REVIEW # Are low potassium diets increasing the risk for hypokalemia induced rhabdomyolysis Amy Eldridge¹, David Duriancik² Dept HEV, Central Michigan University, Mt. Pleasant; Biology Dept, University of Michigan - Flint, MI 48502 **Summary.** Rhabdomyolysis is a serious medical condition caused from degraded skeletal tissue leading to the release of intracellular protein and severe electrolyte imbalance. There are different causes of rhabdomyolysis that include alcohol and substance abuse, anorexia, gastrointestinal complications, medication induced, high intake of caffeine, muscular trauma, and intense exercise. The objectives are to identify diet history, current treatments used for hypokalemia, and recommendations for future prevention of hypokalemia. With rhabdomyolysis being diagnosed once a patient has been hospitalized, it is vital for clinicians to consider other circumstances that may increase the risk for hypokalemia induced rhabdomyolysis. Key words: rhabdomyolysis, hypokalemia, low potassium, diet history ## Background Rhabdomyolysis is a serious medical condition with approximately 26,000 diagnoses annually in the United States (1). Rhabdomyolysis is a breakdown of skeletal muscle fibers which causes the release of intracellular protein as well as an electrolyte imbalance (2, 3). Myocytes are cells found in skeletal muscle and play an important role in the contraction of tissue. Myocytes use sodium potassium adenosine triphosphatase (ATPase) pumps to regulate calcium used in muscle contractions. When skeletal muscle becomes damaged it changes the balance of blood supply to myocytes leading to discordance with ATPase pumps. For patients that have trauma to skeletal tissue, rhabdomyolysis sets in once normal blood supply is returned to the tissue. Once this reperfusion occurs, the increase of electrolytes, fluids, and white blood cells results in inflammation and production of free radicals leading to increased tissue damage. This leads to a disruption in cellular transport and induces the leaking of intracellular contents including potassium. This leaking of intracellular contents from skeletal tissues is filtered in the glomerulus and can increase the risk for acute kidney injury (1). Rhabdomyolysis may be causes by, alcohol and substance abuse, anorexia, gastrointestinal complications (i.e. short bowel syndrome, celiac disease, and malabsorption), medication, high intake of caffeine, muscular trauma, and intense exercise (1, 3, 4). During intense exercise, potassium is released from muscle tissue to assist in arteriolar vasodilatation during normal function (5). Common risks of muscle tissue damage-induced elevated serum potassium are acute kidney injury, hypokalemia, and muscle weakness or even muscle paralysis (6). Medical professionals use reported symptoms, i.e. muscle cramping or pain, and labs markers to diagnose rhabdomyolysis within the athlete population including elevated serum creatine kinase (CK) and muscle weakness. In an acute setting, the labs markers used are serum CK and serum potassium. A normal upper limit for CK is 1000 U/L and 3.5-4.6mmol/L for potassium (1, 7). 36 A. Eldridge, D. Duriancik ### **Objectives** The objectives of this review are to identify diet history in relation with hypokalemia induced rhabdomyolysis current treatments used to correct hypokalemia during hospitalization, and if any patient's discharge recommendations were provided for future prevention of hypokalemia. #### Methods Search strategy Articles were obtained through PubMed using keywords; see Appendix 1 for number of citations. Keywords used included rhabdomyolysis, acute kidney injury, protein intake, creatine supplement, potassium depletion, potassium, potassium repletion, and skeletal muscle. Searches were limited to English only, peerreviewed and full-articles. The