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Abstract. Lichens are used as traditional medicines, rich in nutritional values, and have been described as 
potent medicines in various pharmacopoeias world-wide. Lichens are environmental biological indicators for 
human operations to change the ecosystem and also generate a range of unique secondary metabolites with 
varying biological potential. In addition to their prospective biological role as photoprotection, anticancer, 
anti-hepatotoxic, antidiabetic, allelopathic, and immunomodulatory, etc. Over the past few decades, the inter-
est in lichens as a source of novel bioactive molecules has been renewed and increasing. Research on lichens 
secondary metabolites and nutritional value even at the international level has been scanty. This review sum-
marizes the present status of characterization, nutritional values, and pharmaceutical properties of lichens and 
their applications. This study provides a baseline for future studies, particularly those dealing with nutritional 
and medicinal aspects of lichens.
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Introduction

In creating vegetation on bare rocky fields, lichens 
are called to be the pioneers. They are the first mem-
bers of the barren rocky region to colonize and lead 
in rock disintegration during development by form-
ing enzymes like oxalic acid, carbonic acid, etc. The 
term symbiosis was the first time used in 1877 to de-
scribe the symbiotic relationship between fungi and al-
gae. The word symbiosis was originally used to define 
two organisms living together, bringing advantages to 
each- other. It is a significant element of long-living 
fungi (mycobiont), while algae or cyanobacteria (pho-
tobiont) are associated with a tiny part. The fungal 
partner accounts for about 98% of Ascomycota, while 
Basidiomycota continues and anamorphic fungi (1). 

Whereas the number of photobionts reported about 
156 species in literature from 56 genera (2). 

Lichens produce a broad variety of unique second-
ary metabolites that belong to aliphatic and aromatic 
chemical substances of low molecular weight.  Most of 
the compounds accumulate in the exterior cortex, such 
as usnic, atranorin, fungal melanins, parietin and some 
of them in the medullary layer (3, 4). Lichens produce 
a host of chemicals that are likely to diminish preda-
tor attacks. Only a few insects, including some moths 
and beetles, feed on lichens. Lichen’s pharmacological 
potential is only feasible because of the existence of 
secondary metabolites as a taxon-specific distribution 
(5-7). Secondary metabolite allocation patterns can 
correlate with individual morphology and geography 
(8, 9). 
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Lichen produces many rare secondary products 
which are not present in other plants. The uniqueness 
of many of the aromatic products had early developed 
a chemical interest in lichen substances. Lichens are 
an underutilized source of industrially important bio-
logical activities and their potential has yet to be fully 
explored and utilized. Bioactive compounds extracted 
from lichen hold great promise for biopharmaceutical 
applications and in the production of new formula-
tions or innovations to support human life. This review 
is intended to summarize the past and current research 
and development trends in the nutritional value, use of 
lichens and their bioactive compounds in traditional 
medicine and other biopharmaceutical applications of 
commercial interest.

1.1 Distribution of lichens

Lichen’s habitats are varied, they can survive in 
a distinct setting and their development can be influ-
enced by abiotic factors such as accessibility of light, 
wind velocity, moisture and temperature (10, 11). Li-
chen-associated microbes are an important component 
of lichen thalli, which can provide distinct symbiosis 
roles. Studies showed that bar-coded pyrosequencing 
bases were used to examine related bacteria subjected 
to lichen-borne alphaproteobacteria. The bacteria ex-
amined were discovered to be strongly linked to the 
lichen-associated lineage of Rhizobiales known as ni-
trogen fixers (12). 

Lichens are resistant species that can survive in de-
serts that scorch and freeze tundra. Two main charac-
teristics are suggested to have significant roles in their 
achievement: (1) their drying survival capability and (2) 
their complicated chemistry. When moisture is inacces-
sible, lichens can dry entirely and can sustain a full loss 
of body water without dying. Lichen thalli are poikilo-
hydrous, meaning that their water status follows reflex-
ively the atmospheric humidity to activate the lichen 
metabolism quickly (13-15). It requires only minutes to 
recover the photosynthetic device in Antarctic lichens 
after the dark winter (16, 17). The algal portion in li-
chens can activate their photosynthesis with water va-
por, lichens require liquid water for cyanobacteria (17). 

Parasyri et al. (2018) showed that lichen, as a 
micro-ecosystem, is tolerant to three extreme cir-

cumstances, total dehydration, exceptionally low tem-
perature (-196°C) and hypoxia, while particular path-
ways are enabled to allow lichen to deal with these 
stress conditions through ecological stability (18). 
Dehydrated thallus can handle temperatures reach-
ing -196°C/77K effectively. Not only that, but it can 
also generate molecular hydrogen in light and dark-
ness under anoxic conditions. The molecular hydro-
gen could then be used as a fuel to satisfy elevated 
effectiveness and pollution-free energy requirements 
in space (18).

Antarctica has a very harsh climate and little 
vegetation. Lichens are the most abundant about 350 
species reported from Antarctica (14, 19). The lichen 
fruticose thalli belong to the Usnea genus and Umbili-
caria, which is dominated in the Antarctic region, can 
reach a height of up to 20 cm and is regarded to be the 
biggest primary producer. Crustose lichen thalli also 
vary widely over the sandstone in form and size (20). 
They can readily and rapidly desiccate up to 97 percent 
of water to become an anabiotic disease (21).

