

ASSOCIATION OF NON-LINEAR DYNAMICS OF HEART RATE VARIABILITY WITH ALL-CAUSE MORTALITY IN PATIENTS WITH SARCOIDOSIS

Elias Gialafos^{1*}, Ioannis Ilias^{2*}, Spiros Katsanos³, Likourgos Kolilekas⁴, Efrosini Manali⁵, Aglaia Vakrakou⁵, Theodore Papaioannou⁶, Kostas Zisimos¹, Gethsimani Seitaridi¹, Giannis Parisis³, Nikos Koulouris⁷, Spiridon Papiris⁵

¹1st Department of Neurology, Aeginition Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece;

²Department of Endocrinology, Hippokration Hospital, Athens, Greece; ³Department of Emergency Medicine, Attiko Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece; ⁴7th Department of Pulmonology, Chest Hospital "Sotiria", Athens, Greece; ⁵2nd Department of Pulmonology, Attikon Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece; ⁶1st Department of Cardiology, Hippokration Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece; ⁷1st Department of Pulmonology, Chest Disease Hospital "Sotiria", Medical School, National and Kapodistrian University of Athens, Athens, Greece

* co-first authors

ABSTRACT. *Background and aim:* Sarcoidosis (Sarc) is linked to increased morbidity and mortality. While 24-hour ambulatory ECG recording is essential for evaluating patients with cardiac symptoms, the complementary role of heart rate variability (HRV) for risk stratification in Sarc patients remains undefined. The aim of this observational study was the assessment of non-linear indices of HRV as independent predictors of mortality in Sarc. *Methods:* 317 patients with confirmed diagnosis of Sarc, underwent comprehensive conventional cardiac testing, including Cardiac Magnetic Resonance (CMR) with late gadolinium enhancement (LGE). These patients were followed up for all-cause mortality as endpoint. Each patient underwent twenty-four-hour Holter monitoring, from which approximate entropy (APEN), short and long-term detrended fluctuation analysis (DFA α 1 and DFA α 2, respectively), as well as other HRV parameters, were calculated. *Results:* The study recruited 317 patients (137 men, 180 women) with a mean age of 48.22 ± 11.88 years. Over a median follow-up period of approximately 48 months, 17 deaths were recorded. Competing risk analysis revealed that decreased DFA α 1 was a robust prognostic indicator for increased total mortality. ROC analysis demonstrated that the area under the curve (AUC) of DFA α 1 (< 0.95) for predicting mortality was 0.761 (95% confidence interval (CI) = 0.617–0.905). DFA α 1 ≥ 0.95 was associated with total mortality (HR = 0.109, 95% CI = 0.033–0.362, P = 0.0003). *Conclusion:* Evaluation of cardiac autonomic dysfunction by DFA α 1 serves as an independent predictor for all-cause mortality in patients with Sarc.

KEY WORDS: prediction, all-cause mortality, sarcoidosis

INTRODUCTION

Received: 22 August 2024

Accepted: 15 February 2025

Correspondence: Elias Gialafos MD, PhD, EDIP-Cardiologist, 1st Department of Neurology, National and Kapodistrian University of Athens

E-mail: gialaf@yahoo.com

ORCID: 0000-0003-4947-6563

Sarcoidosis (Sarc) presents as a systemic disease with a variable course, ranging from benign involvement of a single organ to multi-organ failure and mortality (1). In advanced pulmonary or multiorgan Sarc, ten-year mortality rates can surge up to 9% (2).

Historically, pulmonary fibrosis, pulmonary hypertension, and involvement of the cardiac, hepatic, or neurological systems have been commonly regarded as the main causes of mortality in Sarc patients. However, the advent of advanced cardiac imaging modalities, such as cardiac magnetic resonance (CMR), has highlighted cardiac causes as significant contributors to mortality, more prevalent than previously reported (3). Previous predictive models for mortality in Sarc primarily focused on respiratory complications, including pulmonary fibrosis and pulmonary hypertension (2,4). These studies consistently indicated that several variables, predominantly respiratory, independently predicted mortality. These variables included pulmonary fibrosis, pulmonary hypertension, age, race, and composite scores employed in other fibrotic diseases. A recent study by Kirkil et al1 on a large cohort of Sarc patients underscored that advanced age, combined with extensive pulmonary fibrosis or pulmonary hypertension, independently predicted mortality. The authors emphasized the unlikelihood of a single variable identifying all patients who would succumb to pulmonary Sarc. Heart rate variability (HRV) indices have emerged as valuable parameters for predicting morbidity and mortality across various diseases (5-8). HRV reflects the interplay between parasympathetic and sympathetic activity and has been used as a simple, noninvasive measure to assess autonomic nervous function (9). Decreased HRV derived from linear analysis of RR intervals indicates subclinical autonomic neuropathy, which can predict the risk of mortality in different diseases (10). Recent research has indicated that methods based on nonlinear dynamics, specifically short and long-term detrended fluctuation analysis (DFA α 1 and DFA α 2), yield more robust predictive outcomes than classical linear methods of HRV (11,12,13). DFA fractal exponents of heart rate time series have been observed to correlate with autonomic tone. It is noteworthy that HRV tends to decrease with age, primarily due to reduced vagal tone (14-15). Considering that age is one of the variables associated with an increased risk of death in Sarc and that cardiac Sarc is a significant cause of mortality in these patients, we tested the hypothesis that HRV is also associated with outcomes in patients with Sarc. To discern the independent effects of cardiac involvement from those of advanced age on disease outcomes, we analyzed a substantial cohort of patients who underwent comprehensive cardiac assessments, including cardiac CMR.

