-39), the most 
potent profibrotic cytokine, the key factor that pro-
motes fibroblast differentiation into myofibroblasts 
(40) (Figure 3). It is worth noting that myofibroblasts 

in both, dvelopment of fibrosis and carcinogenesis 
(21,22). The most important cells that are common 
in pathogenetic processes of both IPF and LC are 
fibroblasts. Fibroblasts originate from different lung 
resident cell populations such as the interstitial lung 
fibroblasts, the lipofibroblasts, lung resident mesen-
chymal stromal cells (LR-MSCs), the perycites and 
mesothelial cells, aside from the contribution of both, 
epithelial cells in EMT and circulating fibrocytes 
(23,24). The stem-like ‘universal’ type of fibroblast 
cell, characterized by expression of peptidase inhibi-
tor 16 (Pi16) and Col15a, have been found across 
normal tissues, having the ability to differentiate into 
specialized fibroblasts in the state of disease or injury 
where they change into highly activated fibroblasts 
(25). Fibroblasts display phenotypic divergence 
within the normal lung, while this heterogeneity is 
significantly more pronounced in diseases such as the 
IPF and (lung) cancer (26,27). There are prominent  
similarities between IPF fibroblast and cancer- 
associated fibroblasts (CAFs) (28,29). Myofibroblasts  
represent the key cells in IPF since their prolifera-
tion and activation under profibrotic trigger factors 
lead to the secretion and excessive deposition of ex-
tracellular matrix (ECM) proteins that increasingly 
cause stiffness of the lung parenchyma. Thus these 
cells become responsible for causing fibrosis (24,30). 
On the other hand, CAF are also key components 
of the tumor microenvironment (TME) that affects 
the biological features of the tumor, both favoring the 
tumour cells proliferation and dissemination as well 

Figure 3. Signaling pathways that lead to activation of myofibroblasts in IPF and CAFs in lung 
cancer.
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define the structural and functional characteristics of 
stroma, which then result in tumor suppressive or tu-
mor supporting effects of CAF subpopulations in a 
context-dependent way. As CAFs interact with can-
cer cells and other stromal cells, as noted above they 
are characterized by secretion of different kinds of 
cytokines and chemokines, growth factors and extra-
cellular matrix proteins involved in cancer cell pro-
liferation, invasion, metastasis and chemoresistance. 
Thus secretion of TGFβ, PDGF, IL-6 is important 
for cancer cell proliferation, EMT with ECM re-
modeling and secretion of HGF, IL-6, HIF-1 for 
invasion and metastasis, VEGF for tumour angio-
genesis. Regarding chemoresistance CAFs may cre-
ate physical milieu through ECM remodeling, ECM 
stifness and increased expression of collagen, hyalu-
ronan, fibronectin, along with crosstalks with cancer 
cells leading to acquisition of stemness, inhibition of 
apoptosis and induction of EMT (46-56) (Figure 3). 
The main subsets of CAFs include myofibroblast-
like CAFs (myCAFs), inflammatory CAFs (iCAFs) 
and recently characterized novel, antigen-presenting 
CAFs (apCAFs), all of them having diverse bio-
logical characteristics and leading to phenotypical 
diversity and functional heterogeneity in cancer 
development. Furthermore, the distinct subsets of 
CAFs have the ability to convert one into another 
via modulation of specific signaling, such as the con-
version between iCAFs and myCAFs via the TGFβ 
or IL-6 signaling pathway of CAFs, reflecting their 
plasticity (57). MyCAFs characterized by myofibro-
blastic features and ECM remodeling express dual 
tumor-restraining and tumor promoting activities, 
dependent on the disease stage and the multiplex, 
complicated surrounding TME, whereas iCAFs are 
generally tumor-promoting by secreting of inflam-
matory cytokines and growth factors such as IL-6, 
IL-11, LIF, CHCLs (58), thus leading to prolifera-
tion, metastasis and chemoresistance of cancer cells 
(59). ApCAFs featured by the expression of major 
histocompatibility complex class II molecules that 
suggests their immunodulatory function of CAFs 
(60). Available data suggest context-dependent 
tumor-promoting or tumor-suppressive effects of 
apCAFs differing among specific tumour types. In 
lung cancer apCAFs have a role in T-cell immunity 
against lung tumors (61) (Figure 3). Recent studies 
have demonstrated the powerful immunosuppressive 
properties of stroma as a key mechanism by which 
stroma can foster tumor progression and cause 

secrete more ECM than fibroblasts and are the main 
collagen-producing cells in the lung characterized by 
expression of contractile protein α-SMA and fibro-
blast activation protein (FAP), the latter essential for 
collagen remodeling (41). This interplay, IPF fibro-
blast interaction with the microenvironment, espe-
cially with the immune cells, has important role in 
the disease progression. The actively proliferating fi-
broblast foci contrast with neighboring areas of rela-
tively normal parenchyma and over time move from 
subpleural regions towards central ones.

