ORIGINAL ARTICLE # Cell culture developing and the imaging of total protein product changing with SDS-PAGE in *Saccharomyces* cerevisiae Abdullah Aslan Department of Molecular Biology and Genetics Faculty of Science Firat University, Turkey- Email: aaslan@firat.edu.tr **Summary.** Five groups were created in this work. i: Control group, ii: H₂O₂ group, iii: H₂O₂ + %10 Mulberry Juice (MBJ) group, iv: H₂O₂ + %15 MBJ, v: H₂O₂ + %25 MBJ group. After sterilization, H₂O₂ and fruit juice were inserted different concentration to *Saccharomyces cerevisiae* (*S. cerevisiae*) cultures and the cultures were developed at 30°C for 1h, 3h, 5h and 24 hours (overnight). *S. cerevisiae* cell growth was computed by spectrophotometer, total protein alteration was analysed by SDS-PAGE electrophoresis and reckoned with bradford method. our studies results indicated that; cell developing increased in MBJ groups in proportion to the positive control (H₂O₂) group at different growing times (1, 3, 5 and 24 hours) (p<0,05). As a result MBJ has a preservative role for reduce the oxidative damage and expanded cell developing and encourage protein synthesis in *S. cerevisiae*. Key words: S. cerevisiae, mulberry juice, hidrogen peroxide, protein expression, SDS-PAGE ## Introduction Saccharomyces cerevisiae (S. cerevisiae) is important yeast and it has been employed recent researchs (1). The uptake of H₂O₂ by S. cerevisiae is to change the production of total protein and fatty acid in plasma membrane (1). ROS can oxidize protein, nucleic acid, fat and carbohydrates. for example, the oxidative abuse to proteins bring about to collapse of amino acid shacles diminishing the biologic activity (1, 3-5). Many works executed assert that unlike fruit content expands cellular growth in yeasts, supports protein expression and shows preservative properties towards oxidative stress (6-8). In reference to a study it has been detected that the intake of H₂O₂ at lower dose, lead to lethal stress in S. cerevisiae and bring on negative effect on the expression of significant proteins (1, 3-5). Native antimicrobials can be used with varied new conservation technologies to make easy the modification of conventional attitudes in food prevention (9). In the last years, new kind of fruit juice products, including pomegranate, strawberry, mulberry, grapefruit, lemon juice, etc. have be come very important for human health (10, 11). Fruit and vegetable juices are useful for the people live every time. Low sodium, cholesterol, fat; rich polyphenol, flavonoids and vitamin C acting essential roles in the salutary lives of people (12) in addition for example almond very distinguished for human health with regard to its protein and fatty acid contents (13, 14). Mulberry (MB) is one of the most consumed fruit in the world and it has a nice color, aroma and it leaves have been used as treatment of different illness. In addition, MB is also the source of quercetin, rutin, isoquercetin, and astragalin and significant phenolic compounds, this compounds has preservative effect against H₂O₂-induced oxidative damage, antidiabetic, anti-inflammatory activity and inhibit oxidative injury (15-18). In this work we studied the effect of MB on the rate of the cell developing, total protein expression and cell proliferation that the induced with H_2O_2 against to oxidative injury growing at 30°C temperature of adding to MB in *S. cerevisiae* culture. #### Material and Methods ## Research groups and growth conditions In this research five groups were composed. . i: Control group, ii: H₂O₂ group, iii: H₂O₂ + %10 Mulberry Juice (MBJ) group, iv: H₂O₂+ %15 MBJ, v: H₂O₂ + %25 MBJ group. After sterilization, H₂O₂ and fruit juice were inserted different concentration to Saccharomyces cerevisiae (S. cerevisiae) cultures and the