METHODS

Subjects

This observational study included 345 consecutive patients diagnosed with Sarc, based on the consensus statement of the American Thoracic Society, European Respiratory Society (ERS), and World Association of Sarc and Other Granulomatous Disorders (16). These patients were referred to the General Hospital of Chest Diseases "Sotiria," the University Hospital of Alexandroupoli, Attiko, and "Laiko" Hospital between October 2006 and June 2014. The diagnosis was confirmed within 6 months before the initial evaluation. Exclusion criteria comprised known collagen vascular disease, implanted cardiac devices, cardiac dysfunction related to congenital heart disease, heart failure, or coronary artery disease. Patients were excluded from the study either due to the exclusion criteria (n=20) or failure to complete the baseline assessment (n=8).

Data collection

All patients had experienced symptoms for a minimum duration of 6 months; they underwent baseline assessments, including clinical evaluation, 12-lead electrocardiogram, standard exercise test, 24-hour ambulatory ECG recording (Holter), and standard transthoracic echocardiography with left ventricular (LV) analysis (17). Cardiac magnetic resonance imaging (CMR) was additionally performed in patients suspected of possible cardiac involvement, following previously described methodology (18). Chest radiographs were evaluated to determine disease stage using Scadding's standard radiographic criteria. Serum levels of serum angiotensin-converting enzyme, total cholesterol, high-density lipoprotein (HDL) cholesterol, and triglycerides were measured in the preceding month and were available for all patients. The presence of arterial hypertension, diabetes mellitus, hyperlipidemia, and smoking habits were noted. Each participant's weight and height were measured, and blood pressure was recorded using a standard protocol. The study protocol was approved by the institutional ethics committee of the three hospitals, and informed consent was obtained from all patients, following the principles of the Declaration of Helsinki.

Echocardiography

Echocardiography was performed using a Philips iE33- Cardiovascular machine and reviewed by experienced operators blinded to the ECG results and clinical status of patients. Standard apical four- and two-chamber and long-axis views were utilized for measurements, including baseline left ventricular end-diastolic diameter (LVEDd), left ventricular end-systolic diameter, left atrial diameter, interventricular septum thickness, left ventricular posterior wall thickness, and left ventricular ejection fraction (LVEF), according to the guidelines of the American Society of Echocardiography.

Holter recordings and analysis

Holter ECG was obtained using a high-resolution (1000 Hz) digital 3-lead monitoring system (Synescope, ELA Medica, France). All ECG recordings were transferred to a computer for analysis, with patient characteristics and outcome data concealed. Each beat was first automatically labeled as normal or aberrant by the Holter analysis software, and then carefully edited by an expert analyst. Annotated RR time series were transferred to a personal computer using dedicated software (ELA Medical Syneflash) and processed based on previously described criteria. ECGs were analyzed only if recordings were eligible for at least 18 hours. The number of premature ventricular complexes (PVC) and the presence of Non-Sustained Ventricular Tachycardia (NSVT) during the 24-hour recording were noted. NSVT was defined as more than three consecutive beats of ventricular premature contractions.

HRV

Long-term HRV (typically 24 h) measurements were conducted according to international guidelines, using the freely available Kubios HRV software (Version 2.2) (19). Time and frequency domain as well as nonlinear HRV components were analyzed, based on the series of normal-to-normal RR intervals. Five time-domain indices were measured, including the standard deviation of all normal-to-normal RR intervals in the entire recording (SDNN), the mean of the standard deviations of the normal RR intervals in all 5-min segments in the entire 24-hour recording (SDNN index), and the mean

