Impact of the exercise on the Gut microbiota and short-chain fatty acids (SCFAs) production

Authors

  • Mashael W. Alruways Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Shaqra University, Shaqra Saudi Arabia.

DOI:

https://doi.org/10.23751/pn.v25i1.13614

Keywords:

SCFAs, gut microbiota, exercise, athlete health.

Abstract

Gut microbiota plays an important role in the regulation of metabolic, endocrine, and immune functions. Many researchers have tried their best to demonstrate the involvement of gut microbiota in the modulation of several biochemical pathways which are connected to gut brain axis. Short chain fatty acids (SCFAs) are the vital metabolites which are produced in the colon via bacterial fermentation of dietary fibers and resistant to starch. The breakdown of dietary fibers and the subsequent fermentation of monosaccharides to SCFAs is on the most polemically discussed mechanisms of how gut bacteria influence host physiological environment. These SCFAs play an important role in gut microbiota. Fibers reduce energy density of the diet and the resulting SCFAs promote intestinal gluconeogenesis, incretin formation and afterward satiety. SCFAs also deliver energy to the host and support gluconeogenesis. In this study, we aimed to assess SCFAs as a metabolic regulator and how they might enhance endurance performance in athletes. Future research may provide the usefulness of SCFAs and allowing athletes to maximize their performance in various competitions.

 

Downloads

Download data is not yet available.

References

Morrison, D.J.; Preston, T. Formation of short chain fatty acids by the gut microbiota and their impact on human metabolism. Gut Microbes, 2016. 7, 189-200.

Chambers, E.S.; Preston, T.; Frost, G.; Morrison, D.J. Role of Gut Microbiota-Generated Short-Chain Fatty Acids in Metabolic and Cardiovascular Health. Curr. Nutr. Rep, 2018. 7, 198-206,

Averina, O.V.; Zorkina, Y.A.; Yunes, R.A.; Kovtun, A.S.; Ushakova, V.M.; Morozova, A.Y, Kostyuk, G.P.; Danilenko, V.N.; Chekhonin, V.P. Bacterial Metabolites of Human Gut Microbiota Correlating with Depression. Int. J. Mol. Sci, 2020, 21, 9234.

Gibson, G.R., Hutkins, R., Sanders, M.E., Prescott, S.L., Reimer, R.A., Salminen, S.J., Scott, K., Stanton, C., Swanson, K.S., Cani, P.D., Verbeke, K. and Reid, G. Expert consensus document: The International Scientific Association for Probiotics and Prebiotics (ISAPP) consensus statement on the definition and scope of prebiotics. Nature Reviews Gastroenterology and Hepatology, 2017, 14, 491-502.

Koh, A, De Vadder, F, Kovatcheva-Datchary, P and Backhed, F. From dietary fiber to host physiology: short-chain fatty acids as key bacterial metabolites. Cell, 2016. 165: 1332-1345.

Canfora, E.E., Jocken, J.W. and Blaak, E.E. Short-chain fatty acids in control of body weight and insulin sensitivity. Nature Reviews Endocrinology,2015. 11: 577-591.

Chambers, E.S., Preston, T., Frost, G and Morrison, D.J. Role of gut microbiota-generated short-chain fatty acids in metabolic and cardiovascular health. Current Nutrition Reports,2018. 7, 198-206.

Rios-Covian, D., Ruas-Madiedo, P., Margolles, A., Gueimonde, M., De los Reyes-Gavilan, C.G. and Salazar, N. Intestinal short chain fatty acids and their link with diet and human health. Frontiers in Microbiology, 2016, 7, 185.

Clarke, G., Stilling, R., Kennedy, P.J., Stanton, C., Cryan, J., Dinan, T.G. Minireview: Gut Microbiota: The Neglected Endocrine Organ. Mol. Endocrinol, 2014. 28, 1221-1238.

Macfarlane, G.T, Allison, C, Gibson, S.A.W, Cummings, J.H. Contribution of the microflora to proteolysis in the human large intestine. J. Appl. Bacteriol, 1988. 64: 37-46.

Garron ML & Henrissat B. The continuing expansion of CAZymes and their families. Curr Opin Chem Biol, 2019. 53, 82-87.

Havenaar R. Intestinal health functions of colonic microbial metabolites: a review. Benef Microbes, 2011. 2, 103-14.