cultures were developed at 30°C for 1h, 3h, 5h and 24 hours (overnight). S. cerevisiae cell proliferation was calculated by spectrophotometer, total protein expression was indicated by SDS-PAGE electrophoresis and reckoned with bradford method for the developed and reproduce of yeast, YEPD (for 50 mL 1,5 g yeast extract, 1 g trypton, 1,5 g glucose) in addition, for the developing and reproduce of S. cerevisiae, mulberry fruit juices was added and cultivated. After sterilization, yeasts were cultured into media and the samples were incubated for 1h, 3h, 5h, 24 h (overnight, h: hour) at 30°C (7). ## Mulberry juice extract and H₂O₂ Chemical Fruit (From center county of Elazığ city) was squashed in water and added in to *S. cerevisiae* media cultures and added 20% (v/v) ratio in at the reproducing for 30°C. H_2O_2 was inserted in H_2O_2 and $MBJ + H_2O_2$ groups. # Cell concentration measurements In these measurements, culture samples that were examined at 30°C for 1, 3, 5 hours and overnight (24 hours) have been analyzed. The calculation has been accomplished using a spectrophotometer at 600 nm (OD₆₀₀). SDS-PAGE (Sodium dodecyl sulfate polyacrylamide gel electrophoresis) SDS-PAGE was made using BIO-RAD Mini-PROTEAN® 3 Cell gel electrophoresis system. The samples of *S. cerevisiae* cultures were organized for SDS-PAGE after which they were loaded to sample loading wells to be subject to electrical current and after this process, their images were taken and the intergroup protein bandings were used as data in the study (19). # Protein density measurements The measurement has been accomplished using a spectrophotometer at 600 nm (OD_{600}) with regard to bradford method. BSA (bovine serum albumin) protein standards at different concentrations were obtained using BSA protein. Accordingly, the total protein amount in *S. cerevisiae* groups corresponding to this standard valuation was calculated (Figures 3, 4). ## Statistical Analysis SPSS 20.0 software was used. The comparison between experimental groups and the control group was made using one way ANOVA and Post Hoc Duncan and Games howell tests. Statistically important differentiation among groups have been stated as p<0.05 and the statistically non-significant differences have been specified as p>0.05. Standard deviations were point out as ±. #### **Results and Discussion** We think that the results of this study will provide important contributions to the present literature. The results of table 1 and figure 1 show that mulberry has essential effects on S. cerevisiae proliferation. It is indicated that mulberry juice (MBJ) maintains its live cell amount in spite of the growing hydrogen peroxide densities. A dissimilarity is detected between the yeast proliferation amounts for 1h in comparison with the control (p<0.05). It is observed that MBJ preserves the cell almost as much as the control opposite hydrogen peroxide which is the great radical origin in the 25% MBJ + H_2O_2 group and 15% MBJ + H_2O_2 group. When 3h values are investigated; it is obtained that MBJ has increased yeast development in the 25% MBJ + H₂O₂ group, in spite of the inverse effects of the hydrogen peroxide radical comparatively the control and H₂O₂ group (p<0.05). When the 5h values are investigated; it is obtained that MBJ has rised yeast improving at a maximum level in the 10% MBJ + H₂O₂ group despite the inverse effects of the hydrogen peroxide radical 130 A. Aslan | 7D 11 4 0 | 7 | | 11 | .1 | | 11 | |--------------|-----------|------------|------|--------|----|-----------------| | Table I. Sac | haromyces | cerevisiae | cell | growth | 1n | mulberry juices | | OD ₆₀₀
