ORIGINAL ARTICLES # Determinants of malnutrition in critically ill patients admitting to ICU in Iran: results from a cross-sectional study Leila Azadbakht¹⁻⁴, Saeid Abbasi⁵, Maryam Hajishafiee^{1,2,9}, Awat Feizi⁶, Gholamreza Mohajeri⁵, Felorens Nemani^{1,2}, Mohammad Hassan Entezari^{1,2}, Rezvan Kazemi⁷, Gholamreza Askari^{1,2}, Fatemeh Samadanian^{1,2}, Peyman Adibi⁸ ¹Food Security Research Center, Isfahan University of Medical Sciences, Isfahan 81745-151, Iran; ²Department of Community Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan 81745-151, Iran; ³Diabetes Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran; ⁴Department of Community Nutrition, School of Nutritional Science and Dietetics, Tehran University of Medical Sciences, Tehran, Iran; ⁵School of Medicine, Isfahan University of Medical Sciences, Isfahan 81745-151, Iran; ⁶Department of Epidemiology and Biostatistics, School of Public Health, Isfahan University of Medical Sciences, and Isfahan Endocrine and Metabolism Research Center, Isfahan 81745-151, Iran; ⁷Isfahan University of Medical Sciences; ⁸Department of Internal Medicine, School of Medicine, Isfahan University of Medical Sciences, Isfahan 81745-319, Iran - E-mail: adibi@med.mui. ac.ir; ⁹Adelaide Medical School, Adelaide, South Australia 5000, Australia Summary. Background and aim: Patients in Intensive Care Unit (ICU) face with major challenges including malnutrition, immune dysfunction, severe infections, multiple organ dysfunction and death. This study was undertaken to evaluate the nutritional status of ICU inpatients receiving nutritional support in Isfahan, Iran. Methods: This cross sectional study was conducted among patients admitted to medical and surgical ICU wards. Nutritional status was assessed via measuring anthropometric indices, laboratory data and medical history by a registered dietitian. Biochemical indicators representing blood values, glycemic status and lipid profile, pulmonary, hepatic and renal function were measured. Malnutrition was assessed according to albumin levels and ideal body weight within 4 categories. Statistical analyses were performed using the Statistical Package for Social Sciences (SPSS, version 16). Results: In this study, decreased level of albumin, total protein and phosphorus were related to malnutrition. Albumin and total protein levels were significantly different within 4 subcategories of patients with more than 90% of ideal body weight (p<0,001). Patients with good nutritional status had higher albumin and total protein levels than malnourished ones (p<0,001). No significant relationship was observed between body mass index (BMI), creatinine, blood urea nitrogen (BUN), potassium, magnesium and malnutrition. Conclusions: Malnutrition is prevalent among ICU patients which has the detrimental impact on rehabilitation and mobilization of the patients and extends time of hospitalization. Nutritional status should be monitored and corrected since the start of disease, preferably in ICU. Further studies are necessary to determine the best methods to define nutritional status of patients. In addition, well-designed clinical trials are needed to clarify all aspects of nutritional supplementation. Key words: Malnutrition, intensive care unit, nutritional status, critically ill #### Introduction Patients in ICU face with major challenges including malnutrition, immune dysfunction, severe infections, multiple organ dysfunction and death (1-4). The hyper-metabolic state of these patients which is characterized by increased depletion of lean mass as well as adipose tissue and maintaining metabolic requirements through increased protein