Cancer-associated fibroblasts, key cells of the 
TME, as are lung fibroblasts in IPF, represent a het-
erogeneous cell population originating from a variety 
of sources. Potential cellular origin of CAFs include 
local tissue resident stellate cells and normal fibro-
blasts and nonfibroblast lineage or recruited bone 
marrow-derived mesenchymal stem cells (MSCs) 
and macrophages. Tumor cells together with stromal 
cells trigger CAFs activation through inflamma-
tory mediators such as transforming growth factor 
beta (TGF-ß1), interleukin (IL)-1, and interleukin 
(IL)-6 that play important roles in inflammation 
and carcinogenesis. In fact, multiple activating fac-
tors promote the transition from normal fibroblasts 
to CAFs in the tumor microenvironment (TME): 
tumor cell secreted growth factors (TGF-b, HGF, 
PDGF, EGF, CTGF, FGF), transcription factors 
(NF0kB, HSF-1), cytokines (interleukins), metal-
loproteinases, ROS/hypoxia, tumor cell-derived ex-
osomes, microRNAs (23,24,42,43). Activation of 
CAFs can arise in response to damage-associated 
molecular patterns (DAMPs) released by damaged 
tissue or necrotic tumor cells, through pathways such 
as the NLRP3 inflammasome (44). Not only tumour 
cells, but endothelial, inflammatory and immune cells 
in the TME as well secrete mediators of fibroblast 
activation, whereas autocrine activation by activated 
fibroblasts production of factors and matrix occurs 
as well (45). A dynamic transformation of stromal 
fibroblasts in a context-dependent way occurs due to 
the plasticity of CAFs. They exibit different pheno-
typical and functional characteristics. Therefore, this 
phenotypic and functional diversity, and spatiotem-
porally dynamics of CAFs subtypes are regulated by 
complex molecular mechanisms, including genetic 
mediated by tumor cell-derived factors, epigenetic 
modulation by direct contact between tumor cells 
and CAFs, and metabolic reprogramming. These 
mechanisms can act independently or cooperate to 
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pathway, which has been implicated in fibroprolif-
erative disorders (72). The deregulation of PI3K can 
lead to the activation of various downstream profi-
brotic mediators, including TGF-b1 and platelet- 
derived growth factor. As a result, targeting PI3K has 
been suggested as a potential therapeutic approach 
for both IPF and lung cancer (73). Tumor transform-
ing growth factor beta (TGFβ) has been implicated 
in the process of fibrogenesis. Under normal condi-
tions, TGFβ exerts an anti-proliferative effect on 
epithelial cells while activating the Wnt/β-catenin 
signaling pathway, which transforms fibroblasts into 
myofibroblasts (74,75). Abnormal activation of the 
Wnt/β-catenin pathway has been observed in fi-
brotic areas of lung tissue samples obtained from  
IPF patients. TGF-b signaling is recognized as 
a key profibrotic pathway and mediator of the 
 epithelial-mesenchymal transition, EMT, which 
is not only the major feature of IPF, but also been 
shown to be involved in cancer progression and its 
ability to metastasize (76). This GF represents one 
of key inflammatory mediators through which tu-
mour and stromal cells trigger CAFs activation and 
is essential in cancer cells proliferation. Available 
data point that this pathway may also play a role in 
squamous dysplasia and the promotion of squamous 
carcinoma differentiation (77).

Management of IPF patients with LC

Although the relationship between LC and 
pulmonary fibrosis is well known, there is a signifi-
cant lack of knowledge in the diagnosis and treat-
ment management of patients with these two clinical 
entities. As noted in an international survey called 
DIAMORPHOS (Diagnosis and Management of 
Lung Cancer and Fibrosis), only five areas of inter-
est reached consensus among participants, while 28% 
of participants reported no awareness (78). In ILD 
patients, the diagnostic approach for LC needs to be 
carefully considered due to the fragility of these indi-
viduals. Tzouvelekis et al. (79) proposed an algorithm 
that includes annual high-resolution computed to-
mography (HRCT) screening for LC in all IPF 
patients (Figure 4). For nodules with a diameter of  
≥8 mm, PET-CT scan is highly recommended. If the 
PET-CT scan shows indications of tumor lesions, 
the authors suggested proceeding with minimally 
invasive diagnostic procedures such as transtho-
racic needle biopsy (TTNB) for peripheral lesions 

resistance to immunotherapy, regulating cancer- 
associated inflammation and antitumor immunity, 
the latter due to the interactions between CAFs 
and immune cells. CAFs can influence immune cell 
infiltration either directly—via secreted cytokines 
and chemokines and cell surface proteins—or 
 indirectly—through deposition of different ECM 
components and remodeling ECM on which im-
mune cells functioning depend (42,62). Novel CAF 
subsets that vary in their functions have been dis-
covered as well in diverse cancer types ocurring at 
different disease stages, and consequently having dif-
fering roles in cancer development (63). For example 
LRRC15+ CAFs, are the dominant CAF popula-
tion under TGF-β signals over tumor ocurrence and 
progression exibiting the suppression of antitumor 
immunity of cytotoxic T cells (64), while CD10+ 
GPR77+ CAFs correlate with chemoresistance by 
sustaining cancer stemness potentially serving as a 
prognostic factor in lung cancer (65). There are other 
pathogenetic mechanisms that take part in both dis-
ease. In IPF, the compression force exerted during 
alveolar constriction (66) can lead to the shrinkage 
of intercellular space, creating an environment en-
riched with growth factors and cytokines that pro-
mote tumor growth (67). The mechanical stretch and 
increased stiffness of the extracellular matrix in IPF 
not only directly stimulate the proliferation signaling 
of local cancer cells but also awaken dormant cancer 
cells, potentially contributing to the progression of 
lung cancer (68).