Tremaroli V, Backhed F. Functional interactions between the gut microbiota and host metabolism. Nature, 2012, 489:242-9.

Bugaut M. Occurrence, absorption, and metabolism of short chain fatty acids in the digestive tract of mammals. Comp Biochem Physiol B, 1987. 86:439-72.

Duncan SH, Holtrop G, Lobley GE, Calder AG, Stewart CS, Flint HJ. Contribution of acetate to butyrate formation by human faecal bacteria. Br J Nutr, 2004. 91, 915-923.

Pryde SE, Duncan SH, Hold GL, Stewart CS, Flint HJ. The microbiology of butyrate formation in the human colon. FEMS Microbiol Lett, 2002. 217, 133-139.

Cummings JH. Short chain fatty acids in the human colon. Gut, 1981. 22, 763-779.

Macfarlane GT & Macfarlane S. Human colonic microbiota: ecology, physiology, and metabolic potential of intestinal bacteria. Scand J Gastroenterol Suppl, 1997. 222, 3-9.

den Besten G, van Eunen K, Groen AK, Venema K, Reijngoud DJ, Bakker BM. The role of short-chain fatty acids in the interplay between diet, gut microbiota, and host energy metabolism. J Lipid Res, 2013. 54:2325-40.

Bergman EN. Energy contributions of volatile fatty acids from the gastrointestinal tract in various species. Physiol Rev, 1990. 70:567-90.

Serpa J, Caiado F, Carvalho T, Torre C, Goncalves LG, Casalou C, Lamosa P, Rodrigues M, Zhu Z, Lam EW, Dias S. Butyrate-rich colonic microenvironment is a relevant selection factor for metabolically adapted tumor cells. J Biol Chem, 2010. 285, 39211-23.

den Besten G, Lange K, Havinga R, van Dijk TH, Gerding A, van Eunen K, Muller M, Groen AK, Hooiveld GJ, Bakker BM, Reijngoud DJ. Gut-derived short-chain fatty acids are vividly assimilated into host carbohydrates and lipids. Am J Physiol Gastrointest Liver Physiol, 2013. 305, G900-10.

LeBlanc JG, Chain F, Martín R, Bermúdez-Humarán LG, Courau S, Langella P. Beneficial effects on host energy metabolism of short-chain fatty acids and vitamins produced by commensal and probiotic bacteria. Microb Cell Fact, 2017. 16 (1),79.

Kapitan M, Niemiec MJ, Steimle A. Fungi as part of the microbiota and interactions with intestinal bacteria. Fungal physiology and immunopathogenesis. Springer, 2018. 265-301.

Dickson RP, Erb-Downward JR, Martinez FJ, Huffnagle GB. The microbiome and the respiratory tract. Annu Rev Physiol, 2016. 78,481-504.

Gao L, Xu T, Huang G, Jiang S, Gu Y, Chen F. Oral microbiomes: more and more importance in oral cavity and whole body. Protein Cell, 2018. 9,488-500.

Baker JM, Chase DM, Herbst-Kralovetz MM. Uterine microbiota: residents, tourists, or invaders? Front Immunol, 2018. 9, 208.

Chen CH, Yorgason E. Redefining Asian masculinity in the age of global media. Asian Communication Research, 2018. 15,123-53.

Reid G, Younes JA, Van der Mei HC, Gloor GB, Knight R, Busscher HJ. Microbiota restoration: natural and 491 supplemented recovery of human microbial communities. Nature reviews Microbiology, 2011. 492(9), 27-38.

Qin J, Li R, Raes J, Arumugam M, Burgdorf KS, Manichanh C, Nielsen T, Pons N, Levenez F, Yamada T, Mende DR, Li J, Xu J, Li S, Li D, Cao J, Wang B, Liang H, Zheng H, Xie Y, Tap J, Lepage P, Bertalan M, Batto JM, Hansen T, Le Paslier D, Linneberg A, Nielsen HB, Pelletier E, Renault P, Sicheritz-Ponten T, Turner K, Zhu H, Yu C, Li S, Jian M, Zhou Y, Li Y, Zhang X, Li S, Qin N, Yang H, Wang J, Brunak S, Doré J, Guarner F, Kristiansen K, Pedersen O, Parkhill J, Weissenbach J; MetaHIT Consortium, Bork P, Ehrlich SD, Wang J.A human gut microbial gene catalogue established by metagenomic sequencing. Nature, 2010. 464:59-65.