break down may lead to malnutrition (2,3,5,6). About 50% of patients at hospital admission notably in ICUs are reported to be malnourished, worldwide (7,8). Furthermore, this rate is 43% for Iranian ICUs (9). Malnutrition causes some complications such as infections, impaired response to treat- ment and decreased immune response which results in reduced quality of life, longer hospital stay and increased health care costs (5,6,10,11). It has been mentioned that nutritional status and nutritional supplementation plays an important role in ICU inpatients outcomes (1). Accurate nutritional screening and assessment are parts of the clinical evaluation of hospitalized specifically ICU patients (11-13). Nutritional assessment among ICU inpatients is comprised of biochemical markers, anthropometric indices and immunological tests which can be completed using Subjective Global Assessment (SGA). However, the inherent limitations of these conventional methods are approved (11,12). Body mass index is one of the most common anthropometric indices of nutritional status which is related to under-nutrition in clinical conditions (1). While, it can be adversely affected by the presence of generalized edema (12). The most frequently used biochemical marker for nutritional assessment in critically ill patients is the serum level of albumin which is also considered as an indicator of severity of illness (1). There is a relative reduction in albumin concentration in critically ill patients suggesting a poor nutritional status and prolonged physiological stress associated with illness process (1). Serum levels of potassium, magnesium and phosphorus are routine health indicators to monitor nutritional status of ICU inpatients (1). Low levels of magnesium and phosphorus result in energy deficiency, cardiac and neuromuscular disorders (14). Reduction in potassium levels is accompanied with severe muscle pains and even arrhythmia and finally cardiac arrest (15). Some factors other than nutrition including physiological stress, increased catabolic rate and protein depletion may limit albumin use as an indicator in ICU inpatients (1,12). The identification of more appropriate markers for field use in critical care wards is needed. Numerous investigations have been conducted regarding nutritional assessment in ICU inpatients in different countries. However, limited data is available in Iran. Moreover, these studies did not assesse malnutrition determinants according to biochemical and anthropometric values. This study was therefore undertaken to evaluate the nutritional status and determine malnutrition markers in ICU patients receiving nutritional support in Isfahan, Iran. # Subjects and methods This cross sectional study was conducted at Al-Zahra university Hospital of Isfahan University of Medical Sciences, Isfahan, Iran. Patients admitted to medical and surgical ICU wards enrolled in this study from February 2012 till the end of April 2012. Patients included those of 18 years of age or older and had an ICU station of at least 5 days. Those patients were included in study who had the biochemical data for the fifth day of ICU station. Finally, the data on 100 critically ill patients were gathered. This study was approved by Isfahan Regional Bioethic Committee. ## Anthropometric assessment Nutritional status was assessed via measuring anthropometric indices, laboratory data and medical history by a registered dietitian. ICU patients were bedridden and unable to stand up. Therefore, height was indirectly measured by knee-to-ankle height (15). Due to lack of standard scales in ICUs, actual body weight was estimated by considering