30°C | 1h | 3h | 5h | Overnight | |--|-------------------------|-------------------------|-------------------------|-------------------------| | Control | 1,488±0,00 ^b | 1,395±0,00° | 1,755±0,00° | 2,096±0,00° | | H_2O_2 | 1,510±0,00° | 1,413±0,00 ^d | $1,776\pm0,00^{d}$ | 1,876±0,00° | | H ₂ O ₂ + 10% mulberry | 1,073±0,00° | 1,286±0,00° | 1,774±0,00 ^d | 2,092±0,00° | | H ₂ O ₂ + 15% mulberry | 1,577±0,00 ^d | 1,364±0,00 ^b | 1,556±0,00° | 2,102±0,00 ^d | | H ₂ O ₂ + 25% mulberry | 1,605±0,00° | 1,464±0,00° | 1,741±0,00 ^b | 2,071±0,00 ^b | ^{**}a,b,c,d,e; among the groups which bearing of different letter are significant (p<0.05). one way ANOVA and Post Hoc Duncan and Games howell tests comparatively the control (p<0.05). When the overnight (24 h) values are investigated; it is obtained that MBJ has rised yeast growth in the 10% MBJ + H_2O_2 , 15% MBJ + H_2O_2 and 25% MBJ + H_2O_2 groups, in spite of the opposite effects of the hydrogen peroxide radical in comparison with the control and H₂O₂ group; besides it can also be obtained that yeast growth has rised at a statistically significant degree in all other groups comparatively the control and H₂O₂ groups (p<0.05) (Table 1). Stinco et al (2015) indicated that orange juice activates the antioxidant defensive system towards free radicals for yeast development (20). Aslan et al (2014a) have indicated that pomegranate juice is protective against oxidative injury in S. cerevisiae (1). Again Aslan (2015) indicated that as a result of the work performed with several fruit juices and their mixtures that different fruit juices and their mixtures are preservative against oxidative injury in S. cerevisiae and that they rise yeast development (10). Tserennadmid et al (2011) have stated that apple juice has a protective role for growing in yeasts (21). Krivoruchko and **Figure 1.** The growing of *Saccharomyces cerevisiae* in mulberry juices at different hours. Nielsen (2015) have stated that resveratrol and flavonoids act protective roles towards oxidative injury in bacteria and yeasts (22). Zhang et al (2017) showed that the mulberry extract has protective effect in human cell culture against oxidative stress (17). Rynko et al (2016) indicated that the leave of mulberry has antidiabetic activity, anticancer activity, antibacterial activity (15). Riche et al (2017) demonsrated that mulberry leaf extract decrease the human blood glucose level (18). Gregorio et al (2011) have stated that mulberry extract has antioxidant activity in S. cerevisiae (23). Chen et (2015) have put forth that mulberry fruit has antioxidant and hyperglycemic activity in vitro (16). When the SDS-PAGE results are investigated; it is obtained that protein band intensity rise in pellet gel images is greater in groups to which MBJ is applied **Figure 2.** SDS-PAGE pelet total protein bands profiles for development at 30°C. Lanes 1: Marker; 2: Control; 3: H_2O_2 ; 4: $H_2O_2 + 10\%$ MBJ; 5: $H_2O_2 + 15\%$ MBJ; 6: $H_2O_2 + 25\%$ MBJ in comparison with the control (Figure 2). Aslan et al (2014b) have stated that pomegranate juice has a preservative effect in S. cerevisiae towards oxidative injury reasened by the applying of hydrogen peroxide and that protein band intensity rise is bigger in pomegranate applied groups comparatively hydrogen peroxide applied groups (3). When the bradford results in Figure 3 and figure 4 are analyzed; large protein quantity has been calculated in MBJ (H₂O₂+10% MBJ, H₂O₂+15% MBJ, H₂O₂+25% MBJ) applied groups comparatively to control and H₂O₂ groups (Figure 3,4). However, there are a lotof research in vivo on rat about fruit and vegetable mechanism. For example these, Aslan et al (2014c) and Aslan et al (2016a) have indicated that the milk thistle extract is preservative towards lung damage in rats (24, 25), Aslan and Can (2017a) have stated that lemon juice has a protective effect for diminish the oxidative injury, increased cell growing and protein synthesis