Lepage P, Leclerc MC, Joossens M, Mondot S, Blottière HM, Raes J, Ehrlich D, Doré J. A metagenomic insight into our gut's microbiome. Gut, 2013. 62(1):146-58.

Gomez de Agüero M, Ganal-Vonarburg SC, Fuhrer T, Rupp S, Uchimura Y, Li H, Steinert A, Heikenwalder M, Hapfelmeier S, Sauer U, McCoy KD, Macpherson AJ. The maternal microbiota drives early postnatal innate immune development. Science, 2016. 18,351(6279):1296-302.

Rakoff-Nahoum S, Kong Y, Kleinstein SH, Subramanian S, Ahern PP, Gordon JI, Medzhitov R. Analysis of gene-environment interactions in postnatal development of the mammalian intestine. Proc Natl Acad Sci USA, 2015. 17;112(7),1929-36.

Forbes JD, Azad MB, Vehling L, et al. Association of exposure to formula in the hospital and subsequent infant feeding practices with gut microbiota and risk of overweight in the first year of life. JAMA Pediatr, 2018. 172, 181161.

Winter G, Hart RA, Charlesworth RPG, Sharpley CF. Gut microbiome and depression: what we know and what we need to know. Rev Neurosci, 2018. 29:629-43.

Miranda-Comas, Gerardo & Petering, Ryan & Zaman, Nadia & Chang, Richard. Implications of the Gut Microbiome in Sports. Sports Health: A Multidisciplinary Approach, 2022. 1941-73812110600.

Crowson MM, McClave SA. Does the Intestinal Microbiome Impact Athletic Performance? Curr Gastroenterol Rep, 2020. 22(11):53.

Tremaroli V, Backhed F. Functional interactions between the gut microbiota and host metabolism. Nature, 2012. 489:242-9.

Nicholson JK, Holmes E, Kinross J, Burcelin R, Gibson G, Jia W, Pettersson S. Host-gut microbiota metabolic interactions. Science, 2012. 336:1262-7.

Turnbaugh PJ, Ley RE, Mahowald MA, Magrini V, Mardis ER, Gordon JI. An obesity-associated gut microbiome with increased capacity for energy harvest. Nature, 2006. 444, 102731.

Musso G, Gambino R, CassaderM. Interactions between gut microbiota and host metabolism predisposing to obesity and diabetes. Annu RevMed, 2011. 62:361-80.

de Groot PF, Belzer C, Aydin Ö, Levin E, Levels JH, Aalvink S, Boot F, Holleman F, van Raalte DH, Scheithauer TP, Simsek S, Schaap FG, Olde Damink SWM, Roep BO, Hoekstra JB, de Vos WM, Nieuwdorp M. Distinct fecal and oral microbiota composition in human type 1 diabetes, an observational study. PLoS ONE, 2017. 12:e0188475.

Junjie Qin, Yingrui Li, Zhiming Cai, Shenghui Li, Jianfeng Zhu, Fan Zhang, Suisha Liang, Wenwei Zhang, Yuanlin Guan, Dongqian Shen, Yangqing Peng, Dongya Zhang, Zhuye Jie, Wenxian Wu, Youwen Qin, Wenbin Xue, Junhua Li, Lingchuan Han, Donghui Lu, Peixian Wu, Yali Dai, Xiaojuan Sun, Zesong Li, Aifa Tang, Shilong Zhong, Xiaoping Li, Weineng Chen, Ran Xu, Mingbang Wang, Qiang Feng, Meihua Gong, Jing Yu, Yanyan Zhang, Ming Zhang, Torben Hansen, Gaston Sanchez, Jeroen Raes, Gwen Falony, Shujiro Okuda, Mathieu Almeida, Emmanuelle LeChatelier, Pierre Renault, Nicolas Pons, Jean-Michel Batto, Zhaoxi Zhang, Hua Chen, Ruifu Yang, Weimou Zheng, Songgang Li, Huanming Yang, Jian Wang, S. Dusko Ehrlich, Rasmus Nielsen, Oluf Pedersen, Karsten Kristiansen & Jun Wang. A metagenome-wide association study of gut microbiota in type 2 diabetes. Nature, 2012. 490:55-60.