IPF is also characterized by an increase in en-
dothelial shear stress (69). Elevated circulatory 
shear stress levels have been shown to accelerate the 
expression of markers associated with epithelial- 
mesenchymal transition (EMT), such as TWIST1 
and SNAI2, in lung cancer cells (70). In the context of 
lung cancer (LC), the interaction between the tumor 
and the surrounding stroma plays a significant role in 
tumor progression and metastasis. The stroma adja-
cent to the tumor shares common features with the 
fibrotic tissue observed in pulmonary fibrosis, which 
is characteristic of IPF. It has been reported that this 
peritumoral stroma facilitates the development of a 
mesenchymal phenotype in tumor cells, promoting 
their invasive capabilities (71). IPF and lung cancer 
share common characteristics in terms of aberrant 
activation of key signaling pathways involved in both 
diseases. One such pathway is the phosphoinositide 
3-kinase (PI3K)/protein kinase B (AKT) signaling  
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resection technique,” which is a practical and fast 
stapler-based procedure that avoids dissecting ves-
sels or bronchi in NSCLC patients with IPF. This 
technique, although not been regarded as radical op-
eration for lung cancer, resulted in no cases of acute 
exacerbation.

The presence of IPF and ILA in patients with 
LC undergoing curative surgery are associated with 
increased complications and decreased survival (84). 
A systematic review reported 3-year overall survival 
rates of 31% to 75% for patients with ILD compared 
to 79% to 95% for patients without ILD following 
radical surgical resection (85). A recent study sug-
gested that surgically treated patients with IPF and 
operable LC may have a survival benefit compared to 
patients who did not undergo surgical resection (4).  
So, early identification of these patients appears 
crucial to increase the percentage of patients diag-
nosed at an operable stage, underlying the impor-
tance of screening for lung cancer in IPF patients. 
Additionally standard adjuvant systemic therapy  
(either chemotherapy alone, or sequential chemo- 
and targeted or immunotherapy) or adjuvant radia-
tion therapy, represent a distinct problem that needs 
to be considered by multidisciplinary team (MDT). 
Predicting the incidence of postoperative AE in IPF 
patients can be challenging. A large Japanese cohort 
study identified several risk factors for AE after lung 
cancer surgery (Table 1) (86).

Various supportive treatments, such as intraoper-
ative fluid balance control, postoperative ulinastatin, 
preoperative methylprednisolone, and sivelestat, may 
prevent postoperative AE in IPF patients (87-89). 

or endobronchial ultrasound-guided transbronchial 
needle biopsy for pathological lymph nodes.

The treatment of LC in the context of ILD pre-
sents challenges, especially in elderly patients with 
reduced respiratory reserve. It is well recognized 
that idiopathic or treatment-induced AE can oc-
cur in patients with ILD, including those undergo-
ing anticancer treatments. AE in IPF has significant 
prognostic implications, with approximately 40% of 
deaths in IPF being preceded by an AE (80). Risk 
factors for cancer treatment-related AE in idiopathic 
interstitial pneumonia (IIP) include the presence of 
usual interstitial pneumonia (UIP) pattern on chest 
CT and a decrease in FVC by 10% or more (81). In 
the same study, the incidence rates specific to dif-
ferent treatment modalities were reported as 7.5% 
for surgery (3 out of 40 patients), 10.0% for chemo-
therapy (5 out of 50 patients), and 7.7% for radiation 
therapy (2 out of 26 patients).

Surgery

The gold standard treatment for early-stage 
NSCLC is lobectomy and lymph node dissection. 
However, managing NSCLC in patients with un-
derlying ILD, particularly IPF, poses challenges. In 
stage I-IIIA NSCLC patients with fibrosing intersti-
tial lung disease (fILD), lobectomy or video- assisted 
thoracoscopic surgery (VATS), while without adju-
vant chemotherapy is recommended as a standard 
therapeutic strategy only in stage IA disease (82). 
A recent study by Tane et al. (83) introduced an al-
ternative procedure called the “simple deep wedge 