articles were not filtered by the year the article was published until later during full review of each article. At that time, all articles that were 10 years and older were excluded. #### Inclusion Criteria The quantitative articles used included subjects 16 years of age and older that included serum potassium biomarkers and were diagnosed with rhabdomyolysis and hypokalemia The minimum age was determined due to the high number of adolescents and young adults diagnosed with rhabdomyolysis from exercise or athletic regiments. Due to the lack of experimental or controlled studies completed in this area, criteria of the type of research could not be used. The main outcome or results of the articles used was if the clinicians were able to, normalize the serum potassium levels for hypokalemia induced rhabdomyolysis See figure 1 for the flowchart of study searches and selection. #### Results The overall search using different keywords resulted in 10,834 articles. After the screening and gathering of available articles, 86 were relevant. Using the inclusion criteria mentioned above, only 18 articles remained. Out of the 18 articles, 14 articles discussed epidemiological data. All of the articles in Appendix 2 discuss patients in a clinical setting that have rhabdomyolysis due to exercise, medication, diet, and gastrointestinal issues. The main commonality with all the studies is the analysis of serum potassium along with serum CK. Serum potassium levels of 1.1-2.2 mEq/L for all patients were considered to be in the hypokalemia range. The few studies that did address diet related issues noted a very low potassium diet due to cola and licorice consumption (2,4,7,8,9). Gastrointestinal related conditions addressed the possibly of malabsorption issues due to the altered length of the gastrointestinal tract or through diseases that affect the absorption through the microvillus as seen with celiac disease or Crohn's (10). Most of the case reports included intravascular fluid hydration with potassium repletion in conjunction with oral potassium repletion. Very few case reports used only a potassium supplement for repletion. Limitations to several of the articles included no specified amount of potassium repletion, the length of days potassium repletion was used, types of diets the patients were placed on during hospital duration, a list of comorbidities the patients may have had, and if any discharge plans to include diet education were provided to the patients for future prevention of hypokalemia (3). #### **Conclusions** Overall there is limited research evaluating the diet history for rhabdomyolysis patients and whether it increases the risk factors for hypokalemia induced rhabdomyolysis. Clinicians can start by following up with patients diagnosed with altered GI function or reduced length by analyzing diet history and serum potassium levels. These patients may benefit from a high potassium diet to increase the amount of potassium absorption. Patients placed on long term furosemide medication upon discharge from the hospital or from outpatients services may need increased monitoring of potassium levels and may need a high potassium diet or potassium supplement. Within the sports and athletic community, guidance and review of diets for all age groups should address consuming a well-balanced diet focused on the specific sports or training regiments. Due to rhabdomyolysis being diagnosed once a patient has been hospitalized with other medical conditions, researchers and clinicians in all scopes of practice should work towards prevention by addressing dietary related issues, asking more diet related questions and providing education. #### References - Kruger D, Han J. Assessing acquired rhabdomyolysis in adults. JAAPA, v. 30, n. 1, p. 20-26, Jan 2017. ISSN 1547-1896. Disponível