Seasonal Change of Some Biochemical Parameters of Athletes Attending School Sports
Main Article Content
Keywords
Lipid, Liver Enzymes, Training, Performance
Abstract
Objective: Workouts affect the biochemistry of the organism significantly. Liver enzymes and lipids are important biochemical markers that affect the performance of athletes along with the training. The purpose of this study is to determine the effect of training sessions of athletes participating in school sports on liver enzymes and lipid metabolism during competitions. Method: The research group consists of 16 male volunteer athletes between 12-14 years of age. Athletes participating in the research trained for competitions
according a program that lasts three months for 60 minutes per day three times in a week and one day for workouts in each week. Blood samples were taken twice before the school sports competitions started and at the end of the competitions. In the blood samples, liver enzyme values and lipid levels were determined. The data obtained were analyzed using SPSS 22 package program. Findings: In consequence of the analyzes, the differences in the levels of Aspartate aminotransferase (AST), Alanine aminotransferase (ALT), C-reactive protein (CRP) and Lactate dehydrogenase (LDH) were detected in the liver enzymes of the athletes participating
in the study (p <0,05), whereas Gama-Glutamil Transferase (GGT), Alkaline Phosphatase, serum bilirubin total and bilirubin direct concentration levels were not statistically differentiated in the pre-posttest results (p> 0,05). A significant decrease was observed in the lipid values of the athletes in general as a result of the training performed and cholesterol, triglyceride, LDL and HDL values were found to differ significantly in the pre-post test results (p <0,05). Conclusion: As a result, it has been determined that long and regular
training sessions have a positive effect on athlete’s liver enzyme levels and lipid metabolism. In this context, we think that performing performance measurements in athletes using physiological and biological parameters will positively affect the health and performance of athletes.
References
2. Turna, B., Gençtürk, B., & Bulduk, Y. (2019). An Investigation of The Effect of Post-Activation Potentiation on Some Performance Parameters in Young Male Soccer Players. Mediterranean Journal of Humanities, IX(1), 335-347.
3. Belviranli, M., Okudan, N., & Kabak, B. (2017). The effects of acute high-intensity interval training on hematological parameters in sedentary subjects. Medical Sciences, 5(3), 15.
4. Demiriz, M., Erdemir, İ., & Kayhan, R. F. (2015). Farklı Dinlenme Aralıklarında Yapılan Anaerobik İnterval Antrenmanın, Aerobik Kapasite, Anaerobik Eşik Ve Kan Parametreleri Üzerine Etkileri. Uluslararası Spor Egzersiz Ve Antrenman Bilimi Dergisi, 1(1), 1-8.
5. Erdağı, K., Yüksel, M. F., & Sevindi, T. (2018). Elit Kadın Haltercilerde Maksimal Kuvvet Antrenmanının Hematolojik Parametreler Üzerine Etkisi. Türk Spor Bilimleri Dergisi, 1(1), 41-48.
6. Wardyn, G. G., Rennard, S. I., Brusnahan, S. K., McGuire, T. R., Carlson, M. L., Smith, L. M., ... & Sharp, J. G. (2008). Effects Of Exercise On Hematological Parameters, Circulating Side Population Cells, And Cytokines. Experimental Hematology, 36(2), 216-223.
7. Sureda, A., Mestre-Alfaro, A., Banquells, M., Riera, J., Drobnic, F., Camps, J., ... & Pons, A. (2015). Exercise in a hot environment influences plasma anti-inflammatory and antioxidant status in well-trained athletes. Journal of thermal biology, 47, 91-98.
8. Jürimäe, J., Vaiksaar, S., & Purge, P. (2018). Circulating Inflammatory Cytokine Responses to Endurance Exercise in Female Rowers. International journal of sports medicine, 39(14), 1041-1048.
9. Shin, K. A., Park, K. D., Ahn, J., Park, Y., & Kim, Y. J. (2016). Comparison of changes in biochemical markers for skeletal muscles, hepatic metabolism, and renal function after three types of long-distance running: observational study. Medicine, 95(20).
10. Azarbayjani, M. A., Fathi, R., Daloii, A. A., Abdi, A., & Fatolahi, H. (2014). Acute Hematological Profile Response to One Session of Aerobic and Anaerobic Exercise among Young Male Kickboxers. Turkish Journal of Physical Medicine & Rehabilitation/Turkiye Fiziksel Tip ve Rehabilitasyon Dergisi, 60(2).