all patients' appearance, height and body size. Ideal body weight was calculated by Devine's method (16). Body mass index was calculated as weight (kg) divided by height (m²) (14). Mid-arm circumference was measured in centimeters halfway between the acromion process of the scapula and the olecranon process at the tip of the elbow (15). ## Biochemical assessment All biochemical indicators representing blood values, glycemic status and lipid profile, pulmonary, hepatic and renal function as part of the routine clinical care were measured at the fifth day of admission in ICU. No dietary assessment on energy intake and nutritional support was done. Malnutrition definition In the current study, malnutrition was assessed according to albumin levels and ideal body weight (1) within 4 categories. In the first category (more than 90% of ideal body weight), patients had a good nutritional status if the albumin levels were more than 3.5 gr/dl. Albumin levels of 3.1-3.5 gr/dl and less than 3 gr/dl were mild malnutrition and protein malnutrition in the above-mentioned category, respectively. In the second category (76-90% of ideal body weight), albumin levels of more than 3 gr/dl were mild malnutrition and less than it were moderate malnutrition. Patients in third category (60-75% of ideal body weight) had energy malnutrition (i.e. marasmus) if albumin levels were more than 3.5 gr/dl. Albumin levels of 2.5-3.5 gr/dl were moderate malnutrition. While, less than 2.5 gr/dl was protein energy malnutrition. In the last category(less than 60% of ideal body weight), albumin levels more than 3.5 gr/dl, 3.1-3.5 gr/dl and less than 3.1 gr/dl were energy malnutrition, moderate malnutrition and protein energy malnutrition, respectively (15). *Statistical analysis* Mean±SD as well as range for quantitative variables were presented and qualitative data was expressed as percent. Analysis of variance was used to examine the differences of various quantitive demographic, anthropometric measurements and biochemical values of ICU inpatients across the different categories of malnutrition based on albumin levels and ideal body weight. Relationships between different levels of malnutrition (as ordinal dependent variable), in each group of ideal body weight, and demographic, anthropometric and biochemical measurements as the potential risk factors were evaluated using multivariable ordinal logistic regression. During fitting of ordinal logistic regression, the proportional odds assumption or parallel lines test was evaluated using chi-square test and then the cumulative probabilities of ordered categories response variables (i.e. levels of malnutrition) were modeled as a linear function of the covariates. All statistical analyses were performed using the Statistical Package for Social Sciences version 16 (SPSS Corp, Chicago. IL, USA). P-values less than 0.05 were considered statistically significant. ## Results This study was carried out on 100 patients (57 men (%) and 43 women (%)) admitted in ICU with the average age of 46±18.82 years old. Demographic, anthropometric measurements and biochemical values of ICU inpatients are shown in Table 1. Reasons for ICU admission were surgery (42.9%), trauma (32.8%) and cancer (24.3%). The average of BMI and albumin concentration was 24.2±3.94 (kg/m²) and 2.7±0.86 (g/dl) among ICU inpatients which indicated low- **Table1.