of the standard deviation of the averaged normal-to-normal RR intervals in all 5-min segments of the 24-hour recording (SDANN index) to represent autonomic function. Additionally, the root mean square of successive differences in normal RR intervals and the percentage of differences between adjacent normal-to-normal intervals >50 ms (pNN50) were considered to be markers of parasympathetic tone. Frequency-domain HRV analysis was based on the estimation of power spectral density, and the ratio of the 24-hour low-frequency ([LF] 0.04–0.15 Hz) to the high-frequency power ([HF] 0.16–0.40 Hz) was calculated to represent the sympathovagal balance. The nonlinear properties of HRV were analyzed by entropy and DFA. Approximate entropy (ApEn) reflected the logarithmic likelihood that two sequences that were similar (within a tolerance r) for m points remained similar on incremental comparisons (20). In the DFA method, long-range correlations between interbeat intervals separated by several beats were detected by investigating the scaling behavior of the heartbeat fluctuations on different time scales, disregarding trends and non-stationarities in the data¹⁸. The fractal structure of the heart rate was quantified by estimating a short-term (α_1 , short-term fluctuations, obtained from the range $4 \leq n \leq 16$) and a long-term (α_2 , long-term fluctuations, obtained from the range $16 \leq n \leq 64$) scaling exponent by DFA, as previously (13).

Follow-up and endpoints

Follow-up occurred every 6 months through contacting by telephone and/or was verified by accessing medical records. The endpoint was all-cause mortality.

Statistics

Baseline dichotomous demographic, clinical, and laboratory characteristics were compared between survivors and non-survivors using the chi-square or Fisher's exact test, as appropriate. The normality of continuous numerical data in each group was assessed using the Kolmogorov-Smirnov test. Continuous variables were compared using the t-test or Mann-Whitney test, when the assumption of normal distribution was rejected. Each continuous variable was subsequently converted into a binary categorical variable by splitting the values into two

groups based on a well-established cutoff point or median value when the cutoff point was not clearly defined in the existing literature. The association of ECG findings with all-cause mortality was assessed by Kaplan-Meier survival analysis and log-rank test. Further analysis of the A1index values and A1 expressed dichotomously ($>$ or $<$ 0.95 as used elsewhere) was done with stepwise backward logistic regression versus survival and with Receiver Operation Characteristic (ROC). The observation period began when an individual with Sarc was first referred to our outpatient cardiology clinic for further investigation. Survival time (in months) from the initial date of observation to the occurrence of death, loss of follow-up, or the end of the study period was recorded for each patient. Survival time was censored on December 31st, 2018, or at the time a patient was lost to follow-up. Additional univariate Cox proportional-hazards models for each potential prognostic factor were constructed to calculate the unadjusted 5-year mortality risk. Multivariate analysis was not feasible due to the relatively small number of deaths observed during the follow-up period. Results were considered statistically significant if the p-values were less than 0.05.

RESULTS

In this observational prospective cohort study of consecutive individuals with Sarc, the five-year all-cause mortality was nearly 6% (17/317). The main causes of death were severe cardiac manifestations in 40% and severe respiratory failure due to fibrosis in 20% of patients, pulmonary infections in 20% and the rest died due to cancer. A comparison of demographic, imaging, clinical, and laboratory characteristics revealed that patients who did not survive the follow-up period were older (median age 66 vs. 49 years), had a longer disease duration (median duration 4.5 vs. 1.5 years), were more likely to show a gadolinium enhanced pattern in CMR (LGE), were treated with oral steroids, presented with more comorbidities like diabetes mellitus (DM) and dyslipidemia compared to those who survived. Clinical and echocardiographic screening for possible cardiac Sarc revealed elevated serum B-type natriuretic peptide (BNP) levels, left atrial (LA) size, interventricular septum (IVS) and posterior wall (PW) thickness, pulmonary artery systolic pressure (PASP, through tricuspid valve regurgitation, indicative of possible

Pulmonary Hypertension) (all p-values $<$ 0.01), and left ventricular end-systolic volume (LVESV) ($p=0.022$) among the non-survivors compared to survivors. Regarding 24-hour Holter ECG monitoring parameters, lower values of SD2, Lmax, DET, A1, D2, SD24, LF24PER (all p-values $<$ 0.01), and LFHF24 ($p=0.012$) and a higher SD1/SD2 ratio ($p < 0.001$) were associated with mortality. Furthermore, a higher proportion of non-survivors presented paroxysmal atrial fibrillation (PAF) or more severe ventricular arrhythmias (Lown categories 4A and 4B) during baseline 24-hour Holter ECG monitoring compared to survivors (all p-values $<$ 0.01) (Table 1). Competing risk analysis revealed that decreased DFA α 1 was a robust prognostic indicator for increased total mortality. ROC analysis demonstrated that the area under the curve (AUC) of DFA α 1 ($<$ 0.95) for predicting mortality was 0.761 (95% confidence interval (CI) = 0.617–0.905). DFA α 1 \geq 0.95 was associated with total mortality (HR = 0.109, 95% CI = 0.033–0.362, P = 0.0003).