11. Gencer, Y., Çınar, D. A., & Comba, B. (2015). Stresin ratlarda bazı karaciğer enzimleri (AST, ALT, ALP) üzerine etkilerinin araştırılması. Atatürk Üniversitesi Veteriner Bilimleri Dergisi, 10(1).
12. Shin, K. A., Park, K. D., Ahn, J., Park, Y., & Kim, Y. J. (2016). Comparison of changes in biochemical markers for skeletal muscles, hepatic metabolism, and renal function after three types of long-distance running: observational study. Medicine, 95(20).
13. Romagnoli, M., Alis, R., Aloe, R., Salvagno, G. L., Basterra, J., Pareja-Galeano, H., ... & Lippi, G. (2014). Influence of training and a maximal exercise test in analytical variability of muscular, hepatic, and cardiovascular biochemical variables. Scandinavian journal of clinical and laboratory investigation, 74(3), 192-198.
14. Tirabassi, J. N., Olewinski, L., & Khodaee, M. (2018). Variation of traditional biomarkers of liver injury after an ultramarathon at altitude. Sports health, 10(4), 361-365.
15. Kaynar, Ö., Öztürk, N., Kiyici, F., Baygutalp, N. K., & Bakan, E. (2016). The Effects of Short-Term Intensive Exercise on Levels of Liver Enzymes and Serum Lipids in Kick Boxing Athletes. Dicle Medical Journal, 43(1), 130.
16. Becic, T., Studenik, C., & Hoffmann, G. (2018). Exercise increases adiponectin and reduces leptin levels in prediabetic and diabetic individuals: systematic review and meta-analysis of randomized controlled trials. Medical Sciences, 6(4), 97.
17. Durstine, J. L., Anderson, E., Porter, R. R., & Wang, X. (2019). Physical Activity, Exercise, and Lipids and Lipoproteins. In Cardiorespiratory Fitness in Cardiometabolic Diseases (pp. 265-293). Springer, Cham.
18. Toksöz, İ., Sarpyener, K., & Karamızrak, S. O. (2008). Blood Lipoprotein Profile Changes of Elite Handball Players Following The Seasonal Preparation Period. Spor Hekimliği Dergisi, 43(4), 113-120.
19. Ooi, F. K., & Ridzuan, H. M. A. (2016). Combined Effects of Oat Bran Supplementation and Jogging Exercise on Body Composition and Blood Lipid Profiles in Young Female. International Journal of Sports Science, 6(5), 169-175.
20. Igarashi, Y., Akazawa, N., & Maeda, S. (2019). Effects of Aerobic Exercise Alone on Lipids in Healthy East Asians: A Systematic Review and Meta-Analysis. Journal of atherosclerosis and thrombosis, 26(5), 488-503.
21. Mann, S., Beedie, C., & Jimenez, A. (2014). Differential effects of aerobic exercise, resistance training and combined exercise modalities on cholesterol and the lipid profile: review, synthesis and recommendations. Sports Medicine, 44(2), 211-221.
22. Blazek, A., Rutsky, J., Osei, K., Maiseyeu, A., & Rajagopalan, S. (2013). Exercise-mediated changes in high-density lipoprotein: impact on form and function. American heart journal, 166(3), 392-400.
23. González-Ruiz, K., Ramírez-Vélez, R., Correa-Bautista, J. E., Peterson, M. D., & García-Hermoso, A. (2017). The effects of exercise on abdominal fat and liver enzymes in pediatric obesity: a systematic review and meta-analysis. Childhood Obesity, 13(4), 272-282.
24. Medrano, M., Cadenas-Sanchez, C., Alvarez-Bueno, C., Cavero-Redondo, I., Ruiz, J. R., Ortega, F. B., & Labayen, I. (2018). Evidence-based exercise recommendations to reduce hepatic fat content in youth-a systematic review and meta-analysis. Progress in cardiovascular diseases, 61(2), 222-231.
25. Shephard, R. J., & Johnson, N. (2015). Effects of physical activity upon the liver. European journal of applied physiology, 115(1), 1-46.
26. Pillon Barcelos, R., Freire Royes, L. F., Gonzalez-Gallego, J., & Bresciani, G. (2017). Oxidative stress and inflammation: liver responses and adaptations to acute and regular exercise. Free radical research, 51(2), 222-236.
27. Swift, D. L., Johannsen, N. M., Earnest, C. P., Blair, S. N., & Church, T. S. (2012). The effect of different doses of aerobic exercise training on total bilirubin levels. Medicine and science in sports and exercise, 44(4), 569.