** Demographic, anthropometric measurements and biochemical values of ICU inpatients | chemical values of IC | U inpatients | | |-----------------------|----------------|---| | Subjects (n=100) | Mean±SD | Range (Max-Min) | | Anthropometric | | | | Age (year) | 46±18.82 | 90-12 | | Height (cm) | 170±9.09 | 187-145 | | Weight(kg) | 69.3±10.35 | 112-45 | | IBW(kg) | 68.6±10.78 | 92.4-37 | | BMI(kg/m²) | 24.2±3.94 | 37.3-17.1 | | MAC(cm) | 27.7±3.18 | 39-21 | | WA(cm) | 17.8±1.37 | 22-15 | | Biochemical values | | | | Renal function | | | | BUN(mg/dl) | 21.8±16.13 | 90-2.3 | | Creatinine(mg/dl) | 1.18±0.34 | 9-0.3 | | Na(mEq) | 139.7±7.59 | 191-116 | | K(mEq) | 3.7±0.56 | 5-2.3 | | Ca(mEq) | 9.7±8.72 | 93-2.9 | | Mg(mEq) | 2±0.42 | 4-1.3 | | P(mEq) | 3.8±4.30 | 43-2 | | Glycemic status and l | ipid profile | | | FBS(mg/dl) | 147.2±60.17 | 444-18 | | TG(mg/dl) | 109.2±85.54 | 615-11 | | Chol(mg/dl) | 132.9±46.97 | 298-33 | | HDL(mg/dl) | 38.4±12.42 | 75-15 | | LDL(mg/dl) | 72.6±34.34 | 180-8.4 | | Pulmonary function | | | | PT(Seco) | 18.2±8.22 | 75-4.6 | | PTT(Seco) | 42±27.31 | 120-28 | | Blood values | | | | Hb(g/dl) | 11.4±3.38 | 35-4.3 | | HCT(%) | 34±7.34 | 50-9.7 | | MCV(fL) | 90.6±9.76 | 104-9.1 | | WBC(n/mm³) | 13848±17033.55 | 149000-2700 | | Alb(g/dl) | 2.7±0.86 | 4-1 | | Protein T(g/dl) | 5.8±0.95 | 8.5-3.5 | | Hepatic function | | | | ALT(IU/L) | 78.6±205.95 | 1615-7 | | AST(IU/L) | 75.5±161.73 | 1330-11 | | TDX7 · 1 11 1 · | 1. DMI D 1 | 1 | IBW: ideal body weight, BMI: Body mass index, MAC: Mid arm circumference, WA: Wrist around. Table 2. Functional characteristics and biochemical values of ICU inpatients¹ | Subjects | | >90% of Ideal body weight (n= 68) | ly weight (n= 68) | | P value | | 76-90% of Ideal body weight (n=27) | ody weight (n=27) | | P value | |--|-------------------|-----------------------------------|-------------------|----------------------|---------|--------------------|------------------------------------|-------------------|----------------|---------| | | | (Mean±SD)** | ±SD)*4 | | , | | (Mean: | (Mean±SD)** | | | | | 1 | 2 | 3 | 4 | | 1 | 2 | 3 | 4 | | | Age(year) | 43.6±20.77 | 55.2±15.40 | 51±15.72 | 40.5±17.45 | 0.11 | 71±18.73 | 39.3±17.04 | 40.1±17.78 | 35.8±21.93 | 0.38 | | Height(cm) | 160±13 | 160±1 | 160±6 | 160±1 | 0.92 | 170±2 | 170±9 | 170±8 | 170±5 | 0.64 | | Weight(kg) | 75.4±23.66 | 72.5±9.43 | 72.5±7.42 | 71.5±7.17 | 0.91 | 58.3±6.11 | 60.3±8.54 | 65.5±7.01 | 63.3±7.05 | 1.10 | | IBW(kg) | 66.4±13.71 | 65.7±11.87 | 66.7±9.18 | 61.6±9.96 | 0.64 | 70.3±2.51 | 71.6±10.28 | 76.4±8.82 | 76.7±6.90 | 0.68 | | BMI | 26±6.32 | 25.7±3.51 | 25.9±2.90 | 26.8±3.07 | 0.88 | 20.3±2.51 | 20±1.23 | 20.6±1.15 | 20.7±1.50 | 0.30 | | MAC(cm) | 29.4±6.18 | 28.9±3.15 | 27.9±2.80 | 27.5±2.19 | 0.49 | 27.6±1.52 | 25.7±2.13 | 27.6±4.58 | 26.1±1.56 | 0.58 | | BUN(mg/dl)
(normal range:7-20) | 31.8±14.78 | 23±16.37 | 24.5±16.91 | 12.7±6.01 | 0.13 | 39±36.76 | 19±9.87 | 21±24.68 | 15±6.78 | 0.87 | | Creatinine(mg/dl)
(normal range:0.5-1.2) | 1.5±0.96 | 0.9±0.34 | 1.3±1.60 | 0.8±0.22 | 0.43 | 1.2±0.35 | 1.9±1.87 | 1.3±1.82 | 0.7±0.15 | 0.43 | | Na(mEq)
(normal range:135-145) | 143.8±3.63 | 140.2±5.43 | 140.9±10.17 | 138.7±4.20 | 69.0 | 135±4.24 | 135.8±13.07 | 138.1±5.81 | 138.5±5.18 | 0.93 | | K(mEq)
(normal range:3.5-5) | 3.7±0.55 | 3.5±0.60 | 3.7±0.63 | 4±0.18 | 0.23 | 4.4±0.35 | 3.9±0.71 | 4±0.51 | 3.6±0.41 | 0.44 | | Ca(mEq)
(normal range:8.5-10.2) | 9±0.16 | 8.9±0.31 | 9±0.36 | 9.2±0.43 | 0.18 | 8.2±0.63 | 7.6±2.66 | 9±0.30 | 8.6±1.90 | 0.52 | | Mg(mEq)
(normal range:1.7-2.2) | 2±0.36 | 2±0.47 | 2.1±0.35 | 2.1±0.32 | 0.58 | 2±0.35 | 2.4±0.94 | 2±0.23 | 2±0.33 | 0.51 | | P(mEq)