Park et al. (2018) recently reported Psoroma ant-
arcticum from Antarctica’s South Maritime Shetland 
and the South Orkney Islands. The new species is 
strongly linked to the lichen Psoroma hypnorum but 
it is quite different in cup-shaped apothecia, smaller 
ascospores, and thalli with gray-to-black melanin in 
particular. The entire research is based on its inner 
variability and association with other species based on 
genetic analysis (22).

Some lichen may survive in the water-deficient 
environment for a long time and may resume physi-
ological exercise under the appropriate condition, 
known as poikilohydric lichen (23-25). Lichen has a 
gene of drought resistance and its function can be un-
derstood by transferring the gene to another organism 
that can fight water-deficient issues anywhere in the 
globe (26-28). The different research showed that the 
antioxidant capacity of lichens in drought resistance 
was found to be dominant (29, 30). In research, the 
exposure of heat stress to three lichens with the capac-
ity to resist drought sedates the redox status of reduced 
glutathione and oxidized glutathione during drying 
and rehydration (31). For instance, lichen in particular 
Endocarpon pusillum discovered that the up-regulation 
of the antioxidant enzyme, glutathione and thioredox-
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in gene was linked to the antioxidant capacity under 
20 percent of PEG-induced dehydration stress (30). 
The Endocarpon pusillum mycobiont region was used 
to characterize single Trx protein that has the activity 
in transgenic yeasts through heterologous expression 
as disulfide reductase and chaperone activities. There-
fore, mycobiont is more resistant than phycobiont to 
drought (32).

Lichen metabolites

Lichens generate a wide range of secondary me-
tabolites, most of which are distinctive. On the exterior 
surfaces of the hyphae, these chemically varied lichen 
substances accumulate.

1.1 Bioactive metabolites from mycobionts

Ingolfsdottir (2002) has assessed the medicinal 
potential of the prevalent lichen metabolites, Usnic 
acid (33). Since Usnic acid effectively stimulates the 
metabolism of cellular energy, it has been integrated 
into products for weight loss. The compound Methyl-
β-orcinol carboxylate obtained from lichen and pat-
ented for use with methicillin-resistant Staphylococcus 
aureus and possesses potential with pathogenic hu-
man fungi resistant to polyene and azole antibiotics 
(34). Lichens are wealthy in pigments that may vary 
with the quantity of irradiance during the season (4, 
35). The pigments can screen ultraviolet B for mela-
nins and parietin (35); Collema cyanobacterial lichen 
patent that provides 80% UVB irradiation protection 
(36). Some lichens such as Heterodermia obscurata and 
Nephroma laevigatum can be used in dyes due to the 
presence of anthraquinones and in the paper industry 
as catalysts in the manufacturing of wood pulp (37, 
38).

2.2  Metabolites from photobionts

Cyanobacteria from marine and freshwater gen-
erate a wide variety of peptides and a rich source of 
blended peptide polyketides (39). Microcystins are the 
most frequently isolated bioactive compounds pro-
duced by lichen-associated Nostoc sp. strain IO-102I 

(40). Another compound carotenoids are commer-
cially significant natural pigments commonly found 
in algal lichen symbiont and free-living green algae 
Trentepohlia (13). Lichen-originated green algae and 
cyanobacteria are likely to be a source of useful proper-
ties as therapeutics. The current understanding of pho-
tobiont’s diversity and phylogeny reveals significant 
knowledge gaps in this field (41).

Nutritional aspects of lichen

Lichens are readily available in boreal forests and 
are high in non-structural carbohydrates and low in 
fiber that can be easily digested and provide enough 
energy and are thus eaten by small mammals in the 
wild at a very high rate. Part of the lichen status is 
eaten by reindeer, caribou, and deer in winter. Libyan 
sheep graze in the desert at Aspiliciaesculenta, some 
mollusks and insects occasionally eat lichens (42).

Most lichen contains nutritional components 
such as Cladonia stellaris contains 2.0% as water-sol-
uble carbohydrates, 3.1% as crude protein (43), and 
78.4% as hemicellulose but only 1.7% as cellulose. 
Bryoria fremontii is North America’s medicinal and 
regularly used edible lichen-a source of starvation for 
many groups (44). Lichens contain polysaccharides 
and have been found to generate three key types of 
structures: α-glucans, β-glucans, and galactomannans 
(45, 46). The β-glucan and galactomannan-type lichen 
polysaccharides has been suggested to be of chemot-
axonomic consequence. The mycobiont was found to 
produce the polysaccharides alike to those of the par-
ent lichen whereas the phycobiont produced different 
polysaccharides (47). 