28. Urbain, P., Strom, L., Morawski, L., Wehrle, A., Deibert, P., & Bertz, H. (2017). Impact of a 6-week non-energy-restricted ketogenic diet on physical fitness, body composition and biochemical parameters in healthy adults. Nutrition & metabolism, 14(1), 17.
29. Devries, M. C., Samjoo, I. A., Hamadeh, M. J., & Tarnopolsky, M. A. (2008). Effect of endurance exercise on hepatic lipid content, enzymes, and adiposity in men and women. Obesity, 16(10), 2281-2288.
30. Kratz, A., Lewandrowski, K. B., Siegel, A. J., Chun, K. Y., Flood, J. G., Van Cott, E. M., & Lee-Lewandrowski, E. (2002). Effect of marathon running on hematologic and biochemical laboratory parameters, including cardiac markers. American journal of clinical pathology, 118(6), 856-863.
31. Tirabassi, J. N., Olewinski, L., & Khodaee, M. (2018). Variation of traditional biomarkers of liver injury after an ultramarathon at altitude. Sports health, 10(4), 361-365.
32. Yeh, T. S., Chuang, H. L., Huang, W. C., Chen, Y. M., Huang, C. C., & Hsu, M. C. (2014). Astragalus membranaceus improves exercise performance and ameliorates exercise-induced fatigue in trained mice. Molecules, 19(3), 2793-2807.
33. Wu, H. J., Chen, K. T., Shee, B. W., Chang, H. C., Huang, Y. J., & Yang, R. S. (2004). Effects of 24 h ultra-marathon on biochemical and hematological parameters. World journal of gastroenterology: WJG, 10(18), 2711.
34. Ramos, D., Martins, E. G., Viana-Gomes, D., Casimiro-Lopes, G., & Salerno, V. P. (2013). Biomarkers of oxidative stress and tissue damage released by muscle and liver after a single bout of swimming exercise. Applied Physiology, Nutrition, and Metabolism, 38(5), 507-511.
35. Chiu, C. J., Chi, C. W., Hsieh, H. R., Huang, Y. C., Wu, H. J., & Chen, Y. J. (2018). Modulation of macrophage polarization by level-1 Yo-Yo intermittent recovery test in young football players. Medicine, 97(42).
36. Tsubakihara, T., Umeda, T., Takahashi, I., Matsuzaka, M., Iwane, K., Tanaka, M., ... & Nakaji, S. (2013). Effects of soccer matches on neutrophil and lymphocyte functions in female university soccer players. Luminescence, 28(2), 129-135.
37. Tamakoshi, K., Yatsuya, H., Kondo, T., Hori, Y., Ishikawa, M., Zhang, H., ... & Toyoshima, H. (2003). The metabolic syndrome is associated with elevated circulating C-reactive protein in healthy reference range, a systemic low-grade inflammatory state. International journal of obesity, 27(4), 443.
38. Hyun, J., Kim, Y. M., & Hwangbo, K. (2016). Influence of preliminary exercise training on muscle damage indices in rats after one bout of prolonged treadmill exercise. Journal of physical therapy science, 28(6), 1856-1859.
39. Kim, M. C., Ahn, C. S., Lee, H. S., Jang, S. H., & You, Y. Y. (2010). Change in C-reactive protein level according to amounts of exercise in chronic hemiparetic patients with cerebral infarct. Journal of Physical Therapy Science, 22(3), 279-284.
40. Fedewa, M. V., Hathaway, E. D., & Ward-Ritacco, C. L. (2017). Effect of exercise training on C reactive protein: a systematic review and meta-analysis of randomised and non-randomised controlled trials. Br J Sports Med, 51(8), 670-676.
41. Devrnja, A., & Matković, B. (2018). The effects of a soccer match on muscle damage indicators. Kinesiology: International journal of fundamental and applied kinesiology, 50(1), 112-123.
42. Shavandi, N., Samiei, A., Afshar, R., Saremi, A., & Sheikhhoseini, R. (2012). The effect of exercise on urinary gamma-glutamyltransferase and protein levels in elite female karate athletes. Asian journal of sports medicine, 3(1), 41.
43. Bilski, J., Mazur-Bialy, A., Wojcik, D., Zahradnik-Bilska, J., Brzozowski, B., Magierowski, M., ... & Brzozowski, T. (2017). The role of intestinal alkaline phosphatase in inflammatory disorders of gastrointestinal tract. Mediators of inflammation, 2017.
44. Shaabani, M., Abolfathi, F., & Alizadeh, A. A. (2017). The Effect of Four Weeks Continuous Aerobic Training on Liver Transaminases and Glycemic Markers in Women with Type II Diabetes. Iranıan Journal Of Dıabetes And Obesıty, 9(4), 148-154.