(normal range:2.5-4.5) | 3.3±0.83 | 3.1±1.01 | 4.8±7.41 | 3.6±0.98 | 0.70 | 3.9±1.83 | 3.9±1.01 | 3.1±0.77 | 3.3±0.40 | 0.038 | | FBS(mg/dl) | 120.8±45.40 | 150.5±46.45 | 160.8±80.93 | 152.1±48.50 | 0.63 | 234.5±106.77 | 140±72.13 | 131.5±31.57 | 114.4±12.88 | 0.001 | | TG(mg/dl) | 177.4±85.19 | 108.5 ± 86.02 | 112.4 ± 66.45 | 161.7±172.43 | 0.29 | 79±15.55 | 102.2 ± 63.34 | 73.7±30.55 | 77.54±45.09 | 0.72 | | Chol(mg/dl) | 106.2 ± 34.14 | 123±38.91 | 146.1 ± 41.48 | 166.6±31.66 | 0.01 | 113.5 ± 67.17 | 158.6±86.51 | 130.8±63.99 | 112.9±32.92 | 0.42 | | HDL(mg/dl) | 25±9.24 | 34.4±10.60 | 42.3±12.06 | 44±12.02 | 0.005 | 33.5 ± 19.09 | 42.4 ± 20.37 | 45±8.26 | 35.4 ± 10.67 | 0.24 | | LDL(mg/dl) | 45.6±28.58 | 65.5±27.08 | 80.5±34.08 | 86.4±28.51 | 0.05 | 64.2 ± 51.19 | 95.7±55.66 | 84.3±44.62 | 60.8±24.35 | 0.27 | | PT(Seco) | 22.4±4.79 | 20.9±12.40 | 17.7±8.83 | 13.9±3.98 | 0.22 | 20±5 | 16.7±3.18 | 16.4 ± 0.96 | 17.1±4.14 | 0.15 | | PTT(Seco) | 51.4±38.93 | 38.8±26.41 | 35.2±11.03 | 49.6±39.88 | 0.30 | 102.6 ± 30.02 | 44.8±36.89 | 39.3±23.68 | 34.9±12.64 | 0.001 | | Hb(g/dl) | 12±3.03 | 10.2±2.36 | 11.8±4.75 | 12.2±2.26 | 0.36 | 11.4 ± 3.00 | 12.3±3.00 | 12 ± 0.54 | 11.6±2.70 | 0.88 | | Hct(%) | 37.9±6.86 | 31.3±7.93 | 33.7±7.05 | 37.3±5.71 | 0.10 | 35.7 ± 10.34 | 34.9±8.70 | 36.1±7.25 | 35.2±6.86 | 0.97 | | MCV(fL) | 92.4 ± 3.28 | 87.5±18.59 | 92.2±2.90 | 89.2±5.89 | 0.45 | 93.3±5.67 | 96.7±7.13 | 91 ± 3.61 | 90.4±3.74 | 0.08 | | WBC(n/mm³) | 14280±7511.45 | 15213±29433.93 | 11490 ± 4608.20 | 14667 ± 11087.60 | 60.0 | 41000 ± 49636.57 | 12600 ± 4399.54 | 12678±3849.60 | 11255±2580.06 | 0.93 | | Alb(g/dl)
(normal range:3.5-5.5) | 1.4±0.54 | 2 | 3±0.17 | 4 | <0.001 | 1 | 2 | 3 | 4 | 0.002 | | Total protein(g/dl)
(normal range:6-8.3) | 5.1±0.75 | 5.3±0.70 | 5.9±1.05 | 6.7±0.87 | 0.001 | 4.5±1.48 | 5.5±0.63 | 6.2±0.86 | 6.1 ± 0.37 | 0.003 | | ALT(IU/L) | 37.6 ± 698.14 | 43.6±43.45 | 70.4 ± 208.02 | 52.4±59.40 | 0.037 | 29 ± 8.48 | 27.8 ± 18.46 | 45.5±30.38 | 93.7±127.51 | 0.37 | | , the contract of | 010.5710 | 99 31 4 60 | 60 1+139 84 | 43 7+27 68 | 0.007 | 33+5 65 | 33.5 ± 30.72 | 86 1+78 33 | 56 8+33 21 | 0.29 | er levels of albumin compared with normal ranges (3.5-5 g/dl). The average of BUN and creatinine levels were 21.8±16.13 (mg/dl) and 1.18±0.34 (mg/dl), respectively. Regarding glycemic status, the average of fasting blood sugar was 147.2±60.17(mg/dl). The hepatic enzymes levels including ALT and AST were 78.6±205.95 (IU/L) and 75.5±161.73 (IU/L), respectively, which represented high metabolic status of critically ill patients leading to incrsead transaminases levels. Functional characteristics of ICU inpatients are summarized in Table2. Using 3 malnutrition categories according to ideal body weight and albumin levels as well as considering the patients with more than 90% of ideal body weight, 76-90% of ideal body weight and 60-75% (few number of patients, data not shown) of ideal body weight, we evaluated the functional characteristic of patients in different subcategories including protein malnutrition, moderate malnutrition, mild malnutrition and good nutritional status. No significant differences in BMI, creatinine, BUN, potassium range and magnesium were observed among different subcategories in each group. Albumin and total protein levels were significantly different within 4 subcategories of patients with more than 90% of ideal body weight. Patients with good nutritional status had higher albumin and total protein levels than malnourished ones (p<0,001). It was also significant in other categories(76-90% and 60-75% of ideal body weight) (p<0.05). Phosphorus levels were statistically significant within different subcategories of patients with **Table3.