Statistical analysis revealed higher mortality for patients with an elevated SD1 to SD2 ratio (\geq 0.11 (units)), low Lmax ($<$ 705 (units)), low DET ($<$ 99.4 (units)), low A1 ($<$ 1.28 (units)), or the presence of serious ventricular arrhythmias (Lown Category $>$ 3) in 24-hour Holter ECG monitoring, or those with an elevated echocardiographically-measured PASP (\geq 40 mmHg) (all p-values $<$ 0.05). Logistic Regression among the aforementioned prognostic factors, low A1 and increased PASP were associated with higher unadjusted hazard ratios for death, estimated by univariate Cox proportional hazards regression analysis [HR (95% CI): 64.76 (1.16–3608.4) for A1 $<$ 1.28, and 28.73 (9.95–82.94) for PASP \geq 40 mmHg]. This result collectively shows that increased systolic pulmonary artery pressure contributes to the fatal outcome along with autonomic dysfunction.

DISCUSSION

This study assessed non-linear heart rate variability (HRV) measures, especially the short-term fractal scaling exponent (DFA α 1) in patients with Sarc. The latter emerged as a powerful predictor of mortality, surpassing conventional HRV assessments. This finding accompanies the evidence on a possible intricate relationship between pulmonary involvement, cardiac manifestations, and mortality in Sarc.

Table 1. Descriptive characteristics of all patients (n=317), alive (n=300) and deceased (n=17) Group

Parameters	Total Population (n=317)	Alive Group (n=300)	Deceased Group (n=17)	Significance
Sex (F/M)	180/137	169/131	11/6	0.618
Age (years)	48.78±12.4	47.9±11.66	64.06±15.69	0.001
BMI (kg/m ²)	28.1±5.05	27.92±5.02	31.93±4.51	0.021
Disease Duration (years)	3.79±5.77	3.76±5.76	4.51±6.16	0.689
Arterial Hypertension	71	63	8	0.013
Diabetes Mellitus	38	29	9	0.0001
Hyperlipidemia	90	81	9	0.012
Current Smoking Habit	69	67	2	0.546
Current Cortisol Treatment	123	112	11	0.066
Gadolinium (+) in Cardiac MRI (LGE)	134	123	11	0.05
SACE (Serum Angiotensin Converting Enzyme)	54.41±33.24	55.47±33.12	18.43±7.84	0.028
Ejection Fraction (%)	60.18±3.65	60.39±3.67	56.57±6.32	0.042
Systolic Arterial Pressure (mmHg)	122.91±12.23	122.92±11.91	125.5±17.07	0.512
Diastolic Arterial Pressure (mmHg)	78.68±6.84	78.83±6.74	77.00±7.15	0.446
Heart Rate Variability				
Mean Heart Rate (BPM)	78.03±9.58	77.99±9.28	83.5±14.06	0.052
pNN50	7.25±8.61	7.19±8.62	9.09±9.33	0.476
RMSSD	29.6±17.69	29.35±17.67	34.79±19.68	0.321
SDNN	124.17±37.88	126.41±36.88	78.31±31.00	0.0001
LF/HF	4.25±2.82	4.35±2.84	2.18±1.8	0.002
ApEN	1.07±0.12	1.07±0.12	1.05±0.12	0.416
DFA ₁	1.24±0.22	1.26±0.20	0.87±0.21	0.0001
DFA ₂	1.05±0.12	1.05±0.11	1.04±0.16	0.711

Abbreviations: SACE: Serum Angiotensin Converting Enzyme, SDNN: Standard deviation of the NN (R-R) intervals, NN50: number of pairs of successive NN (R-R) intervals that differ by more than 50 ms, PNN50: proportion of NN50 divided by the total number of NN (R-R) intervals, LF: low frequency, HF: high frequency, ApEN: Approximate entropy, DFA: Detrended Fluctuation Analysis, RMSSD: Root Mean Square of Successive Differences.

The research involved a substantial cohort of biopsy-proven Sarc patients, who underwent comprehensive HRV assessment at the initial visit and were closely followed for a period of 5 years. Notably, the findings not only confirm the previous data linking impaired pulmonary function with the long-term prognosis of Sarc but also expand our understanding by delineating an association between specific non-linear dynamics derived from heart rate variability (SD1/SD2 ratio, Lmax, DET and A1) and all-cause mortality in Sarc patients. The study reveals the possible clinical significance of identifying certain arrhythmias, such as premature atrial contractions (PAF) or ventricular

arrhythmias (Lown categories >3), during the baseline 24-hour Holter electrocardiogram (ECG) monitoring, as these were found to be associated with an increased risk of mortality. Consistent with earlier research, the study underscores the perturbed nature of HRV in Sarc patients, independent of the disease severity or the chosen treatment modality (22-24). By focusing on a sizeable group of asymptomatic Sarc patients, the study provides valuable prognostic insights into the role of heart rate analysis in identifying individuals at a heightened risk of mortality, beyond the traditional clinical and imaging parameters. Of particular significance is the finding that the