45. de Sousa Fernandes, M. S., e Silva, L. D. L. S., Santos, G. C. J., & de Siqueira, É. R. F. (2018). Biochemical markers and levels of physical activity related to the hepatic condition of patients infected by the hepatitis C virus. Biomedical Human Kinetics, 10(1), 15-18.
46. El-Kader, S. M. A., Al-Jiffri, O. H., & Al-Shreef, F. M. (2014). Liver enzymes and psychological well-being response to aerobic exercise training in patients with chronic hepatitis C. African health sciences, 14(2), 414-419.
47. Pettersson, J., Hindorf, U., Persson, P., Bengtsson, T., Malmqvist, U., Werkström, V., & Ekelund, M. (2008). Muscular exercise can cause highly pathological liver function tests in healthy men. British journal of clinical pharmacology, 65(2), 253-259.
48. Bessa, A., Nissenbaum, M., Monteiro, A., Gandra, P. G., Nunes, L. S., Bassini-Cameron, A., ... & Cameron, L. C. (2008). High-intensity ultraendurance promotes early release of muscle injury markers. British journal of sports medicine, 42(11), 889-893.
49. Machado, M., Antunes, W. D., Tamy, A. L. M., Azevedo, P. G., Barreto, J. G., & Hackney, A. C. (2009). Effect of a single dose of caffeine supplementation and intermittent-interval exercise on muscle damage markers in soccer players. Journal of Exercise Science & Fitness, 7(2), 91-97.
50. Jordy, A. B., & Kiens, B. (2014). Regulation of exercise‐induced lipid metabolism in skeletal muscle. Experimental physiology, 99(12), 1586-1592.
51. Moraes, R. C. M. D., Portari, G. V., Ferraz, A. S. M., da Silva, T. E. O., & Marocolo, M. (2017). Effects of intermittent fasting and chronic swimming exercise on body composition and lipid metabolism. Applied Physiology, Nutrition, and Metabolism, 42(12), 1341-1346.
52. Noland, R. C. (2015). Exercise and regulation of lipid metabolism. In Progress in molecular biology and translational Science. Academic Press, 135, 39-74.
53. Trajkovska, K. T., & Topuzovska, S. (2017). High-density lipoprotein metabolism and reverse cholesterol transport: strategies for raising HDL cholesterol. Anatolian journal of cardiology, 18(2), 149.
54. Cariou, B., & Smati, S. (2016). Hypothèse LDL-cholestérol:" the lower is trully better". De récents essais renforcent la preuve d’un impact favorable de la réduction du LDL-cholestérol. Rev Prat, 66(3), 317-321.
55. Goldberg, I. J., Eckel, R. H., & McPherson, R. (2011). Triglycerides and heart disease: still a hypothesis?. Arteriosclerosis, thrombosis, and vascular biology, 31(8), 1716-1725.
56. Ramezani, A., Gaeini, A. A., Hosseini, M., Mohammadi, J., & Mohammadi, B. (2017). Effects of Three Methods of Exercise Training on Cardiovascular Risk Factors in Obese Boys. Iranian Journal of Pediatrics, 27(5).
57. Pons, V., Riera, J., Capó, X., Martorell, M., Sureda, A., Tur, J. A., ... & Pons, A. (2018). Calorie restriction regime enhances physical performance of trained athletes. Journal of the International Society of Sports Nutrition, 15(1), 12.
58. Cinar, V., Akbulut, T., Kilic, Y., Özdal, M., & Sarikaya, M. (2018). The effect of 6-week zinc supplement and weight training on the blood lipids of the sedentaries and athletes. Cell Mol Biol (Noisy le Grand), 64(11).
59. Eichenberger, P., Colombani, P. C., & Mettler, S. (2009). Effects of 3-week consumption of green tea extracts on whole-body metabolism during cycling exercise in endurance-trained men. International journal for vitamin and nutrition research, 79(1), 24-33.
60. Cinar, V., Akbulut, T., Pancar, Z., & Kılıç, Y. (2019). Are Sportive Games Affecting the Lipid Profile in Adolescents?. Turkish Journal of Sport and Exercise, 21(2), 295-299.
61. Välimäki, I. A., Vuorimaa, T., Ahotupa, M., & Vasankari, T. J. (2016). Strenuous physical exercise accelerates the lipid peroxide clearing transport by HDL. European journal of applied physiology, 116(9), 1683-1691.