** The results of multivariable ordinal logistic regression on the potential determinant of malnutrition in ICU inpatients with more than 90% of ideal body weight | more than 5070 or ic | icai body | weigin | | | |----------------------------|-----------|--------|-----------------|---------| | Variable | В | S.E | OR(95% CI) | P value | | Creatinin | 0.22 | 0.27 | 1.24(0.72,2.13) | 0.42 | | BUN | -0.04 | 0.02 | 0.96(0.92,1.00) | 0.04 | | Total protein | 1.31 | 0.35 | 3.69(1.83,7.45) | <0.001 | | Time admission difference* | -0.07 | 0.05 | 0.92(0.83,1.02) | 0.13 | | Supplementation** | 0.51 | 0.33 | 1.66(0.87,3.17) | 0.12 | | Diseases history | 0.11 | 0.65 | 1.11(0.31,3.99) | 0.86 | ^{*}Time admission difference was calculated according to date of hospitalization and ICU admission. 76-90% of ideal body weight (p<0.05). In the final stage of analysis, we investigated relationships between different categories of malnutrition and major potential determinants of malnutrition. The results are shown in Tables 3 and 4. Reduced BUN levels(OR=0.96; 95% CI= 0.0.92-1.00, P<0.05) and increased total protein (OR=3.69; 95% CI= 1.83-7.45, P<0.001)were associated with a greater chance of being in the subcategory of good nutritional status among patients with more than 90% of ideal body weight. Patients with 76-90% of ideal body weight who had a raise in total protein were more likely to have good nutritional status (OR=4.01; 95% CI= 1.01-16.1, P<0.05). ## Disscussion In our cross-sectional study of assessing nutritional status of ICU patients, we found the important determinants of malnutrition. In the recent study, decreased level of albumin, total protein and phosphorus were related to malnutrition. Albumin and total protein levels were significantly different within 4 subcategories of patients with more than 90% of ideal body weight. Patients with good nutritional status had higher albumin and total protein levels than malnourished ones. No significant relationship between BMI, creatinine, BUN, potassium, magnesium and malnutrition was observed. Although no data on dietary intake and nutritional supplementationwas gathered, the observed relationship hypothesized thatenergy intake in patients was lower than their nutritional needs in the present study (17). In the published studies, the **Table4.** The results of multivariable ordinal logistic regression on the potential determinant of malnutrition in ICU inpatients with 76-90% of ideal body weight | Variable | В | S.E | OR(95% CI) | P value | |---------------------------|-------|------|-----------------|---------| | Creatinin | -0.57 | 0.56 | 0.56(0.18,1.70) | 0.31 | | BUN | 0.14 | 0.11 | 1.15(0.92,1.46) | 0.21 | | Total protein | 1.39 | 0.71 | 4.01(1.01,16.1) | 0.04 | | Time admission difference | 0.52 | 0.41 | 1.68(0.76,3.74) | 0.19 | | supplementation | 0.42 | 0.71 | 1.52(0.38,6.21) | 0.54 | | age | -0.05 | 0.03 | 0.95(0.88,1.01) | 0.13 | ^{**}Supplementation included vitamin B-complex, folic acid and albumin. most important causes of malnutrition among ICU inpatients include calorie intake deficiency during the first days of admission and mechanical ventilation which usually resultin higher metabolic rate and more complications (18,19). In the present study, in contrast to anthropometric data, laboratory indicators showed that after 5 days of hospital stay, most of the patients in our study were suffering from considerable deficits of albumin and hemoglobin. The explanation could be that most of our patients were admitted from hospital's emergency department which could increase the severity of their illness. Implementation of nutritional support is needed to raise this major challenge as specialists also developed different guidelines for nutritional supplementation for ICU inpatients (20). According to our knowledge this is the first study in this regard in Isfahan. In