Owen, N, Sparling, P.B, Healy, G.N, Dunstan, D.W, Matthews, C.E. Sedentary behavior: Emerging evidence for a new health risk. Mayo Clin. Proc, 2010. 85:1138-1141.

Kau AL, Ahern PP, Griffin NW, Goodman AL, Gordon JI. Human nutrition, the gut microbiome and the immune system. Nature, 2011. 474:327-36.

Hooper LV, Littman DR, Macpherson AJ. Interactions between the microbiota and the immune system. Science, 2012. 336:1268-73.

Dinan TG, Cryan JF. The microbiome-gut-brain axis in health and disease. Gastroenterol Clin North Am,2017. 46:77-89.

Cryan JF, Dinan TG. Mind-altering microorganisms: the impact of the gut microbiota on brain and behavior. Nat Rev Neurosci, 2012. 13: 701-12.

Lamichhane S, Sen P, Dickens AM, Oresic M, Bertram HC. Gut metabolome meets microbiome: a methodological perspective to understand the relationship between host and microbe. Methods, 2018. 149:3-12.

Tolhurst G, Heffron H, Lam YS, Parker HE, Habib AM, Diakogiannaki E, Cameron J, Grosse J, Reimann F, Gribble FM. Short-chain fatty acids stimulate glucagon-like peptide-1 secretion via the G-protein–coupled receptor FFAR2. Diabetes, 2012. 61:364-71.

Canfora EE, Jocken JW, Blaak EE. Short-chain fatty acids in control of body weight and insulin sensitivity. Nat Rev Endocrinol, 2015. 11:577-91.

Turnbaugh PJ, Ley RE, Hamady M, Fraser-Liggett CM, Knight R, Gordon JI. The human microbiome project. Nature. 2007. 449:804-10.

Hughes RL. A Review of the Role of the Gut Microbiome in Personalized Sports Nutrition. Front. Nutr, 2020. 6:191.

De Filippo C, Cavalieri D, Di Paola M, Ramazzotti M, Poullet JB, Massart S, Collini S, Pieraccini G, Lionetti P. Impact of diet in shaping gut microbiota revealed by a comparative study in children from Europe and rural Africa. Proc Natl Acad Sci USA, 2010. 107,14691-6.

David LA, Maurice CF, Carmody RN, Gootenberg DB, Button JE, Wolfe BE, Ling AV, Devlin AS, Varma Y, Fischbach MA, Biddinger SB, Dutton RJ, Turnbaugh PJ. Diet rapidly and reproducibly alters the human gut microbiome. Nature, 2014. 505, 559-63.

Wu GD, Chen J, Hoffmann C, Bittinger K, Chen YY, Keilbaugh SA, Bewtra M, Knights D, Walters WA, Knight R, Sinha R, Gilroy E, Gupta K, Baldassano R, Nessel L, Li H, Bushman FD, Lewis JD. Linking long-term dietary patterns with gut microbial enterotypes. Science, 2011. 334,105-8.

Allen JM, Mailing LJ, Niemiro GM, Moore R, Cook MD, White BA, Holscher HD, Woods JA. Exercise alters gut microbiota composition and function in lean and obese humans. Med Sci Sports Exerc, 2018. 50:747-57.

Clarke SF, Murphy EF, O'Sullivan O, Lucey AJ, Humphreys M, Hogan A, Hayes P, O'Reilly M, Jeffery IB, Wood-Martin R, Kerins DM, Quigley E, Ross RP, O'Toole PW, Molloy MG, Falvey E, Shanahan F, Cotter PD. Exercise and associated dietary extremes impact on gut microbial diversity. Gut, 2014. 63:1913-20.

Yatsunenko T, Rey FE, Manary MJ, Trehan I, Dominguez-Bello MG, Contreras M, Magris M, Hidalgo G, Baldassano RN, Anokhin AP, Heath AC, Warner B, Reeder J, Kuczynski J, Caporaso JG, Lozupone CA, Lauber C, Clemente JC, Knights D, Knight R, Gordon JI. Human gut microbiome viewed across age and geography. Nature. 2012. 486:222–7.

Koppel N, Balskus EP. Exploring and understanding the biochemical diversity of the human microbiota. Cell Chem Biol, 2016. 23:18-30.

Hughes RL, Kable ME, Marco M, Keim NL. The role of the gut microbiome in predicting response to diet and the development of precision nutrition models. Part II: results. Adv Nutr, 2019. 10:979-98.