Nitrogen may be restrictive for lichen growth and 
distribution, we lack knowledge of available N sources 
and N acquisition levels for lichens in their natural 
environment. In addition, the issue of how differ-
ent lichens vary in their ability to absorb different N 
compounds has been dealt with poorly (48, 49). The 
amount of carotenoids found in a range from 23.25 
to 123.5 g/g of dry weight found in lichen, along with 
chlorophylls and phycobilins known to serve as light-
energy receptors and prevent degradation of chloro-
phyll by molecular oxygen (50).
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Lichen products can protect lichens from nutrient 
deficiencies such as dibenzofuran Usnic acid, a exten-
sive secondary cortical metabolite produced by lichen-
forming fungi that promotes intracellular absorption 
of Cu2+ in epiphytic lichens. In this respect, lichen gen-
erates divaric acid depside and usnic acid, indicating 
that this depside facilitates the absorption of Cu2+ to 
survive in their low nutrient habitats (51). 

Ethnopharmacological aspects of Lichen  

Traditional knowledge (TK) relates to local and 
indigenous groups around the world’s knowledge, pro-
cedures, and technologies. TK inherited by indigenous 
communities, transmitted through orally from genera-
tion to generation. TK has evolved from knowledge 
acquired over the decades and is primarily practical 
in areas such as health, agriculture, fisheries, horticul-
ture, and forestry (52). Plants are prominent sources 
of medicine, well described in traditional systems of 
medicines like Indian Ayurveda, Traditional Chinese 
Medicine (TCM), Western Medical Herbalism, and 
Tibetan medicine (53). Traditional Chinese Medi-
cine includes 11,146 species of medicinal plants (54). 
Around 10,000 plant species used for medicinal pur-
poses and about 1200 to 1500 have been officially in-
corporated into ayurvedic pharmacopeia in the Indian 
subcontinent (55).

Several works of literature have recognized the 
ethnical uses of plants from different regions of the 
world, but ethnic uses of lichens are not well docu-
mented. Most ethnobotanists have ignored crypto-
gams, both historically and currently. However, in 
some temperate countries of Asia, Africa, Europe, and 
USA lichens have been extensively studied. In Asian 
countries, ethnic studied of lichens are well document-
ed from India, China, Nepal, and Tibet (56-60). 

Crawford (2019) reported 60 genera of lichens 
used as traditional medicine. The most common gen-
era of lichens used as medicine are Cetraria islandica, 
C. nivafis (Parmeliaceae), Cladonia coccifera, C. pyxida-
ta (Cladoniaceae), Usnea plicata, (Usneaceae), Peltigera 
canina, P. Venosa, P. horizontalis, P. polydactyla (Pelti-
geraceae), Lobaria pulmonaria (Stictaceae), Xanthoria 
parietina and Evernia prunastri (Usneaceae) (57). In 

traditional medicine, lichens are usually used for treat-
ing wounds, skin disorders, respiratory, gynecological 
and obstetric concerns (60-62). Most of the lichens 
are non-poisonous, but some examples of poisonous 
lichens exist like Bryoria fremontii, B. tortuosa, Cetraria 
pinastri, and Letharia vulpina are well known poison-
ous lichens due to the presence of some secondary me-
tabolites present in them like vulpinic acid or pinas-
trinic acid (59). 

Lichens are consumed as traditional foods, medi-
cines and in holy sacrificial fires known as ‘HAVAN’ or 
‘HOMA,’ since millennia and play crucial roles in eco-
system function as well as human welfare. During the 
middle-ages lichens prominently used by medicinal 
practitioners (59). Evernia furfuracea has been used as 
a drug in an Egyptian vase belongs to the 18th Dynas-
ty (1700-1600 BC). In Europe, lichens were primar-
ily used for food because of their easy availability and 
nutritive value (63). Shipal is the first record of the use 
of lichen as medicine in Atharveda (1500 B.C.) (57). 
Charrila a crude drug isolated from Parmelia is broadly 
sold in Indian markets for curing several ailments (64). 
Gathered interesting ethnobotanical information be-
tween different areas of the Indian continent during 
field research (57, 65, 66). 

In the context of India, there are several reports 
available on lichens used by various ethnic groups. 
Saklani and Upreti (1992) reported that folk of Sik-
kim uses Peltigera canina as a remedy for liver ailments, 
Heterodermia diademata (Physciaceae) used for cuts 
and injuries, Parmelia cirrhata (Parmeliaceae) used as 
a vegetable, Peltigera polydactyla (Peltigeraceae) used 
for stopping the bleeding, Stereocaulon himalayense 
(Stereocaulaceae) used for urinary trouble and blisters 
of the tongue (61). Pathak et al. (2016) reported Hy-
potrachyna cirrhata and Flavoparmelia caperataare used 
against wound infections, burn and bite, by the folks of 
Sikkim and Tamil Nadu, India (67). 