em: https://www.ncbi.nlm.nih.gov/pubmed/27941570 - Chavez L O, et al. Beyond muscle destruction: a systematic review of rhabdomyolysis for clinical practice. Crit Care, v. 20, n. 1, p. 135, Jun 2016. ISSN 1466-609X. Disponível em: https://www.ncbi.nlm.nih.gov/pubmed/27301374 - 3. Balhara KS, Highet B, Omron R. Hypokalemia causing rhabdomyolysis in a patient with short bowel syndrome. J Emerg Med, v. 48, n. 4, p. e97-9, Apr 2015. ISSN 0736-4679. Disponível em: https://www.ncbi.nlm.nih.gov/pubmed/25680698 - Sagun G, et al. Symptomatic hypokalaemia and rhabdomyolysis due to excessive and long-term soft drink consumption: a case report. Acta Clin Belg, v. 67, n. 3, p. 217-8, 2012 May-Jun 2012. ISSN 1784-3286. Disponível em: https:// www.ncbi.nlm.nih.gov/pubmed/22897072 - 5. Chaudhry SP, MD. Rhabdomyolysis: Not a Textbook Case Krishnasamy K, Md: The American Journal of Medicine. 125: e3–e4 p. 2012. - Manspeaker S, Henderson K, Riddle D. Treatment of exertional rhabdomyolysis in athletes: a systematic review. JBI Database System Rev Implement Rep, v. 14, n. 6, p. 117-47, Jun 2016. ISSN 2202-4433. Disponível em: https://www.ncbi.nlm.nih.gov/pubmed/27532656 - Horwitz H, et al. Hypokalemia and rhabdomyolysis. J Pharmacol Pharmacother, v. 6, n. 2, p. 98-9, 2015 Apr-Jun 2015. ISSN 0976-500X. Disponível em: https://www.ncbi.nlm.nih.gov/pubmed/25969658 - 8. Kasap B, et al. Acute kidney injury following hypokalemic rhabdomyolysis: complication of chronic heavy cola consumption in an adolescent boy. Eur J Pediatr, v. 169, n. 1, p. 107-11, Jan 2010. ISSN 1432-1076. Disponível em: htt-ps://www.ncbi.nlm.nih.gov/pubmed/19330351 - 9. Templin C, Westhoff-Bleck M, Ghadri JR. Hypokalemic - paralysis with rhabdomyolysis and arterial hypertension caused by liquorice ingestion. Clin Res Cardiol, v. 98, n. 2, p. 130-2, Feb 2009. ISSN 1861-0692. Disponível em: https://www.ncbi.nlm.nih.gov/pubmed/18853088 - Peña Porta JM, et al. [Hypokalemic rhabdomyolysis and tetany as a presentation of celiac disease in an adult]. Nefrologia, v. 28, n. 3, p. 343-6, 2008. ISSN 0211-6995. Disponível em: https://www.ncbi.nlm.nih.gov/pubmed/18590503 - 11. Glancy DL, Subramaniam PN, Rodriguez JF. Lower Extremity Paralysis. Am J Cardiol, v. 118, n. 10, p. 1609-1610, Nov 2016. ISSN 1879-1913. Disponível em: https://www.ncbi.nlm.nih.gov/pubmed/27634026 - Jain VV, et al. Hypokalemia induced rhabdomyolysis. Indian J Nephrol, v. 21, n. 1, p. 66, Jan 2011. ISSN 1998-3662. Disponível em: https://www.ncbi.nlm.nih.gov/pubmed/21655176 - 13. Kishore B, Thurlow V, Kessel B. Hypokalaemic rhabdomyolysis. Ann Clin Biochem, v. 44, n. Pt 3, p. 308-11, May 2007. ISSN 0004-5632. Disponível em: https://www.ncbi.nlm.nih.gov/pubmed/17456302 - Martin HA. Exertional Rhabdomyolysis in the Pediatric Emergency Department: A Case Review. J Emerg Nurs, v. 42, n. 6, p. 524-526, Nov 2016. ISSN 1527-2966. Disponível em: https://www.ncbi.nlm.nih.gov/pubmed/27912807 - Parekh R, Care DA, Tainter CR. Rhabdomyolysis: advances in diagnosis and treatment. Emerg Med Pract, v. 14, n. 3, p. 1-15; quiz 15, Mar 2012. ISSN 1524-1971. Disponível em: https://www.ncbi.nlm.nih.gov/pubmed/22497086 - Ruisz W, et al. Furosemide-induced severe hypokalemia with rhabdomyolysis without cardiac arrest. BMC Womens Health, v. 13, p. 30, Jul 2013. ISSN 1472-6874. Disponível em: https://www.ncbi.nlm.nih.gov/pubmed/23834955 - 17. Tzvetanov PG. Hypokalemia-associated catastrophic rhabdomyolysis in ulcerative colitis. Saudi Med J, v. 30, n. 9, p. 1225-7, Sep 2009. ISSN 0379-5284. Disponível em: https://www.ncbi.nlm.nih.gov/pubmed/19750272 - 18. Wen Z, et al. Rhabdomyolysis presenting with severe hypokalemia in hypertensive patients: a case series. BMC Res Notes, v. 6, p. 155, Apr 2013. ISSN 1756-0500. Disponível em: https://www.ncbi.nlm.nih.gov/pubmed/23594380 Correspondence Amy King 106 