in S. cerevisiae culture (26), Aslan et al (2016b) demonsrated that black cumin extract may be a drug for lung damage in rats (27), Aslan et al (2015) indicated that Nigella sativa extracts has a preservative effects against to rats Figure 3. Protein density at between groups Figure 4. Bradford BSA (bovine serum albumin) standart graph lung damage (28), Ozsahin et al (2009) expressed that different sugar extracts induce fatty acid biosynthesis in the *S. cerevisiae* cell culture (29), Aslan et al (2017b) indicated that kiwi fruit juice has a protective effect against to hydrogen peroxide damage in *S. cerevisiae* (30). With respect to these results, MBJ has a positive effect on *S. cerevisiae* cell proliferation and decreased the oxidative injury effect. #### Conclusion When these results are evaluated; we can said that MBJ is quite effective towards the hydrogen peroxide induced oxidative injury in *S. cerevisiae*, that it safeguards cell improve and even rises cell thrive; thus supporting protein expression in yeast cells. With respect to these findings, we expect that our study will support other studies to try MBJ in animal experiments and that in this respect MBJ will be digested more by people based on the positive results that will be gained. ## References - 1. Aslan A, Can MI, Boydak D. Anti-oxidant effects of pomegranate juice on *Saccharomyces cerevisiae* cell growth. Afr J Tradit Complement Altern Med. 2014; 11(4):14-18 - 2. Folmer V, Pedroso N, Matias AC, Lopes SCDN and F Antunes. H2O2 induces rapid biophysical and permeability changes in the plasma membrane of *Saccharomyces cerevisiae*. Biochim Biophys Acta. 2008; 1778: 1141–1147. - 3. Aslan A, Baspinar S, Yilmaz O. Is Pomegranate juice has a vital role for protective effect on *Saccharomyces cerevisiae* growth? Progress in Nutrition 2014; 16(3): 212-217. - Zupan J, Mavri J and P. Raspor. Quantitative cell wall protein profiling of invasive and non-invasive Saccharomyces cerevisiaestrains. J Microbiol Meth. 2009; 79: 260–265. - Chondrogianni N, Petropoulos I, Grimm S, Georgila K, Catalgol B, Friguet B, Grune T, and Gonos, ES. Protein damage, repair and proteolysis. Mol Aspects Med. 2014; 35: 1–71. - 6. Tyagi AK, Gottardi D, Malik A, Guerzoni ME. Chemical composition, in vitro anti-yeast activity and fruit juice preservation potential of lemon grass oil. LWT Food Sci Technol 2014; 57: 731-737. 13. - 7. Aslan A, Can MI. The inhibition of chromium effect in *Saccharomyces cerevisiae* thrive from grapefruit. Progress in Nutrition 2015b; 17(4): 339-342. - 8. Aslan A and Can MI. The effect of orange juice against to H2O2 stress in *Saccharomyces cerevisiae*. Progress in Nutriti- 132 A. Aslan - on 2015c; 17(3): 250-254. - Bukvicki D, Gottardi D, Tyagi AK, Veljic M, Marin Petar D, Vujisic L, Guerzoni ME, Vannini L. Scapania nemorea liverwort extracts: Investigation on volatile compounds, in vitro antimicrobial activity and control of *Saccharomyces ce*revisiae in fruit juice, LWT - Food Science and Technology 2014; 55: 452-458. - Aslan A. The effects of different essential fruit juice and their combination on *Saccharomyces cerevisiae* cell growth. Progress in Nutrition 2015;17: 36-40. - 11. Aguirre DB, Barbosa-Canovas GV. Inactivation of *Saccha-romyces cerevisiae* in pineapple, grape and cranberry juices under pulsed and continuous thermo-sonication treatments, Journal of Food Engineering 2012; 108: 383–392. - 12. Patrignani F, Vannini L, Kamdem SLS, Lanciotti R, Guerzoni ME. Effect of high pressure homogenization on *Saccharomyces cerevisiae* inactivation and physico-chemical features in apricot and carrot juices, International Journal of Food Microbiology 2009; 136: 26–31. - Karatay H, Sahin A, Yilmaz O, Aslan A. Major Fatty Acids Composition of 32 Almond (Prunus dulcis (Mill.) D. A. Webb.) Genotypes Distributed in East and Southeast of Anatolia, Turkish Journal of Biochemistry 2014a; 39(3); 307-316. - 14. Karatay H, Sahin A, Aslan A. Determining seed storage proteins of some almond (Prunus dulcis (Mill.) D.A. Webb.) genotypes distributed in east and southeast of Anatolia, Progress in Nutrition 2014b; 16: 116-125. - 15. Rynko AG, Bazylak G, Slonina DO. New potential phytotherapeutics obtained from white mulberry (Morus alba L.) leaves, Biomedicine & Pharmacotherapy 2016; 84: 628–636. - 16. Chen C, You LJ, Abbasi AM, Fua X, Liua RH. Optimization for ultrasound extraction of polysaccharides frommulberry fruits with antioxidant and hyperglycemic activity *in vitro*, Carbohydrate Polymers 2015; 130: 122–132. - 17. Zhang L, Xu Y, Li Y, Bao T, Gowd V, Chen W. Protective property of mulberry digest against oxidative stress – A potential approach to ameliorate dietary acrylamide-induced cytotoxicity, Food Chemistry 2017; 230: 306–315. - 18. Richea DM, Riche KD, Easte HE, Barretta EK, May WL. Impact of mulberry leaf extract on type 2 diabetes (Mul-DM): A randomized, placebo-controlled pilot study, Complementary Therapies in Medicine 2017; 32: 105-108. - Laemmli UK. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 1970; 227: 680-685. - 20. Stinco CM, Baroni MV, Naranjo RDDP, Wunderlin DA, Heredia FJ, Melendez-Martinez AJ, Vicario IM. Hydrophilic antioxidant compounds in orange juice from different fruit cultivars: Composition and antioxidant activity evaluated by chemical and cellular based (*Saccharomyces cerevisiae*) assays, Journal of Food Composition and Analysis 2015; 37: 1-10. - 21. Tserennadmid R, Tako M, Galgoczy L, Papp T, Pesti M, Vagvolgyi C, Almassy K, Krisch J. Anti yeast activities of some essential oils in growth medium, fruit juices and milk, International Journal of Food Microbiology 2011; 144 480–486. - 22. Krivoruchko A and Nielsen J. Production of natural products through metabolic engineering of *Saccharomyces cerevisiae*, Current Opinion in Biotechnology 2015; 35:7–15. - 23. Gregorio MRP, Regueiro J, Gonzalez EA, Castro LMP, Gandara JS. Influence of alcoholic fermentation process on antioxidant activity and phenolic levels from mulberries (Morus nigra L.), LWT - Food Science and Technology 2011; 44: 1793-1801. - 24. Aslan A, Can MI. Milk thistle impedes the development of carbontetrachloride-induced liver damage in rats through suppression of bcl-2 and regulating caspase pathway. Life Sciences 2014c; 117: 13-18. - Aslan A, Can MI, Kuloglu, T. Baspinar, S. Milk thistle may induce apoptosis in development of carbontetrachlorideinduced liver DNA damage in rats. Progress in Nutrition 2016; 18, 146-151. - Aslan A, Can MI. Protein expression product alterations in *Saccharomyces cerevisiae*. Progress in Nutrition 2017a; 19, 81-85. - Aslan A. Boydak D. Can MI. Kuloglu, T. Baspinar, S. Black cumin may be a potential drug for development of carbontetrachloride-induced lung damage in rats. Progress in Nutrition 2016; 18, 56-62. - 28. Aslan A, Boydak D, Can MI, Kuloglu T. Nigella sativa improves the carbon tetrachloride-induced lung damage in rats through repression of erk/akt pathway, Bangladesh Journal of Pharmacology 2015; 10: 654-659. - Ozsahin AD, Guvenc M, Yilmaz O, Aslan A, Tuzcu M The effects of different sugar sources on fatty acid biosynthesis in the *Saccharomyces cerevisiae* cell culture. J Anim Vet Adv. 2009; 8: 424–429. - Aslan A, Gok O, Erman O. The protective effect of kiwi fruit extract against to chromium effect on protein expression in Saccharomyces cerevisiae. Progressin Nutrition 2017b; 19: 472-478. Correspondence: Abdullah Aslan Department of Molecular Biology and Genetics Faculty of Science First University, Turkey Tel. +90 (424) 2370000-3819 Fax +90 (424) 2330062 E-mail: aaslan@firat.edu.tr