 Shah (2014, 1998) recorded the exportation 
and use of 3 species of lichen Parmotrema nilgherrense, 
Everniastrum nepalense and Everniastrum cirrhatum 
for indigenous pharmaceutical applications (62, 68). 
Lai and Upreti (1995) recorded 3 lichens Buellia cf 
subsoriroides used as a replacement for ‘ henna ‘ in the 
Garhwal area (India), Parmeli asancti-angeli is used by 
Central India’s Gond and Oraon tribes to treat white 
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patches around the throat that cause ringworm-like 
skin disease (69). Usnea longissima used as stuffing for 
pillows and cushions by the Bhotia tribe and other 
Garhwal Himalayan residents. Lal (1988) noted that 
the Baiga tribe of Madhya Pradesh used Usnea longis-
sima to treat a bone fracture (66). Upreti and Chat-
terjee (2007) evaluated the global distribution of eth-
nomedicinal data on over 50 lichen taxa (70). Upreti 
et al. (2005) mentioned 15 species of lichen used as 
food, medicine or aesthetics by different ethnic groups 
in India and Nepal in their daily lives (57). Upreti 
and Negi (1996) reported in Schaerer ethnobotani-
cal use of Thamnolia vermicularis and discovered that 
this is primarily used by Bhotias tribes to kill worms 
in milk (71). The medicinal value of Parmelia sulcata 
as mentioned in the ancient Indian medicinal scheme 
was defined by Kaushal and Upreti (2001) (72). Rai et 
al. (2014) reported the use of Heterodermia diademata 
on wounds as infection and water protection (73). Vi-
nayaka and Krishnamurthy (2012) recorded ethnobo-
tanical uses of 6 species of lichen from separate tribal 
communities in southern India, 6 species of Parmo-
trema reticulatum, P. tinctorum, Ramalina pacifica used 
for food, Heterdermia diademata and P. cristiferum used 
for medicinal purposes, and Usnea galbinifera used for 
pillow and decorative purposes (74). Kala (2002) re-
vealed that the Bhotiya tribal community of high alti-
tude Garhwal Himalaya, Uttaranchal, India produced 
natural dye from lichens (75).

Devkota et al. (2017) recorded 7 species of lichen 
used by nine distinct Nepalese populations, including 
Everniastrum cirrhatum, Parmotrema cetratum and E. 
nepalense used for food, Heterodermia diademata and 
Ramalina species used for therapeutic purposes, Usnea 
longissima as ritual, esthetic and bedding products, and 
Thamnolia vermicularis as spiritual and esthetic (59). 
Limbu and Rai (2013) reported that the Limbu com-
munity of eastern Nepal used Heterodermia diademata 
along with Eupatorium odoratum for the dealing of 
cuts and wounds (76). Kunwar et al. (2010) reported 
an extract of lichens and decoction was applied for the 
treatment of moles in Nepal (58).

Ahmadjian and Nilsson (1963) reported that Ce-
traria islandica is widely marketed in apothecary shops 
in Sweden and is claimed to be useful in treating lung 
disease, diabetes, and catarrh (77). Londono-Castane-

da et al. (2017) (78) recorded 3 lichens species were 
used by Pankararu indigenous community in Brazil as 
medicine, Parmelinella salacinifera, Heterodermia ga-
lactophylla, and Parmotrema wrightii are used to treat 
problem related with digestive system such as vomit-
ing and diarrhoea. An aqueous extract of these three 
species used for the therapy of epilepsy and cultural 
diseases through the smoker.  

Wang et al. (2001) reported ethnic peoples of 
Yunnan Province China use 5 species of lichens as 
foods source, L. kurokawae, Lobaria isidiophora, Rama-
lina conduplicans, L. yoshimurae, and R. sinensis, and 5 
others species as medicinal teas,  Lethariella cashmeri-
ana, L. semanderi, L. sinensis, Thamnolia vermicularis, 
and T. subulifor (56). Song and Gang (2013) reported 
numerous lichen species used by indigenous communi-
ties of China. Cladonia amaurocraea used for headaches 
and dizziness. Cladonia cervicornis used for scalds, cuts, 
and coughing up blood. Cladonia fenestralis used as a 
medicinal tea. Cladonia fruticulosa extract used to treat 
bacterial infections on the skin. Rhizoplaca chrysoleuca 
used for tuberculosis, intestinal obstruction, burns and 
scalds, skin infections, and pain relief. Bryoria asiatica 
used for dizziness, kidney deficiency, heart palpitation, 
difficulty urinating. Usnea ceratina used for coughs, 
headache, infection, pulmonary tuberculosis, inflamed 
lymph channels. Usnea pectinata used for stopping 
bleeding, releasing pain, and bloody feces. Cetraria 
islandica decoction drunk to improve digestion and 
strengthen the stomach. Parmotrema tinctorum used 
for blurred vision, bleeding from the uterus, bleed-
ing from external injuries, sores, and swelling. Punc-
telia borreri used for blurred vision, bleeding from the 
uterus and external injuries (79). Afolayan et al. (2002) 
reported that Usnea barbata used by African folks for 
the treatment of mammary infections in cattle (80).
In European countries, several reports were docu-
mented on the ethnobotanical uses of lichens by the 
indigenous peoples for food, fodder, medicine, and 
aesthetics. Important lichen species used by indig-
enous peoples of Europian countries are Cladonia 
pyxidata, Cladonia cornuta, Cladonia coccifera, Cetraria 
islandica, Evernia prunastri, Hypogymnia physodes, Lo-
baria pulmonaria, Peltigera canina, Peltigera aphthosa, 
Usnea plicata, Usnea hirta, Usnea florida, Usnea barbata, 
and Xanthoria parietina (60,63).
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Lichen’s pharmaceutical properties

Lichens originated in most adverse habitats of earth 
and many medical applications can be helpful to re-
searchers. Secondary metabolites are usually referred 
to as lichen acids generated by mycobiont and spread 
in the form of amorphous or crystals on the surface 
of lichens. Lichen acids contain a variety of biologi-
cal potential including antioxidant, anticancer (81), 
enzyme inhibitory (82), antiviral (83), antifungal (84), 
antidiabetic (85), allelopathy (86), antipyretic, crop 
growth inhibitory, cytotoxic, anti-hepatotoxic (87) 
and antiproliferative properties. Recently revealed the 
pharmacological and therapeutic potential of lichens 
are shown in Table 1 and Fig. 1.