Figure 4. An algorithm for diagnostic approach for lung cancer in IPF patients (79).
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treatment for limited-stage (LS) involves systemic 
chemotherapy combined with radiotherapy, while for 
extended-stage (ES) SCLC chemotherapy in combi-
nation with immunotherapy. For decades carboplatin 
and etoposide given for four or six cycles are the estab-
lished standards regimen of chemotherapy for SCLC 
(82). It is important to note that chemotherapy can 
induce AE of IPF, the incidence of such exacerbation 
has been reported to be 13.1% (94). Althugh rarely, 
chemotherapy can also lead to drug-induced intersti-
tial pneumonitis by the cytostatic drugs administered 
in LC. A retrospective study reported that 7.2% of 
patients developed chemotherapy-induced ILD, and 
preexisting ILD was identified as a risk factor for 
this complication. The study also found that a UIP 
pattern and lower values of FVC were independ-
ent risk factors for chemotherapy-related ILD (95). 
Vinorelbine and paclitaxel are rarely associated with 
drug-induced ILD. Patients have similar AE inci-
dence rates of 10% and 13%, respectively after cis-
platin or carboplatin therapy. Docetaxel has a higher 
incidence of 28%, while etoposide is associated with 
a 24% incidence. On the other hand, paclitaxel has a 
lower incidence of 3% (96). PD-1/PD-L1 inhibitors 
have been linked to an increased risk of pneumoni-
tis in different grades. The risk ratios (RR) for grade 
1-5 and grade 3-5 pneumonitis are 5.17 (95% CI: 
2.82–9.47, p < 0.001) and 4.14 (95% CI: 1.82–9.42, 
p < 0.001), respectively (97).

Several studies have reported response rates and 
outcomes of chemotherapy in patients with ILD and 
LC. A meta-analysis of seven studies involving 251 
patients with stage IIIA, IIIB, or IV LC-ILD showed 
a response rate of 41.3% and a disease control rate of 
77.7% with chemotherapy. The median progression-
free survival (PFS) was 4.4 months, and the OS was 
8.5 months in this study (98). Another study showed 
that ILD was a significantly unfavorable factor for 
PFS and OS in NSCLC patients receiving chemo-
therapy (99). Similar results were reported in SCLC 
patients, a study involving 75 patients with IPF and 
SCLC revealed that patients with IPF had signifi-
cantly shorter median PFS and OS compared to those 
without ILD. Multivariate analysis identified poor 
performance status, extensive disease stage, and the 
presence of IPF as factors associated with shorter OS 
(100). Due to the detrimental impact of AEs on pa-
tient survival, several studies have been conducted to 
explore preventive procedures during chemotherapy. 
A recent study investigated the prophylactic effect of 

Antifibrotic drugs, such as pirfenidone, have also 
been studied for their potential impact on the inci-
dence of postoperative acute exacerbation in patients 
with IPF and NSCLC. The phase II PEOPLE study 
evaluated the safety and efficacy of perioperative pi-
rfenidone treatment in reducing postoperative AE in 
LC patients with fibrosis. The study showed that the 
incidence of AE among patients treated with pirfeni-
done was significantly lower, and no serious adverse 
events caused by pirfenidone were observed (90).

Chemotherapy

In advanced stages of lung cancer, chemotherapy 
is often used as a treatment option, either as mono-
therapy or combined, along with targeted therapy in 
oncogene driven NSCLC and immunotherapy in 
non-oncogene driven NSCLC. However, the deci-
sion to use above listed systemic therapy in patients 
with IPF should be carefully considered by assessing 
the risk/benefit balance. Platinum-based cytotoxic 
chemotherapy is commonly used in NSCLC pa-
tients with IPF. A phase II trial involving 18 patients 
with advanced NSCLC and interstitial pneumonia, 
including some with IPF, showed that combina-
tion chemotherapy with carboplatin and paclitaxel 
had significant antitumor efficacy and an acceptable 
safety profile (91). Gemcitabine plus cisplatin can 
be considered an alternative treatment for patients 
with pulmonary squamous carcinoma and IPF (92). 
In cases of platinum-refractory advanced NSCLC 
(stage IIIB, IV, or relapse) with preexisting IPF, 
 second-line docetaxel monotherapy may be an option 
(93). The addition of bevacizumab is recommended 
to be considered for fit nonsquamous NSCLC pa-
tients. Vinorelbine (for squamous histology) and 
pemetrexed (for adenocarcinoma histology) mono-
therapy are recommended as second-line treatment 
options in these patients (82). The standard systemic  

Table 1. Predictive factors for the postoperative AE in IPF 
 patients (86).