Hughes RL, Marco ML, Hughes JP, Keim NL, Kable ME. The role of the gut microbiome in predicting response to diet and the development of precision nutrition models-Part I: overview of current methods. Adv Nutr, 2019. 10:953-78.

Manichanh, C. Rigottier-Gois, L, Bonnaud, E, Gloux, K., Pelletier, E, Frangeul, L, Nalin, R, Jarrin, C, Chardon, P, Marteau, P. Reduced diversity of faecal microbiota in Crohn’s disease revealed by a metagenomic approach. Gut, 2006. 55, 205-211.

Arthur, J.C, Perez-Chanona, E, Mühlbauer, M, Tomkovich, S, Uronis, J.M, Fan, TJ, Campbell, B.J, Abujamel T, Dogan, B. Rogers, AB. Intestinal inflammation targets cancer-inducing activity of the microbiota. Science, 2012. 338, 120-123.

de Goffau MC, Luopajärvi K, Knip M, Ilonen J, Ruohtula T, Härkönen T, Orivuori L, Hakala S, Welling GW, Harmsen HJ, Vaarala O. Fecal microbiota composition differs between children with beta-cell autoimmunity and those without. Diabetes, 2013. 62, 1238-1244.

Mach, N.; Fuster-Botella, D. Endurance exercise and gut microbiota: A review. J. Sport Health Sci, 2017. 6, 179-197.

Barton, W, Penney, NC, Cronin, O, Garcia-Perez, I, Molloy, M.G, Holmes, E, Shanahan, F, Cotter, PD. O’Sullivan, O. The microbiome of professional athletes differs from that of more sedentary subjects in composition and particularly at the functional metabolic level. Gut, 2017. 67, 625-633.

Clarke SF, Murphy EF, O'Sullivan O, Lucey AJ, Humphreys M, Hogan A, Hayes P, O'Reilly M, Jeffery IB, Wood-Martin R, Kerins DM, Quigley E, Ross RP, O'Toole PW, Molloy MG, Falvey E, Shanahan F, Cotter PD. Exercise and associated dietary extremes impact on gut microbial diversity. Gut, 2014. 63, 1913-1920.

Petersen, L.M.; Bautista, E.J.; Nguyen, H.; Hanson, B.M.; Chen, L.; Lek, S.H.; Sodergren, E.; Weinstock, G.M. Community characteristics of the gut microbiomes of competitive cyclists. Microbiome, 2017. 5, 98.

Jang, L.-G.; Choi, G.; Kim, S.-W.; Kim, B.-Y.; Lee, S.; Park, H. The combination of sport and sport-specific diet is associated with characteristics of gut microbiota: An observational study. J. Int. Soc. Sports Nutr. 2019. 16,21.

Scheiman, J, Luber, JM, Chavkin TA, MacDonald T, Tung A, Pham, LD, Wibowo, MC, Wurth, RC, Punthambaker S, Tierney, BT. Meta-omics analysis of elite athletes identifies a performance-enhancing microbe that functions via lactate metabolism. Nat. Med, 2019. 25, 1104-1109.

Meyer, JD, Koltyn, K.F, Stegner, AJ, Kim, JS Cook, DB. Influence of exercise intensity for improving depressed mood in depression: A dose-response study. Behav. Ther, 2016. 47, 527-537.

Duscha BD, Slentz CA, Johnson JL, Houmard JA, Bensimhon DR, Knetzger KJ, Kraus, WE. Effects of exercise training amount and intensity on peak oxygen consumption in middle-age men and women at risk for cardiovascular disease. Chest, 2005. 128, 2788-2793.

Puetz TW, Flowers SS, O’Connor PJ. A randomized controlled trial of the effect of aerobic exercise training on feelings of energy and fatigue in sedentary young adults with persistent fatigue. Psychother. Psychosom, 2008. 77, 167-174.

Meeusen R, Duclos M, Foster C, Fry A, Gleeson M, Nieman D, Raglin J, Rietjens G, Steinacker J, Urhausen A. Prevention, diagnosis, and treatment of the overtraining syndrome: Joint consensus statement of the European College of Sport Science (ECSS) and the American College of Sports Medicine (ACSM). Eur. J. Sport Sci, 2013. 13, 1-24.

Downloads

Published

21-03-2023

Issue

Section

Original articles