Antifungal property

Padhi et al. (2019) reported a new secondary me-
tabolite aspergyllone, isolated from an endolichenic 
fungus Aspergillus niger Tiegh discovered in the li-
chen Parmotrema ravum Serus, collected in India. The 
compound has powerful anti-fungal activity against 
Candida parapsilosis and also tests against pathogens 
from plants, humans, and food (88). The antimicro-
bial activity is frequently discovered in lichens, and this 
research shows that the Himalayan lichen Bulbothrix 
setschwanensis has both antibacterials against S. aure-
ous and anti-fungal (Cryptococcus neoformans) capacity 
(89). The ethanol extract of four lichens Parmotrema-
reticulatum, Everniastrum cf. vexans, Peltigera laciniate 

Table 1. Lichen’s pharmacological potential and its active ingredients have biological potential against different organisms/cell lines.

S.N. Lichens Biological potential Active  
ingredients

Name of the organism/cell lines References

1 Parmotrema ravum Antifungal Aspergyllone Candida parapsilosis 88

2 Evernia mesomorpha Antibacterial Divaricatic acid Staphylococcus aureus and Enterococcus 
faecium

84

3 Evernia mesomorpha Antifungal Vancomycin Candida albicans 84

4 Everniastrum cf. vexans, 
Parmotrema blanquetianun, 
Parmotrema reticulatum, 
Peltigera laciniata

Antibacterial Ethanolic extract Staphylococcus aureus, Listeria 
monocytogenes, Proteus vulgaris, 
Escherichia coli, Pseudomonas 
aeruginosa and Klebsiella pneumonia

90

5 Everniastrum cf. vexans, 
Parmotrema blanquetianun, 
Parmotrema reticulatum, 
Peltigera laciniata

Antifungal Ethanolic extract Candida albicans, C. glabrata, C. 
krusey, C. parapsilopsis, C. tropicalis, 
and Cryptococcus neoformans

90

6 Usnea longissima Antibacterial Silver nanoparticlesStaphylococcus aureus, Streptococcus 
mutans, Streptococcus pyrogenes, 
Streptococcusviridans, Corynebacterium 
xerosis, Corynebacterium diphtheriae, 
Klebsiella pneuomoniae

93

7 Niebla sp. Anticancer Tumidulin Cancer stem cells (CSC221), DLD1, 
and HT29 cells

81

8 Parmotrema hababianum Antihyperglycemic Ethanol extract Streptozotocin-induced diabetic rat 85

9 Usnea hirta (L.), Parmotrema 
robustum, Parmotrema 
tinctorum, Pleurosticta 
acetabulum, Flavoparmelia 
baltimorensis, Usnea florida

Allelopathy Acetone extract Physcomitrella patens (Moss) 86

10 Rangiferinus against Anti-hepatotoxic Ethanol extract Male Wistar rats 87

11 Bulbothrixsetschwanensis Antifungal Acetone extract Cryptococcus neoformans 89

12 Usnea longissima Antifungal Usnic acid 
derivatives, Usone, 
Isousone

Trichophyton rubrum spp. 92
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and Parmotrema blanquetianun has antifungal activity 
against six fungi viz Listeria monocytogenes, Staphylococ-
cus aureus, Proteus vulgaris, Pseudomonas aeruginosa, Es-
cherichia coli, and Klebsiella pneumonia (90). The active 
lichen compounds xanthone derivatives have antifun-
gal activity against T. rubrum, E. floccosum and M. canis 
clinical strains (91). Yu et al. (2016) showed that the 
usnic acid derivatives usone and isousone have a dose-
dependent fungal inhibition activity against Trichophy-
ton rubrum spp (92).

Anti-bacterial property

Plaza et al. (2018) reported four ethanolic extracts 
of lichens that have antibacterial activity against Pseu-
domonas aeruginosa, Staphylococcus aureus, Proteus vul-
garis, Escherichia coli, Klebsiella pneumonia and Listeria 
monocytogenes (90). The lichen active compounds xan-
thones derivatives have antibacterial activity against 
multi-drug resistant pathogenic microbes such as En-
terococcus faecalis and Staphylococcus aureus (91). Recent 
research has shown that the synthesis of eco-friendly 

Table 1. Lichen’s pharmacological potential and its active ingredients have biological potential against different organisms/cell lines.