Predictive factor

Low % vital capacity
History of AE
Surgical procedure 
UIP pattern
Male gender 
Steroid use
Elevated KL-6 concentration
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safety of nintedanib plus pemetrexed in patients with 
pretreated non-squamous NSCLC (106). Although 
recruitment was stopped prematurely, subsequent 
analysis showed a significant improvement in PFS 
favoring the nintedanib/pemetrexed group over the 
placebo/pemetrexed group (median 4.4 months vs. 
3.6 months; HR 0.83, 95% CI 0.70-0.99, p=0.0435), 
with a manageable safety profile. While nintedanib 
has been reported as safe and tolerable in combina-
tion with chemotherapy for patients with advanced 
NSCLC, its efficacy and tolerability specifically in 
NSCLC patients with concurrent IPF have not been 
clearly defined. The J-SONIC study, a randomized 
phase 3 trial, was designed to compare the efficacy 
and safety of nintedanib plus chemotherapy (carbo-
platin plus nanoparticle albumin-bound paclitaxel) 
with chemotherapy alone in chemotherapy-naïve 
patients with advanced NSCLC and IPF (107). 
During the study, only a small proportion of pa-
tients (2.9%) experienced AE, and although the 
incidence was numerically higher in the nintedanib 
plus chemotherapy group, the difference between the 
two groups was not statistically significant. The low 
incidence of AE in this study may be attributed to 
the inclusion of patients at early stages of IPF and 
with better performance status. The overall response 
rate was higher in the nintedanib plus chemotherapy 
group compared to the chemotherapy group, and 
PFS was significantly improved with combination 
therapy. However, OS did not show a significant 
improvement in the overall population, although it 
was improved in patients with nonsquamous histol-
ogy. No new safety concerns were observed, indi-
cating that the presence of IPF did not exacerbate 
nonrespiratory adverse events. There are also case re-
ports suggesting the potential efficacy of nintedanib 
monotherapy in NSCLC patients with IPF who are 
unable to tolerate cytotoxic chemotherapy. One case 
report involved an 82-year-old man with NSCLC 
and IPF treated solely with nintedanib (108). After 
nine months, a partial remission of the lung can-
cer was observed without exacerbation of IPF. This 
case highlights the possibility of nintedanib mono-
therapy in controlling lung cancer in patients with 
IPF. Another case involved an advanced NSCLC 
patient with IPF who showed disease progression 
after multiple lines of chemotherapy (109). The 
patient received the best supportive care and nint-
edanib was introduced to treat IPF. After one month, 
partial remissions of the primary tumor and pleural 

pirfenidone in preventing chemotherapy-associated 
AE of IPF in NSCLC patients (101). The study in-
cluded 14 patients with IPF and NSCLC who re-
ceived pirfenidone in combination with carboplatin 
and nanoparticle albumin-bound paclitaxel as first-
line chemotherapy. The progression-free survival 
for IPF was 447 days (95% CI: 286–indeterminate  
days), and the cumulative incidence of AE-IPF 
within one year was 18%. No AE-IPF associated 
with first-line chemotherapy was observed. The 
authors concluded that the combination of pirfeni-
done with carboplatin-based regimens or ICIs could 
 potentially serve as a safe first-line systemic therapy 
approach for patients with IPF and NSCLC.

Role of antifibrotics as a chemotherapeutic 
agent

Nintedanib, a triple tyrosine kinase inhibitor 
(FGFR, VEGFR, PDGFR inhibitor) is an agent 
known for its antifibrotic effects in IPF and its anti-
tumor effects in malignant tumors as well. It targets 
receptor tyrosine kinases (RTKs) that are involved 
in various molecular pathways implicated in the de-
velopment of LC and IPF. These RTKs, activated by 
growth factors, play a role in crucial cellular processes 
such as apoptosis, protein synthesis, metabolism, and 
the cell cycle. Dysregulation of these pathways has 
been associated with fibroproliferative disorders and 
cancer progression through the activation of profi-
brotic mediators like TGF-β1 and platelet-derived 
growth factor (102). Clinical trials, including phase I 
studies, have demonstrated the safety and tolerability 
of nintedanib in combination with chemotherapy for 
patients with advanced NSCLC (103,104). The ef-
ficacy of nintedanib in combination with cytotoxic 
chemotherapy was assessed in the LUME-Lung 1 and 
LUME-Lung 2 trials for the treatment of advanced 
NSCLC. In the randomized phase III trial (LUME-
Lung 1) comparing docetaxel plus nintedanib with 
docetaxel plus placebo in previously treated NSCLC, 
it was found that PFS was significantly improved 
in the docetaxel plus nintedanib group (median  
3.4 months vs. 2.7 months; hazard ratio [HR] 0.79, 
95% CI 0.68-0.92) (105). Furthermore, overall sur-
vival was significantly improved in patients with 
adenocarcinoma histology in the docetaxel plus nint-
edanib group (median 12.6 months vs. 10.3 months; 
HR 0.83, 95% CI 0.70-0.99, p=0.0359). The 
LUME-Lung 2 trial investigated the efficacy and 
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implicated in carcinogenesis. This suppression of 
CTHRC1 may contribute to the anti-tumor effects 
of pirfenidone in patients with IPF who have con-
comitant LC (114). These mechanisms provide fur-
ther insight into how pirfenidone may suppress LC 
in individuals with IPF.