Wightman Central Michigan University Mt. Pleasant, MI 48859 Phone; 989-774-3097 Email: amy.king@sodexo.com A. Eldridge, D. Duriancik # Appendix 1: Strategy for searches - PubMed | Search | Query | Number of citations | |--------|--|---------------------| | 1 | "rhabdomyolysis" [MeSH terms] OR "rhabdomyolysis" [All Fields] | 8413 | | 2 | "rhabdomyolysis" [MeSH terms] OR "rhabdomyolysis" [All Fields] and "acute kidney" [MeSH terms] OR "acute kidney" [All Fields] | 2024 | | 3 | "rhabdomyolysis" [MeSH terms] OR "rhabdomyolysis" [All Fields] and "protein intake" [MeSH terms] OR "protein intake" [All Fields] | 17 | | 4 | "creatine supplement" [MeSH terms] OR "creatine supplement" [All Fields] and "renal" [MeSH terms] OR "renal" [All Fields] | 74 | | 5 | "potassium depletion" [MeSH terms] OR "potassium depletion" [All Fields] and "rhabdomyolysis" [MeSH terms] OR "rhabdomyolysis" [All Fields] | 266 | | 6 | "potassium replacement" [MeSH terms] OR "potassium replacement" [All Fields] and "rhabdomyolysis" [MeSH terms] OR "rhabdomyolysis" [All Fields] | 18 | | 7 | "potassium repletion" [MeSH terms] OR "potassium repletion" [All Fields] and "rhabdomyolysis" [MeSH terms] OR "rhabdomyolysis" [All Fields] | 4 | | 8 | "skeletal muscle" [MeSH terms] OR "skeletal muscle" [All Fields] and "rhabdomyolysis" [MeSH terms] OR "rhabdomyolysis" [All Fields] and "potassium" [MeSH terms] OR "potassium" [All Fields] | 18 | # Appendix 3: Summaries of Studies | Article | n | Type of
Study | Type of patients | RM
Diagnosed | Interven-
tion A | Interven-
tion B | Outcomes | Comments | |--------------------------------|-----|------------------|---|---|--|-----------------------------|---|--| | Balhara et al. 2014 | 1 | CC | 63 YOA female admitted
with paralysis of upper
extremities with past medical
history of a bowel resection | Serum potassium
1.9 mEq/L
and serum CK
10,993 U/L | intravenous
hydration
and 100 mEq
of potassium | oral
120mEq
potassium | Serum potassium
and CK were
corrected and
discharged with
a MVI | Diet recall or current
per so intake was
never discussed with
patient | | Chaudhry
et al.
2011 (5) | y 1 | CC | 21 YOA female admitted with lower-extremity numbness | Serum potassium
2.2mmol/L
and serum CK
11,089 U/L | No
intervention
addressed | N/A | N/A | Diet recall provided
that patient was
consuming 4 liters of
cola and 2-3 bags of
ice chips daily | | Glancy
et al.
2016 (11) | 1 | CC | 33 YOA male admitted with paralysis of the legs | Serum potassium
1.7 mEq/L
and serum CK
542 U/L | No amounts
listed, just
stated
potassium
was replete | N/A | Within 24 hours
potassium was
4.7 mEq/L | Diet recall provided
that patient was
consuming 6-8 beers
daily | | Horwitz et al. 2015 (7) | 1 | CR | 65 YOA male admitted for
myalgia but was believed to
develop rhabdomyolysis
later on, muscle fatigue in
lower extremities was noted | Serum potassium
1.5 mEq/L
and serum CK
18,400 U/L | No amounts
listed, just
stated
potassium
was replete | N/A | Serum potassium
returned to
normal within
2 days and
CK decreased
gradually | Diet recall provided
that patient was
consuming 100gm of
licorice | | Jain
et al.
2011 (12) | 1 | CR | 18 YOA female admitted
with abdomen pain and
vomiting for 4 days which
progressed to muscle
weakness in all four
limbs / noted same symptoms
in the past 2 months | Serum
potassium
1.9 mEq/L
and serum
CK 10,993 U/L | intravenous
hydration and
intravenous
potassium
No amounts
listed | | Muscle weakness
improved as
serum potassium
increased
(10 days) and CK
was corrected
in 3 weeks | Diet recall or current
per so intake was
never discussed with
patient | | Article | n | | Type of | RM | Interven- | Interven- | Outcomes | Comments | |--------------------------------------|---|-------|---|--|---|---|---|--| | | _ | Study | patients | Diagnosed | tion A | tion B | - | D: 11 :1.1 | | Kasap
et al.