S.N. Lichens Biological potential Active  
ingredients

Name of the organism/cell lines References

13 Parmelia reticulata Allelopathic Hexane, Ethyl 
Acetate and 
Methanol extracts

Phalaris minor retz (weed) 101

14 Cladonia humilis Antidiabetic Methanol Extract Hyperglycemic mice 116

15 Ramalina sinensis, 
Heterodermialeucomelos, 
Herpothallon sp., Parmatorema 
reticulatum

α-amylase inhibitory
activity

Hexane, Ethyl 
acetate, Methanol 
and Ethanol 
extracts

Aspirgillus oryzae 117

16 Evernia prunastri (L.), 
Ramalina fastigiate, Cladonia 
rangiformis

Antibacterial Various extracts Escherichia coli, Klebsiella pneumonia, 
Staphylococcus aureus, Proteus mirabilis 
and Pseudomonas aeruginosa

121

17 Umbilicaria tornata Antioxidant and 
antitumor 

Crude extract HeLa, HepG2, A375, MCF-7, 
SGC7901 and Caco2 cancer cells

122

18 Pseudevernia furfuracea, 
Platismatia glauca

Proapoptotic, 
Antimigratory

Various extracts Colorectal cancer (HCT-116 and 
SW-480) cell

123

19 Usnea sps., Parmotrema sps. Antifungal Acetone, Ethanol 
Extract

Aspergillus niger, Aspergillus flavus, 
Candida sps., Trycophyton sps.

124

20 Usnea longissima Anti-urease and 
anti-elastase

Ethanol extract -- 125

21 Dirinariaconsimilis Anti-inflammatory Acetone extract Male albino rats 126

22 Pseudevernia furfuracea (L.) Antioxidant acetone extract -- 127

23 Leptogium trichophorum Anti-inflammatory Actinofuranones RAW 264.7 macrophage cells. 128

24 Parmotremaaustrosinense UV Protectant (3R)-5-
Hydroxymellein

HaCaT cells 129

25 Evernia prunastri, Ramalina 
fastigiata

Antifungal and  
anti-biofilm

Acetone extract Candida albicans 130

26 Everniastrum vexans Anti-migratory Atranorin Human lung cancer cells 131

27 Vulpicida pinastri Photo protective Vulpinic acid, 
Pinastric acid and 
Usnic acid

Keratinocyte cell lines 132

28 Xanthoria parietina Antiproliferative Parietin Human breast cancer cells 133

29 Stereocaulonevolutum Antiviral activity Atranorin Hepatitis C virus 134

30 Parmotrema tinctorum Allelopathic Lecanoric acid Lactuca sativa cv. Grand Rapids and 
Allium cepa cv. Baia Periforme

135
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biogenic manufacturing of silver nanoparticles from 
lichen Usnea longissimi, synthetic nanoparticles, is 
cost-effective and can avoid pollution from the at-
mosphere. The size of synthetic nanoparticles between 
the 9.40-11.23 nm range by involving the function of 
usnic acids, amines, phenols, aldehydes and ketones 
in reducing silver into a silver nanoparticle. The ac-
tive nanoparticles have gram-positive antimicrobial 
activity (Streptococcus pyrogenes, Streptococcus mutans, 
Corynebacterium diphtheriae and Corynebacterium xe-
rosis) and gram-negative antimicrobial activity against 
strains (Escherichia coli, Pseudomonas aeruginosa and 
Klebsiella pneuomoniae) (93).

Anti-drug resistance bacteria

Bate et al., (2020) investigated the antibacterial 
activity of six lichens methanol extracts against nine 
multidrug-resistant clinical bacteria isolates, out of 
which Usnea articulata and Usnea florida possesses the 
highest activity with minimum inhibitory concentra-
tions of 4–10 mg/mL (94). The secondary divaricate 
metabolite separated and purified from Evernia meso-
morpha in the latest research and recognized by LC-

MS, 1H-, 13C- and DEPT-NMR. The divaricate 
compound has antimicrobial ability against Methicil-
lin-resistant Staphylococcus aureus (3A048; an MRSA) 
and can be used to treat drug-resistant bacteria or in-
fection with MRSA (84). Tozatti et al., (2016) dem-
onstrated that the synergistic effects of usnic acid iso-
lated from Usnea steineri against four resistant bacte-
rial strains of Staphylococcus epidermidis (MIC 3.12 μg/
mL), Staphylococcus aureus and Staphylococcus haemolyti-
cus (MIC 12.5 μg/mL). However, usnic acid did not 
show any synergistic antimicrobial effects in combina-
tion with penicillin and tetracycline (95).

Tyrosinase-Inhibitory action

Tyrosinase is a key enzyme in mammalian cells to 
avoid excessive melanin pigment production. Melanin 
has the property of absorbing ultraviolet radiation to 
safeguard the skin and also removing reactive oxygen 
species (ROS) in the skin of mammals. It is therefore 
used in the cosmetics and medicine sectors (82). The 
inhibition of surplus tyrosinase enzyme manufactur-
ing is therefore required (96). Some lichens have the 
property to prevent the activity of tyrosinase. Behera 
et al. (2006) proved that in lichens such as Graphis as-
samensis, Graphina multistriata, Graphis Phaeographop-
sisindica, and Graphis nakanishiana, tyrosinase inhibi-
tory activity occurred considerably (97). Some edible 
and medicinal lichens disclosed in tyrosinase inhibi-
tion property (Usnea longissima and Umbilicaria escu-
lenta) (98).