Radiation therapy

Radiation therapy (RT), particularly stereotac-
tic body radiation therapy (SBRT), is the standard 
treatment option for early-stage NSCLC in patients 
who are either not suitable for surgery, or refuse 
operation. However, guidelines from the European 
Organisation for Research and Treatment of Can-
cer recommend avoiding conventional radiotherapy 
in patients with lung cancer-associated interstitial 
lung disease (115). One of the most significant com-
plications of RT is radiation pneumonitis (RP), an 
inflammation of the lung tissue caused by radiation, 
which if not timely treated, leads to definitive fibro-
sis. In a retrospective study of 101 patients with IPF 
and LC who underwent SBRT, RP occurred in 18% 
of patients (116). The extent of ILD involving more 
than 10% of lung parenchyma was identified as an 
independent risk factor for RP. Subclinical ILD was 
also found to be significantly associated with grade 
2 to 5 RP in patients treated with SBRT (117). An-
other retrospective study of 242 patients with ILD 
and early-stage lung cancer receiving SBRT reported 
a severe RP rate of 12.4% and a mortality rate of 
6.9%. Risk factors for poor outcomes included low 
FVC, more than 10% of normal lung receiving radia-
tion, poor performance status, presence of squamous 
cell carcinoma, clinical stage T2, and regular use of 
steroids before SBRT (118). FDG PET/CT imag-
ing can be useful in predicting the risk of RP. In a 
retrospective study of NSCLC patients, it was found 
that patients were 6.9 times more likely to experience 
at least grade 2 RP if their pretreatment FDG PET/
CT showed a standardized uptake value (SUV)95 
greater than 1.5 for all lung parenchyma (119). Pro-
ton beam therapy (PBT) is an alternative option for 
patients requiring radiation therapy. PBT offers a 
rapid dose fall-off, which may minimize radiation 
exposure to normal tissues, making it an appealing 
option for patients with IPF. In a retrospective study 
comparing PBT and SBRT in 30 patients with early-
stage NSCLC and IPF, severe treatment-related pul-
monary complications were less common with PBT  

dissemination were observed without severe adverse 
events. These cases suggest that nintedanib mono-
therapy could be an effective treatment option for 
NSCLC in patients with IPF who are unable to tol-
erate cytotoxic chemotherapy.

Pirfenidone (PFD) has been investigated for its 
potential preventive and treatment effects in LC, in 
addition to its recognized antifibrotic properties. In 
an experimental study, it was observed that pirfe-
nidone monotherapy attenuated tumor growth and 
induced a T-cell inflammatory signature in tumors 
(110). Furthermore, when pirfenidone was combined 
with PD-L1 blockade, there was a significant delay 
in tumor growth and improved survival compared 
to either treatment alone. These findings suggest 
that pirfenidone may act as an adjuvant to immu-
notherapy in the treatment of cancer, particularly 
in lung cancer patients with preexisting IPF (110). 
One of the underlying therapeutic strategies for 
lung cancer is inhibiting epithelial-to-mesenchymal 
transition (EMT), which is a fundamental process 
where epithelial cells lose their polarity and acquire 
a mesenchymal phenotype. Pirfenidone exhibits 
broad anti-fibrotic effects, including the suppres-
sion of multiple cytokines and growth factors, such 
as transforming growth factor β (TGF-β), TGF-β is 
a potent inducer of EMT (111). In an experimental 
study conducted using NSCLC cell lines in vitro and 
in vivo, it was found that pirfenidone significantly 
inhibited TGF-β1-induced EMT. Although pirfe-
nidone alone did not inhibit tumor progression in 
the in vivo examination, its combination with car-
boplatin significantly reduced tumor growth. This 
suggests that pirfenidone may hold promise as a 
therapeutic agent for the treatment of NSCLC by 
regulating EMT (112). In a study investigating the 
effects of pirfenidone in the tumor microenviron-
ment, researchers demonstrated that pirfenidone in-
duced apoptotic cell death in lung CAFs at a high 
concentration (113). Additionally, the combination 
of cisplatin and pirfenidone in NSCLC cells led to 
increased apoptosis and synergistic cell death. These 
findings suggest that the combination of cisplatin and 
pirfenidone may have activity in preclinical models 
of NSCLC, indicating a potential new therapeutic 
approach for this disease.

Pirfenidone has also been shown to attenuate the 
expression of collagen triple helix repeat containing 1 
(CTHRC1), which is overexpressed in NSCLC and 
is involved in the Wnt/β-catenin signaling pathway 