reduced short-term scaling exponent, $DFA\alpha_1$, can predict mortality even in patients with Sarc who do not exhibit any signs of myocardial involvement or clinically overt neurosarcoidosis. The advancements in modern computerized techniques have enabled a more accurate estimation of beat-to-beat variability in heart rate, spanning from seconds to even 24 hours, allowing for the derivation of both linear (time and frequency domain) and non-linear HRV indices. This technological development has facilitated the non-invasive evaluation of autonomic nervous system (ANS) function through the assessment of sympathetic and parasympathetic integrity (25-27). The pivotal role of the autonomic nervous system in regulating the intricate interplay between respiration and circulation is well recognized. Dysregulation of the ANS has been documented in various pathological conditions, including autoimmune diseases like diabetes (28,29), multiple sclerosis (31,28), rheumatoid arthritis (32-34), systemic lupus erythematosus (35), and scleroderma (36). This dysregulation is linked to an increased risk of mortality in patients with comorbidities such as diabetes mellitus, hypertension, congestive heart failure, and coronary artery disease, primarily due to the propensity of autonomic imbalance to predispose individuals to cardiac arrhythmias (37-40). Several studies have also highlighted the connection between ANS dysfunction, as indicated by heart rate variability behavior, and inflammation (41,42), potentially providing a plausible explanation for the association of HRV indices in Sarc patients with mortality, independent of the chosen therapy and the duration of the disease. The findings from this study are consistent with earlier research that has reported an association between Sarc and ANS dysfunction (22-24). For instance, Tiran et al (24), in their comparative study of 12 Sarc patients and controls, reported a decrease in the high-frequency component of the power spectrum in HRV, possibly indicating reduced parasympathetic tone or a blunted cardiac response to vagal modulation. Similarly, Uslu et al (23) suggested a reduction in HRV in patients with systemic Sarc compared to the control group, with more pronounced changes observed in patients with cardiac Sarc. Aktop et al (22) also demonstrated the presence of diurnal fluctuations in HRV in Sarc patients, particularly the night-time LF/HF values, suggesting heightened sympathetic activation in these patients. However, the existing literature does not definitively clarify whether the observed HRV

abnormalities are solely related to autonomic dysfunction in Sarc or are indicative of myocardial involvement in the disease process. The incorporation of cardiac magnetic resonance (CMR) scans in this study showed that patients presented with the presence gadolinium enhanced pattern in CMR (LGE), during the long follow up had a fatal outcome (Table 1). It is well known the correlation of LGE uptake as a surrogate marker of fibrosis with mortality in heart failure, in myocarditis and in sarcoidosis (3). Despite the advancements, none of the previous studies had explicitly aimed to demonstrate the predictive role of heart rate variability indices concerning all-cause mortality, nor did they delve into the examination of non-linear parameters, such as detrended fluctuation analysis. The detrended fluctuation analysis method, which assesses the qualitative characteristics and correlation features of heart rate behavior, has been shown to offer valuable insights into the fractal scaling properties through HRV analysis, particularly with regard to mortality prediction (43). Notably, a growing body of evidence has emerged, highlighting the prognostic power of short-term fractal scaling properties, analyzed using the DFA technique. In line with this, the current study's findings reveal that the fractal analysis of HRV, especially the short-term fractal scaling exponent ($DFA\alpha_1$), which captures the qualitative fluctuation patterns of the heart rate, can effectively predict both cardiac-specific and all-cause mortality. These findings are in agreement with prior studies that have indicated an increased risk of mortality and life-threatening arrhythmias in patients, both with and without structural heart disease, based on DFA_1 (44-49). Furthermore, in non-cardiac populations, the DFA_1 value has been proposed as a specific risk marker for cardiac death and has shown a significant association with overall mortality (42,43). A noteworthy limitation of this study is the relatively small number of deaths, which may have affected the statistical power of the analyses. Additionally, the potential influence of diabetes, either directly or as a consequence of treatment with steroids in severe cases of Sarc, may have contributed to the observed mortality rates in the study population. Factors such as diabetic cardiovascular autonomic neuropathy and micro-macrovascular complications of diabetes mellitus could have influenced the mortality outcomes, although the lack of comprehensive data on the degree of glycemic control precludes further detailed

analysis in this context. Moreover, another limiting factor arising from the small number of deaths was the inability to calculate the median survival time; means were calculated instead, as recommended in the relevant literature (50). Finally, multivariate analysis was not feasible due to the relatively small number of deaths observed during the follow-up period. Univariate analysis showed that increased pulmonary artery systolic pressure and autonomic dysfunction were among the most important factors for a fatal outcome. Nevertheless, it is elusive if there is a relationship between these two factors and further studies are needed to address this query. In conclusion, this study contributes to our understanding of the complex interplay between impaired pulmonary function, cardiac implications, and mortality in Sarc. By highlighting the predictive significance of non-linear heart rate variability measures, particularly the short-term fractal scaling exponent (DFA α 1), this study provides valuable insights into the prognostic assessment and risk stratification in Sarc patients. Furthermore, the study sheds light on the role of the autonomic nervous system in various pathological conditions, including Sarc, underscoring the potential link between HRV indices and mortality, independent of the therapeutic approach and the duration of the disease. The inclusion of detrended fluctuation analysis further strengthens the prognostic value of HRV analysis in identifying patients at a higher risk of adverse outcomes. While the study's limitations call for caution in the interpretation of the findings, they also warrant further investigations to comprehensively unravel the intricate associations and potential clinical implications for the management of Sarc patients.