Allelopathic

Allelopathy is a natural phenomenon in an or-
ganism that generates secondary metabolites known 
as allelochemicals that can have beneficial or negative 
impacts on another organism (99, 100). The lichen ex-
tract shows negative allelopathic effects on bryophytes 
(moss Physcomitrella) by inhibiting protonemic and 
gametophore development owing to the existence 
of secondary usnic acid metabolites (86). Goel et al. 
(2014) have shown that Himalayan lichen’s allelo-
pathic potential, Parmelia reticulate, can inhibit weed 
development, especially Phalaris minor, which grows 
with wheat and barley plants (101). Another research 

Figure 1. Biological and medicinal properties of lichens.
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showed that the impacts on the setting of saxicolous 
lichen secondary metabolites usnic acid, parietin and 
norstic acid as biocides to prevent ecotoxicity against 
microcolonial bacteria Coniosporium perforans, Conio-
sporium apollinis, green algae Scenedesmus ecornis and 
coccoid cyanobacteria Chroocococcus minutus (102).

Photoprotective 

Exposure of Ultra-violet radiation (UV-A and 
UV-B) contributes to skin cancer, suppression of the 
immune system, and premature aging, which is now a 
worldwide issue. Sunscreens are available on the mar-
ket as one of the options to protect against radiation, 
various types of sunscreen such as skincare, eye care, 
lip care and hair care (103, 104). Some higher plants, 
mosses, and most lichens can tolerate desiccation, the 
lichen’s photobiont component prevents fluorescence 
emission by reducing load segregation in Photosystem 
II (PSII) reaction centers. For instance, some lichens 
are capable of stopping UV radiation, particularly Par-
melia sulcate, Peltigera neckeri and Lobaria pulmonaria 
(105). 

Lichen’s therapeutic potential

Anti-hepatotoxic 

Liver cirrhosis is the main human health prob-
lem caused by excessive alcohol consumption (106). 
Alcohol intakes lead to a rise in NADH/NADP in 
hepatocytes that interrupt β-oxidation of fatty acids in 
mitochondria and also boost lipid transport from the 
tiny intestine to the liver, resulting in fat deposition in 
the body that does not function correctly (107). For 
the therapy of fever, liver diseases, arthritis, seizures, 
tuberculosis and constipation, reindeer lichen (Cladon-
ia rangiferina) has already been reported. The reindeer 
lichen extract can be used to decrease liver damage and 
tissue toxicity associated with alcohol (87).
Anticancer potentialSecondary lichen metabolites are 
now of huge significance in the pharmaceutical indus-
try; the therapy of cervical cancer after pre-treatment 
with usnic acid and zinc sulfate is feasible (108). Some 
types of lichen from the Himalayas and Nepal, such 

as Alectoria ochroleuca and Nephroma expallidum, were 
chemopreventive for cancer (109). In contrast to Sal-
monella typhimurium, the extract of Cetraria aculeata 
was antigenotoxic (110). Some lichens, Collema flac-
cidum in particular, belong to the Collemataceae fam-
ily, which includes active ingredients Bianthraquinone, 
colleflaccinosides and glycosides acquire antitumor ac-
tivity (111). In the past research, Usnea barbata (usnic 
acid) lichen’s acetone extract has powerful anti-cancer 
activity against human melanoma and human colon 
carcinoma cell lines at 12.72 and 15.66 μg/mL IC50 

values (112). The active ingredient usnic acid and it’s 
derivative (usenamines) separated from the lichen Us-
nea longissimi can cause apoptosis of HepG2 cells in 
another research (92). 

Another study revealed that the ethyl acetate 
and acetone extract of lichen Pseudevernia fur furacea 
and Platismatia glauca possesses highest cytotoxicity 
against HCT-116 (IC50=21.2±1.3) μg/mL and SW-
480 (IC50=51.3±0.8 μg/mL) cell lines respectively 
(113). Hong et al. (2018) showed that the lichen Ste-
reocaulon alpnum gathered from the Antarctic region 
exercising anticancer activity against human cervix 
adenocarcinoma (HeLa cells) and human colon carci-
noma (HCT116 cells) cell lines owing to the existence 
of lobaric acid and secondary metabolites of lobarstin 
(114). These secondary metabolites improve the arrest 
of the cell cycle causing important dose- and time-de-
pendent reduction in the development of cancer cells.

Antidiabetic potential

Diabetes is well recognized and continues to 
spread disease worldwide, creating health-related 
complications, and there are no drugs on the market to 
fight diabetes. Diabetes mellitus is the dominant dia-
betes type (90%) characterized by chronic enzymatic 
hyperglycemia (115). Some crops are recorded, while 
others are being investigated to overcome the illnesses. 
Lichens are the untouchable field of diabetes treat-
ment. Ganesan et al. (2016) reported having anti-dia-
betic agents in the lichen Parmotremaha babianum that 
significantly reduce blood glucose levels (85). Zhang 
et al. (2012) proved that the Cladonia humilis extract 
orally fed to the alloxan-induced hyperglycemic mice 
and found significant reduction in blood glucose levels. 
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In spite of this, in vitro treatment improves the amount 
of insulin secretion and glycogen synthesis (116).