SARCOIDOSIS VASCULITIS AND DIFFUSE LUNG DISEASES 2025; 42 (1): 15604 11

reported that toxicity may increase, especially when 
immunotherapy is given after radiotherapy, and ICIs 
may cause the development of radiation recall pneu-
monitis (129). Although pneumonitis is a well-
known side effect of ICIs, no relationship has been 
found between the time of onset of pneumonitis and 
the severity of ILD. Moreover, no risk factors are 
known between patients with grades 1−2 ILD versus 
grades 3−5 ILD (130). Kato et al. defined some risk 
factors in their study, which included 111 patients 
who were started on nivolumab due to advanced 
stage NSCLC. The ILD development rate was given 
as 7.2% and it was stated that all patients who had 
ILD were older (>65), male, and had a smoking his-
tory (131). Moreover, combination ICI therapy, and 
tumor histologic type (squamous cell carcinoma) are 
also defined as risk factors for the development of 
pneumonitis (132). In a recent study, medical records 
of LC patients who received nivolumab, pembroli-
zumab, or combination ipilimumab and nivolumab 
reviewed, and authors concluded that independent 
factors associated with the development of pneumo-
nitis were the presence of fibrosis on baseline CT 
(adjusted OR [aOR], 6.61; 95% CI, 2.48-17.7), a 
composite measure of obstructive lung disease (aOR, 
2.79; 95% CI, 1.07-7.29), and treatment with pem-
brolizumab (aOR, 2.57; 95% CI, 1.08-6.11) (133). It 
is known that approximately 10% of advanced stage 
NSCLC patients have IP (134). Data regarding the 
use of ICIs in patients with ILD are conflicting. 
Some studies have reported that ILD patients are 
more prone to developing ICI-related pneumonitis 
(135,136). Shibaki et al (135) reported that the inci-
dence of pneumonitis was higher in patients with 
pre-existing IP than in those without pre-existing IP 
(29% versus 10%). Yamaguchi et al (136) retrospec-
tively reviewed data from 123 NSCLC patients with 
pre-existing pulmonary fibrosis who were treated 
with anti-PD-1 antibodies (nivolumab or pembroli-
zumab), and showed that anti-PD-1-related pneu-
monitis was observed in 18 patients (14.6%), and 3% 
of whom were ≥ grade 3. They reported that the only 
risk factor in the development of pneumonitis was a 
fibrosis score ≥1. Dobre et al. (137) reported similar 
results, they evaluated the clinical and radiologic 
outcomes of cancer patients (41 patients who were 
given pembrolizumab or nivolumab) with ILD. Af-
ter treatment with ICIs, hypoxemic respiratory fail-
ure developed due to ILD or ICI-related pneumonitis 
in 3 patients (2 of the 3 cases were patients with a 

(12.5% vs. 40.9%), and 1-year OS was better with 
PBT (50% vs. 26%) (120). However, another study 
reported an RP rate of 19.8% in NSCLC patients 
treated with PBT, including one case of grade 5 pneu-
monitis (121). Percutaneous image-guided thermal 
ablation (IGTA), using modalities such as radiofre-
quency ablation (RFA), microwave ablation (MWA), 
or cryoablation, is a minimally invasive treatment 
option for early-stage NSCLC. Local control with 
IGTA is comparable to sublobar resection and radia-
tion therapy in the general population (122). How-
ever, in patients with preexisting ILD, there may be 
higher risks associated with IGTA. A retrospective 
analysis of ILD patients undergoing RFA reported 
a 7.1% mortality rate due to ILD-associated adverse 
events (123). In a systematic review of inoperable pa-
tients with early-stage NSCLC treated with RFA, 
mortality was 8.7% and ILD-specific toxicity was 
25%, with lower mortality compared to SBRT (85). 
Percutaneous cryoablation may be an appealing op-
tion for NSCLC in patients with IPF, as it has shown 
lower morbidity compared to RFA and MWA (124). 
There is evidence from an experimental study that 
suggests the therapeutic potential of pirfenidone in 
treating radiation-induced pulmonary fibrosis. In a 
study conducted on mice that received thoracic ra-
diation, treatment with pirfenidone resulted in an 
extended median survival time and reduced collagen 
accumulation and fibrosis in lung tissues compared 
to mice that did not receive pirfenidone (125). These 
findings suggest that pirfenidone may have a promis-
ing role in treating or minimizing radiation-induced 
pulmonary fibrosis.