accordance with the current study Abiles et al (21) studied all patients admitted to the Intensive Care Unit of Virgen de las Nieves Hospital from January to December of 2003. They demonstrated that proteins, fats, and carbohydrates intake were lower than 50% of the requirements for both genders. They showed adequacy of vitamins intake at recommended does for sick patients, however, the intake was lower than 25% of the requirements in all cases, and these deficiencies significantly interfered with wound healing, the immune, cardiovascular and nervous systems, as well as with metabolism of the remaining macronutrients leading to an unbalanced situation of the antioxidant system, worsening the patient's clinical status. Moreover, Rodrigo et al (22) showed that malnutrition and low muscle mass reduce the ability of patients to fight critical illness. Low serum creatinine is a better surrogate marker of low muscle mass than a low body mass index and has been associated with poor outcome in some patient populations. They conducted a survey on consecutive critically ill patients >18 years of age admitted to three ICUs of two tertiary care hospitals from January 2003 to December 2006. When adjusted for APACHE III-predicted mortality age, gender, postoperative state, and body mass index, low baseline creatinine was associated with increased mortality in a dose-response manner: odds ratio 2.59 (95% confidence interval, 1.82-3.61) for baseline creatinine or = 0.6 mg/dL (p < 0.001) and OR 1.28 (95%) CI, 1.03-1.60) for baseline creatinine 0.6-0.8 mg/dL (p = 0.023). Adjusted intensive care length of stay in survivors was 0.48 days (95% CI, 0-0.98) longer for patients with baseline creatinine<or =0.6 mg/dL (p =0.058). Low baseline serum creatinine concentrations increased the risk of mortality in critically ill patients. The strengths of our study include well-established design and using standard instruments to measure biochemical values. However, It should be noted that our study had several limitations. As with all cross-sectional studies, no cause-and-effect relations could be determined. We assessed patients only 5 days after their admission to ICU and they were not monitored until discharge. No dietary assessment was done according to energy intake and nutritional support. Since we conducted this study in one hospital, our results coud not be generalized to all hospitalized patients. In conclusion, malnutrition has the detrimental impact on rehabilitation and mobilization of the patients and extends time of hospitalization. Nutritional status should be monitored and corrected since the start of disease, preferably in intensive care unit. Since, our results indicated that malnutrition is prevalent among ICU patients, providing better information about organizational factors that affect nutrition management and the effect of nutritional adequacy on hospital outcomes seems to be a necessity. Therefore, further studies are necessary to determine the best methods to define nutritional status of patients. In addition, well-designed clinical trials are needed to clarify all aspects of nutritional supplementation. #### References - 1. Higgins P.A, Daly B.J, Lipson A.R, Guo S.E. Assessing nutritional status in chronically critically ill adult patients. Am J Crit Care 2006;15:166-176. - 2. Griffiths R.D, Bongers T. Nutrition support for patients in the intensive care unit. Postgrad Med J 2005;81:629-636. - 3. Hsu M, Yu Y, Tsai Y, Lee H, Huang Y, Hsu H. Combined enteral feeding and total parenteral nutritional support improves outcome in surgical intensive care unit patients. Chin Med J 2012;11:459-463. - 4. Huang H, Hsu