2010 (8) | 1 | SR | 16 YOA male admitted
nausea, vomiting, low urine
output and muscle cramps for
up to 3 days. Noted patient
was diagnosed with malaise
and anorexia 2 week prior | Serum
potassium
2.2 mEq/L
and serum
CK 8,379 U/L | No
intervention
addressed | N/A | Serum potassium stabilized from Acute Kidney Injury after 3 weeks | Diet recall provided
that patient was
consuming a liter of
cola of daily for the
last 2-3 years | | Kishore
et al.
2007 (13) | 1 | CR | 46 YOA female admitted with severe pain in legs and back | Serum
potassium
1.4 mEq/L
and serum
CK 6,451 U/L | oral potassium and magnesium was started, No amounts listed | N/A | Serum potassium
stabilized but
decreased after
discharge and
was readmitted | Diet recall from
re-admission found
pt was consuming
excessive alcohol and
was later sent home
with a MVI and a
high calorie diet. | | Martin et al. 2016 (14) | 1 | CR | High school student (no
age provided) admitted with
extraordinary back pain with
blood in urine. Noted he is a
competitive rower | Serum
CK 141,000 U/L
Noted with
hypokalemia
but no value | Corrected
electrolytes
(no values
given) | N/A | No follow-up with outcome | Diet recall or current
po intake was never
discussed with patient | | Sagun
et al.
2012 (4) | 1 | CR | 35 YOA male admitted with weakness of extremities | Serum
potassium
1.93 mEq/L
and serum
CK 1521 U/L | No soft
drinks
allowed
during
hospital stay | intravenous
60 mEq of
potassium
for 2 days | Serum
potassium and
CK were
corrected | Diet recall provided
that patient was
consuming 2.5 liters
of cola daily for 20
years | | Pena
Porta
et al.
2008 (10) | 1 | CR | 38 YOA female admitted
with weight loss, fatigue
and muscle weakness. Last
two months with loose stools
and urine samples reflected
normal potassium levels | Serum potassium
1.83 mEq/L
and serum
CK 7,489 U/L | hydration
and with
electrolyte
replacement
No amounts
listed | oral
30mEq
potassium | Serum potassium and CK were corrected within 17 days | Diet recall or current
po intake was never
discussed with patient
but was sent home
with a MVI. | | Ruisz
et al.
2013 (16) | 1 | CR | 22 YOA female admitted
with myalgia with vomiting
and diarrhea - noted patient
was also abusing furosemide
250mg daily for 4 months | Serum
potassium
1.1 mmol/l
and serum
CK 15,966 U/L | intravenous
hydration and
potassium
No amounts
listed | N/A
d | Serum potassium
was corrected
within 5 days | Diet recall or current
po intake was never
discussed with patient | | Templin
et al.
2009 (9) | 1 | CC | 47 YOA male admitted with
muscle weakness
of the lower extremities | | intravenous
hydration
and potassium
No amounts
listed | N/A | Serum
potassium was
corrected within
5 days | Diet recall provided
that patient was
consuming 600gm
of licorice weekly for
27 years | | Tzvetanov
2009 (17) | | CR | 60 YOA male admitted
with severe abdominal pain
associated with tenesmus, and
bloody diarrhea | Serum potassium
2.1 mEq/L
1 | hydration and
700 mEq of
potassium
(total) | N/A | patient expired | Diet recall noted that
patient had, loose
stools, loss of appetite
weight loss for two
months prior | | Wen et al 2013 (18) | | CR | 45 YOA female admitted with fatigue and limb pain and 44 YOA female admitted with fatigue and limb pain | Serum potassium
1.38 mEq/L and
serum CK 4,907
U/L. Serum
potassium 1.98
mEq/L and serum
CK 8,531 U/L | No amount
stated
but high
dose oral
potassium
supplement | N/A | Serum
potassium
corrected | Diet recall or current
po intake was never
discussed with patient | CR - Case Report, CC - Clinical Communications / RM - rhabdomyolysis