Immunotherapy

It is known that immune checkpoint inhibitors 
(ICIs) can improve overall survival in advanced can-
cer (126). However, it is also known that ICIs have 
significant side effects, one of which is ICI-related 
pneumonitis that can be fatal in some patients (127). 
The incidence of pneumonitis related with drugs tar-
geting the PD-1/PD-L1 axis has been reported as 
11.8% (128). In a study that included 915 patients 
receiving anti-PD-1/PD-L1 mAbs treatment, the 
pneumonitis rate was given as 5%. Authors reported 
that 72% of those who developed pneumonitis were 
grade 1-2, and 86% of the patients who developed 
pneumonitis resolved with holding the drug or im-
munosuppressive treatment (127). It has been 
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nivolumab. In the study examining 6 cases of IPF 
and LC who treated with PD1 inhibitors, authors 
reported that no patient developed ICIs-associated 
pneumonitis (144). It is known that IPF and LC 
share common bio-molecular characteristics, and the 
PD-1/PD-L1 axis is one of the common pathways 
between them. So, ICIs may play a role not only in 
cancer treatment but also in the treatment of pulmo-
nary fibrosis. Animal studies have reported that inhi-
bition of the PD-1 axis may have beneficial effects on 
pulmonary fibrosis (145). Abnormal PD-1 or PD-
L1 expression in lung tissues of patients with IPF or 
pulmonary fibrosis murine models is known 
 (146-148). It is also known that PD-1+ CD4+  
T cells (mainly Th17 subsets) promote pulmonary 
fibrosis in IPF patients and murine specimens via 
signal transducer and activator of transcription 3 
(STAT3)-mediated IL-17A and TGF-b production 
(145). Moreover, elevated concentrations of sPD-L1 
in the serum of IPF patients have found when com-
pared with healthy control group (146). Habiel et al. 
(147) showed higher levels of PD-1 proteins in hu-
manized NSG mice. The results of this study demon-
strated that IPF CD28null T cells may promote lung 
fibrosis but the immune checkpoint proteins, 
CTLA-4 and PD-1, appears to limit this effect. In a 
novel pulmonary fibrosis model in humanized mice 
study, authors demonstrated that PD-1/PD-L1 
pathway–mediated immunosuppression contributed 
to the attenuation of pulmonary fibrosis by human 
mesenchymal stem cells (MSCs) (148). Another hu-
manized IPF model in mice showed upregulation of 
immune checkpoint ligand CD274 (also known as 
PD-L1) on invasive lung fibroblasts (149). Authors 
showed that activating CD274 in IPF fibroblasts 
promoted invasion in vitro and pulmonary fibrosis in 
vivo, suggesting that CD274 may be a novel thera-
peutic target in IPF. So, it may be suggested that 
PD-L1 thus seems to be a promising target to pursue 
in the quest for new therapeutic options in IPF. 
These studies show that ICIs may be effective on fi-
brosis, so what effect may occur when ICIs is used 
together with antifibrotics? Qin et al. (150), investi-
gated whether pirfenidone had a synergistic effect in 
lung cancer patients with comorbid IPF. They re-
ported that PD-L1 blockade together with pirfeni-
done delayed tumor growth and extended the survival 
time. They also showed a benefit of combination 
therapy in alleviating the pulmonary fibrosis and re-
ducing the tumor growth. Therefore, combining 

UIP pattern), and all deaths owing to hypoxemic res-
piratory failure were in the UIP group. Moreover, 
they showed that the rates of ILD progression based 
on CT follow-up were higher in the UIP group 
(33.0%) compared with all other radiologic patterns 
(17.2%). They concluded that the presence of a UIP 
pattern may be a risk factor for increased cancer- 
related mortality such these patients. Another study, 
which included advanced NSCLC patients with 
chronic fibrotic idiopathic IP and given atezoli-
zumab, was terminated early due to the high inci-
dence of pneumonitis (29.4%) (138). The risk of ICIs 
related pneuminitis in patients with ILD may not 
warrant depriving patients of this treatment. A re-
cently published meta-analysis, which included 179 
patients with ILD-LC who received ICIs, reported 
that the overall response rate (ORR) rate was higher 
in patients with ILD (139). Similarly, in a study that 
included NSCLC patients, given nivolumab or pem-
brolizumab, grouped according to the presence of 
ILD, it was reported that the response rates, disease 
control rate, PFS and OS were similar in both groups 
(140). In a previous phase II clinical trial, the efficacy 
and safety of nivolumab in previously-treated, inop-
erable NSCLC patients with mild IIP was investi-
gated (141). In this study, which included 18 patients, 
the 6-month PFS rate was reported as 56%, the re-
sponse rate was 39%, and the disease control rate was 
72%. Moreover, pneumonitis was observed in only  
2 patients, and the authors commented that nivolumab 
may be an effective treatment for NSCLC patients 
with mild IIPs. There are data reporting that ICIs 
treatment is not only effective but also safe. In a study 
including 1836 cancer patients given ICIs, it was re-
ported that only 1 patient had IPF before treatment, 
the time to development of ILD in this patient after 
2 anti-PD1 infusions was 3 weeks, and improved 
rapidly after steroid treatment (130). Tan et al. (142) 
reported two combined pulmonary fibrosis and em-
physema (CPFE)+LC patients who underwent sur-
gical resections and received immunotherapy after 
progression of lung cancer. One patient suffered AE 
of ILD after immunotherapy and developed a 
 progressive-fibrosing phenotype, but the other pa-
tient had no progression of the CPFE fibrosis. In 
another case report, Khunger et al. (143) reported that 
nivolumab was started in an IPF patient due to a diag-
nosis of squamous cell lung cancer, and the patient 
tolerated nivolimab treatment well, and his exercise 
tolerance, and oxygen reqirement improved after  
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lower in patients treated with antifibrotic therapy. 
Additionally, the mortality rate related to LC was 
lower in patients who received antifibrotic therapy. 
The study concluded that antifibrotic therapy was an 
independent low-risk factor for the development of 
LC in IPF patients.

Conclusion

In conclusion, IPF is a significant risk factor for 
the development of LC, and patients with IPF who de-
velop LC have poorer survival outcomes. The diagnosis 
and treatment of LC in IPF patients are challenging 
due to the increased incidence of severe complications 
and the limited treatment options available. The man-
agement of LC in IPF follows similar approaches as 
in the general population, including chemotherapy, 
radiation therapy, and surgical intervention.
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