Conflict of Interest: Each author declares that he or she has no commercial associations (e.g. consultancies, stock ownership, equity interest, patent/licensing arrangement etc.) that might pose a conflict of interest in connection with the submitted article.

Authors' Contributions: GE, KS, KL, ME, ZK and SG contributed to population collection. II, VA and TP performed the statistical analyses. GE, II, GP, NK and SP wrote the first draft of the manuscript.

REFERENCES

1. Kiril G, Lower EE, Baughman RP. Predictors of mortality in pulmonary sarcoidosis. *Chest*. 2018 Jan;153(1):105-113. doi: 10.1016/j.chest.2017.07.008
2. Belperio J, Shaikh F, Abtin F, et al. Diagnosis and treatment of pulmonary sarcoidosis: a review. *JAMA*. 2022 Mar 1;327(9):856-867. doi: 10.1001/jama.2022.1570
3. Kouranos V, Tzelepis GE, Rapti A, et al. Complementary role of CMR to conventional screening in the diagnosis and prognosis of cardiac sarcoidosis. *JACC Cardiovasc Imaging*. 2017 Dec;10(12):1437-1447. doi: 10.1016/j.jcmg.2016.11.019
4. Baughman RP, Winget DB, Bowen EH, Lower EE. Predicting respiratory failure in sarcoidosis patients. *Sarcoidosis Vasc Diffuse Lung Dis*. 1997 Sep;14(2):154-158.
5. Jarczok MN, Weimer K, Braun C, et al. Heart rate variability in the prediction of mortality: a systematic review and meta-analysis of healthy and patient populations. *Neurosci Biobehav Rev*. 2022 Dec; 143:104907. doi: 10.1016/j.neubiorev.2022.104907
6. Mol MBA, Strous MTA, van Osch FHM, et al. Heart rate variability (HRV) predicts outcomes in COVID-19. *PLoS One*. 2021 Oct 28;16(10):e0258841. doi: 10.1371/journal.pone.0258841
7. Nakanishi K, Jin Z, Homma S, et al. Association between heart rate and subclinical cerebrovascular disease in the elderly. *Stroke*. 2018 Feb;49(2):319-324. doi: 10.1161/strokeaha.117.019355
8. Kleiger RE, Miller JP, Bigger JT Jr, et al. Decreased heart rate variability and its association with increased mortality after acute myocardial infarction. *Am J Cardiol*. 1987 Feb 1;59(4):256-262.
9. Tiwari R, Kumar R, Malik S, et al. Analysis of heart rate variability and implication of different factors on heart rate variability. *Curr Cardiol Rev*. 2021;17(5):e160721189770. doi: 10.2174/1573403x1699201231203854
10. Armstrong R, Wheen P, Brandon L, et al. Heart rate: control mechanisms, pathophysiology and assessment of the neurocardiac system in health and disease. *QJM*. 2022 Dec 12;115(12):806-812. doi: 10.1093/qjmed/hcab016
11. Mizobuchi A, Osawa K, Tanaka M. Detrended fluctuation analysis can detect the impairment of heart rate regulation in patients with heart failure with preserved ejection fraction. *J Cardiol*. 2021 Jan;77(1):72-78. doi: 10.1016/j.jcc.2020.07.027
12. Henriques T, Ribeiro M, Teixeira A, et al. Nonlinear methods most applied to heart rate time series: a review. *Entropy (Basel)*. 2020 Mar 9;22(3):309. doi: 10.3390/e22030309
13. Ruffini N, D'Alessandro G, Mariani N, et al. Variations of high frequency parameter of heart rate variability following osteopathic manipulative treatment in healthy subjects compared to control group and sham therapy: randomized controlled trial. *Front Neurosci*. 2015 Aug 4:9:272. doi: 10.3389/fnins.2015.00272
14. Olivieri F, Biscetti L, Pimpini L, et al. Heart rate variability and autonomic nervous system imbalance: potential biomarkers and detectable hallmarks of ageing and inflammaging. *Ageing Res Rev*. 2024 Nov;101:102521. doi: 10.1016/j.arr.2024.102521
15. Alyahya A, Charman S, Okwose N, et al. Impact of age and sex on heart rate variability and cardiometabolic function in healthy adults. *Exp Gerontol*. 2024 Nov;197:112591. doi: 10.1016/j.exger.2024.112591
16. Statement on sarcoidosis. Joint statement of the American Thoracic Society (ATS), the European Respiratory Society (ERS), and the World Association of Sarcoidosis and Other Granulomatous Disorders (WASOG) adopted by the ATS Board of Directors and by the ERS Executive Committee. *Am J Respir Crit Care Med*. 1999 Aug;160(2):736-755. doi: 10.1164/ajrccm.160.2.ats4-99
17. Schiller NB, Shah PM, Crawford M, et al. Recommendations for quantitation of the left ventricle by two dimensional echocardiography: American Society of Echocardiography Committee on Standards, Subcommittee on Quantitation of Two Dimensional Echocardiograms. *J Am Soc Echocardiogr*. 1989;2:358-367.
18. Friedrich MG, Sechtem U, Schulz Menger J, et al. Cardiovascular magnetic resonance in myocarditis: a JACC white paper. *J Am Coll Cardiol*. 2009;53:1475-1487. doi: 10.1016/j.jacc.2009.02.007
19. Tarvainen MP, Niskanen JP, Lippinen JA, et al. Kubios HRV – heart rate variability analysis software. *Comput Methods Programs Biomed*. 2014;113:210-220. doi: 10.1016/j.cmpb.2013.07.024