Ramalina sinensis contains natural compounds 
against multiple enzymes for inhibitory operations. 
The breakdown of starch by α-amylase enzyme leads 
to the hyperglycemia cause increase in the blood glu-
cose level, and this lichen has the potential to inhibit 
the activity of α-amylase enzyme results decrease in 
blood glucose level and prevent it from noninsulin-
dependent diabetes-type-2 (117). Starch breakdown 
by α-amylase enzyme outcomes in increased blood 
glucose levels caused by hyperglycemia and this lichen 
can inhibit α-amylase enzyme activity resulting in de-
creased blood glucose levels and prevent non-insulin-
dependent type-2 diabetes.

Immunomodulatory effect

Change in the body’s immune system with the 
help of biological agents that activate or suppress im-
munity. Cetraria islandica has been used as traditional 
medicine during inflammatory situations. Two com-
pounds protolichesterinic and fumarprotocetraric ac-
ids purified from lichen and tested against maturation 
of the dendritic cells assessed by secretion of IL-10 
and IL-12p40. The upregulating secretion leads to the 
anti-inflammatory activity, also observed the less ar-
thritis with aqueous lichen extract (118).

Antiviral

The extract Teloschistes chrysophthalmus used by 
chromatographic techniques to purify secondary me-
tabolites usnic acid and parietin. Usnic acid and pa-
rietin purified products used for antiviral activity and 
virucidal impact (against Junin and Tacaribe arena-
viruses) respectively. The experiment was conducted 
directly on the nuclei of the virus (virucidal assay) to 
verify the activity against the characteristics that inac-
tivate the virus. The arenavirus JUNV ( Junin virus) has 
to cause hemorrhagic Argentine fever in humans (119) 
and has been used as a model system as a prospective 
bioterrorism agent (120). The reduction in JUNV pro-
duction from infected Vero cells possible by the use of 
usnic acid in a dose (9.9 μm and 20.6 μm respectively) 
dependent manner. It is feasible to reduce the output 

of JUNV from infected Vero cells by using usnic acid 
in a dose-dependent way (9.9 μm and 20.6 μm respec-
tively) (83).

Conclusion and future perspective 

As a reservoir of biologically active compounds, 
lichen metabolites have shown promising outcomes. 
Even from a restricted amount of research, it can be 
concluded that lichen-derived bioactive compounds 
are highly promising for biopharmaceutical applica-
tions as reported for antidiabetic, anti-urease and anti-
elastase, anti-hepatotoxic, anti-viral, anti-cytotoxic 
and antiproliferative activity, and need to be investi-
gated in the collection of scarce and scattered biologi-
cal activity information and ethnomedicine uses. 

Lichens are an important part of nature, and are 
beneficial to humans after a thorough preparation a few 
organisms were used as food. Globally, lichens play a 
key role in nutrient preservation and distribution, such 
as carbon, nitrogen, trace elements, soil composition, 
and rock weathering. Lichens possess variety of chemi-
cal compounds and can easily digestible varied from 
species to genera. Some lichens species such as Cetraria 
nivalis, Cetraria islandica, and Cladonia arbuscula posses’ 
high in vitro digestibility (69-77% dry matter).

It is apparent from careful examination of lichens 
bioprospecting studies that selected lichen species 
based on prior knowledge systems that they had better 
prospecting for drugs. The existence of low lichen bio-
mass may be the primary reason for research to discon-
tinue further screening even though some leads have 
been obtained about drug prospecting. In additions, 
cultured photobiont and mycobiont may enhance after 
manipulating the culture media to obtain greater bio-
mass production for medicinally important secondary 
metabolites. 

With a multitude of biological activities, lichens 
are an authoritative source of unique secondary metab-
olites. So many applications for new lichen metabolites 
have been revealed and will remain under investigation 
in the future. Recent inventions involving lichen me-
tabolites include the latest antibiotics against bacteria 
and fungi, antidiabetics, farming pesticides, particular 
enzyme oxidation enzymes, and UVB protection com-
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pounds. So far, no patent has been approved for green 
algae from lichens. A new lichenology age will have to 
begin with the lichen fungus and photobiont genome 
sequencing. Despite their wide spectrum of biological 
activities, mycologists and agro-chemists have long ig-
nored lichens, primarily because of their slow develop-
ment in nature and their artificial cultivation problems. 
As a result, the phase of lichen metabolites’ large-scale 
industrial manufacturing has not yet been reached. 
In order to develop, optimize and scale up promising 
lichen-based technologies of elevated industrial and 
domestic significance, more research and development 
is needed.

There is still a potential in lichens for various 
pharmacological activities such as antidiabetic, anti-
inflammatory, antiviral, immunomodulatory, analgesic, 
anticancer, jaundice, renal issues, digestive disorders 
and mental illnesses. It could be a good opportunity 
for researchers to apply the lichen and its extracts in 
animal models to reveal the toxicity profile as well as 
discuss the abortion mechanism for different disorders. 
Lichens possess great potential that needs to be com-
pletely established explored and used for human well-
being and for the good of our community. 
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