C, Kang Sh, Liu M, Chang S. Association between illness severity and timing of initial enteral feeding in critically ill patients: a retrospective observational study. J - Nutr 2012;11:30. - Orfila G M, Talaverón J. Effectiveness of perioperative glutamine in parenteral nutrition in patients at risk of moderate to severe malnutrition. Nutr Hosp 2011;26(6):1305-1312. - 6. Wierdsma N.J, Peters J, Weijs P, Keur M, Girbes A, et al. Malabsorption and nutritional balance in the ICU: fecal weight as a biomarker: a prospective observational pilot study. Crit Care 2011;15:R264. - Mogensen KM, Horkan CM, Purtle SW, Moromizato T, Rawn JD, Robinson MK, Christopher KB. Malnutrition, Critical Illness Survivors, and Postdischarge Outcomes: A Cohort Study. JPEN J Parenter Enteral Nutr. 2017 May 1:148607117709766. - Committee of Ministers. Resolution Res AP (2003) on Food and Nutritional Care in Hospitals. Strasbourg: Council of Europe; 2003. - 9. Dehnadi moghadam A, Yousefzade chabok Sh, Ramezani F, Kazemnejad E, Rahimi V. Evaluation of nutritional quality and microbial contamination of enteral feeding solutions in hospitalized patients referred to neurosurgical ICU of Poursina Hospital in Rasht. Pajouhandeh 2010; 15(5): 213-9. [In Persian] - 10. Vallejo KP, Martínez CM, Matos Adames AA, Fuchs-Tarlovsky V, Nogales GCC, Paz RER, Perman MI, Correia MITD, Waitzberg DL. Current clinical nutrition practices in critically ill patients in Latin America: a multinational observational study. Crit Care.2017;21(1):227. - 11. Hospital Malnutrition: Assessment and Intervention Methods. http://<u>AbbottNutritionHealthInstitute.org/</u> - Abi Saleh W, Bou Khalil P, Ouaijan K, Abillama F, Akiki S, Ahmad N, Mattar L. Evaluation of nutrition support practices: Results from a nationwide survey. Clin Nutr. 2017;17:S0261-5614. - 13. Luis D.A, Izaola O, Velicia M.C, Antolín G.S, Pajares F.G, et al. Impact of dietary intake and nutritional status on outcomes after liver transplantation. Rev Esp Enferm Dig (Madrid) 2006;1:6-13. - Samadi M1, Zeinali F2, Habibi N3, Ghotbodin-Mohammadi S4. Intake of Dietary Supplements and Malnutrition in Patients in Intensive Care Unit. Int J Prev Med. 2016 Jul 13;7:90. - Mahan K, Escott-stump S. Krause's Food and Nutrition Care Process. 13th ed. United States of America. Elsevier Sunders. 2012. - 16. Devine BJ. Case number 25: gentamiein therapy. Drug Intell Clin Pharm I974:9:650-5. - 17. Robinson MK, Trujillo EB, Morgensen KM, et al: Improving nutritional screening of hospitalized patients: The role of prealbumin. JPEN 2003;27(6):389-395. - Edington J, Boorman J, Durrant ER, et al: Prevalence of malnutrition on admission to four hospitals in England. Clin Nutr 2000;19:191-195. - Braunschweig C, Gomez S, Sheean P: Impact of declines in nutritional status on outcomes in adult patients hospitalized for more than 7 days. J Am Diet Assoc 2000;100(11):1316-1322. - Kimiaei-Asadi H, Tavakolitalab A. The assessment of the malnutrition in traumatic ICU patients in Iran. Electron Physician. 2017;9(6):4689-4693. - 21. Abiles J, Lobo G, Perez de la Cruz A, Rodriguez M, et al. Nutrients and energy intake assessment in the critically ill patient on enteral nutritional therapy. Nutr Hosp 2005, 20:110-114. - 22. Rodrigo C, Bekele A, Ognjen G. Low baseline serum creatinine concentration predicts mortality in critically ill patients independent of body mass index. Crit Care Med 2007;35:2420-2423. Correspondence: Khadijeh Mirzaei Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences (TUMS), Tehran, Iran. P.O. Box:14155-6117, Tehran, Iran Telephone: +98-21-88955569 Fax: +98-21-88984861 Email address: mirzaei_kh@tums.ac.ir