20. Richman JS, Moorman JR. Physiological time series analysis using approximate entropy and sample entropy. *Am J Physiol Heart Circ Physiol.* 2000;278(6):H2039-H2049. doi: 10.1152/ajpheart.2000.278.6.H2039

21. Peng CK, Havlin S, Stanley HE, Goldberger AL. Quantification of scaling exponents and crossover phenomena in nonstationary heart-beat time series. *Chaos.* 1995;5(1):82-87. doi: 10.1063/1.166141

22. Aktop Z, Tanrıverdi H, Uygur F, et al. Diurnal characteristics of heart rate variability in patients with sarcoidosis. *Herz.* 2017 Aug;42(5):498-504. doi: 10.1007/s00059-016-4486-5

23. Uslu N, Akyol A, Gorgulu S, et al. Heart rate variability in patients with systemic sarcoidosis. *Ann Noninvasive Electrocardiol.* 2006 Jan;11(1):38-42. doi: 10.1111/j.1542-474X.2006.00080.x

24. Tiran B, Heller I, Isakov A, Barnea O, Greif J, Topilsky M. Heart rate variability in sarcoidosis: a frequency domain analysis. *Eur J Intern Med.* 2004 Dec;15(8):518-522. doi: 10.1016/j.ejim.2004.10.004

25. Campos LA, Pereira VL Jr, Muralikrishna A, et al. Mathematical biomarkers for the autonomic regulation of cardiovascular system. *Front Physiol.* 2013 Oct 7;4:279. doi: 10.3389/fphys.2013.00279

26. Gunther A, Witte OW, Hoyer D. Autonomic dysfunction and risk stratification assessed from heart rate pattern. *Open Neurol J.* 2010;4:39-49. doi: 10.2174/1874205X01004010039

27. Huikuri HV, Mäkipallio TH. Heart rate variability in ischemic heart disease. *Auton Neurosci Basic Clin.* 2001;90:95-101. doi: 10.1016/S1566-0702(01)00273-9

28. Benichou T, Pereira B, Mermilliod M, et al. Heart rate variability in type 2 diabetes mellitus: a systematic review and meta-analysis. *PLoS One.* 2018 Apr 2;13(4):e0195166. doi: 10.1371/journal.pone.0195166

29. Lin K, Wei L, Huang Z, Zeng Q. Combination of Ewing test, heart rate variability, and heart rate turbulence analysis for early diagnosis of diabetic cardiac autonomic neuropathy. *Med (Baltimore).* 2017 Nov;96(45):e8296. doi: 10.1097/MD.00000000000008296

30. Flachenecker P, Wolf A, Krauser M, et al. Cardiovascular autonomic dysfunction in multiple sclerosis: correlation with orthostatic intolerance. *J Neurol.* 1999 Jul;246(7):578-586. doi: 10.1007/s00415-0050407

31. Vildeira G, Castro P, Vieira B, et al. Autonomic dysfunction in multiple sclerosis is better detected by heart rate variability and is not correlated with central autonomic network damage. *J Neurol Sci.* 2016 Aug 15;367:133-137. doi: 10.1016/j.jns.2016.05.049

32. Kamal A. Assessment of autonomic function in patients with rheumatoid arthritis using spectral analysis and approximate entropy method. *Neurosciences (Riyadh).* 2007 Apr;12(2):136-139.

33. Anichkov DA, Shostak NA, Ivanov DS. Heart rate variability is related to disease activity and smoking in rheumatoid arthritis patients. *Int J Clin Pract.* 2007 May;61(5):777-783. doi: 10.1111/j.1742-1241.2006.01099.x

34. Adlan AM, Lip GY, Paton JF, et al. Autonomic function and rheumatoid arthritis: a systematic review. *Semin Arthritis Rheum.* 2014 Dec;44(3):283-304. doi: 10.1016/j.semarthrit.2014.06.003

35. Milovanović B, Stojanović L, Milićević N, et al. Cardiac autonomic dysfunction in patients with systemic lupus, rheumatoid arthritis and sudden death risk. *Srp Arh Celok Lek.* 2010 Jan-Feb;138(1-2):26-32. doi: 10.2298/sarh1002026m

36. Ferri C, Emdin M, Giuggioli D, et al. Autonomic dysfunction in systemic sclerosis: time and frequency domain 24 hour heart rate variability analysis. *Br J Rheumatol.* 1997 Jun;36(6):669-676. doi: 10.1093/rheumatology/36.6.669

37. Sessa F, Anna V, Messina G, et al. Heart rate variability as predictive factor for sudden cardiac death. *Aging (Albany NY).* 2018 Feb 23;10(2):166-177. doi: 10.18632/aging.101386

38. Pezawas T, Diedrich A, Robertson D, et al. Risk of arrhythmic death in ischemic heart disease: a prospective, controlled, observer blind risk stratification over 10 years. *Eur J Clin Invest.* 2017 Mar;47(3):231-240. doi: 10.1111/eci.12729

39. Maheshwari A, Norby FL, Soliman EZ, et al. Low heart rate variability in a 2 minute electrocardiogram recording is associated with an increased risk of sudden cardiac death in the general population: the Atherosclerosis Risk in Communities Study. *PLoS One.* 2016 Aug 23;11(8):e0161648. doi: 10.1371/journal.pone.0161648

40. Demming T, Sandrock S, Kuhn C, et al. Deceleration capacity: a novel predictor for total mortality in patients with non ischemic dilated cardiomyopathy. *Int J Cardiol.* 2016 Oct 15;221:289-293. doi: 10.1016/j.ijcard.2016.06.205

41. Aeschbacher S, Schoen T, Dörig L, et al. Heart rate, heart rate variability and inflammatory biomarkers among young and healthy adults. *Ann Med.* 2017 Feb;49(1):32-41. doi: 10.1080/07853890.2016.1226512

42. Kop WJ, Stein PK, Tracy RP, et al. Autonomic nervous system dysfunction and inflammation contribute to the increased cardiovascular mortality risk associated with depression. *Psychosom Med.* 2010 Sep;72(7):626-635. doi: 10.1097/PSY.0b013e3181eadd2b

43. Tapanainen JM, Thomsen PE, Køber L, et al. Fractal analysis of heart rate variability and mortality after an acute myocardial infarction. *Am J Cardiol.* 2002;90:347-352. doi: 10.1016/S0002-9149(02)02488-8

44. Au-Yeung WT, Reinhall PG, Poole JE, et al. SCD HeFT: use of R R interval statistics for long term risk stratification for arrhythmic sudden cardiac death. *Heart Rhythm.* 2015 Oct;12(10):2058-2066. doi: 10.1016/j.hrthm.2015.06.030

45. Valencia JF, Vallverdú M, Porta A, et al. Ischemic risk stratification by means of multivariate analysis of heart rate variability. *Physiol Meas.* 2013 Mar;34(3):325-338. doi: 10.1088/0967-3334/34/3/325

46. Ho YL, Lin C, Lin YH, Lo MT. The prognostic value of non linear analysis of heart rate variability in patients with congestive heart failure—a pilot study of multiscale entropy. *PLoS One.* 2011 Apr 13;6(4):e18699. doi: 10.1371/journal.pone.0018699

47. de Godoy MF, Takakura IT, Correa PR, et al. Preoperative nonlinear behavior in heart rate variability predicts morbidity and mortality after coronary artery bypass graft surgery. *Med Sci Monit.* 2009 Mar;15(3):CR117-CR122.

48. Arzeno NM, Kearney MT, Eckberg DL, et al. Heart rate chaos as a mortality predictor in mild to moderate heart failure. *Conf Proc IEEE Eng Med Biol Soc.* 2007;2007:5051-5054. doi: 10.1109/IEMBS.2007.4353475

49. Mahon NG, Hedman AE, Padula M, et al. Fractal correlation properties of R R interval dynamics in asymptomatic relatives of patients with dilated cardiomyopathy. *Eur J Heart Fail.* 2002 Mar;4(2):151-158. doi: 10.1016/S1388-9842(01)00227-6

50. Barker C. The mean, median, and confidence intervals of the Kaplan Meier survival estimate—computations and applications. *Am Statistician.* 2009;63:78-80.