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Summary. Structured lipids (SLs) are generally defined as triacylglycerols (TAGs) that have been modified to 
change the fatty acid composition and/or their positional distribution in glycerol molecules by chemical and/or 
enzymatic reactions and/or by genetic engineering processes. They are designed for obtaining TAGs with im-
proved functional properties (i.e. fats with specific physical properties for food applications) and/or for medical 
and nutritional applications, especially to meet for the growing need for healthier foods and to prevent obesity, 
cancer and cardiovascular disease cardiovascular disease. Production methods of SLs and commercial products 
examples are discussed in this review. Moreover, nutritional and medical uses of SLs and their effect on human 
health are also reviewed in this paper.
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R e v i e w

Introduction

Lipids have long been recognized for the richness 
they impart to foods as well as their satiety value in the 
diet. Lipid is an important component of the diet, be-
cause it provides both energy and essential fatty acids 
(EFAs). It is the most concentrated energy source in 
the diet, with an average energy value of 9 kcal/g com-
pared to 4 kcal/g for carbohydrates and proteins. They 
serve several important biological functions including: 
1) acting as structural components of all membranes; 
2) serving as storage form and transport medium of 
metabolic fuel; 3) serving as a protective cover on the 
surface of several organisms; and 4) being involved as 
cell-surface components concerned with cell recog-
nition, species specificity and tissue immunity (1, 2). 
The role of dietary lipids in health and disease -no-
tably coronary heart disease, obesity, hyperlipidemia, 
diabeties and cancer- is one of the most active areas of 
research in modern food science, nutrition, and bio-
chemistry (3, 4).

A high-fat diet poses at least two risks to one’s 
health. First, fats produce a relatively large amount of 
energy when metabolized, nine calories per gram, com-
pared with four calories per gram for carbohydrates 
and proteins (5). Second, saturated fats and trans fatty 
acids are believed to be responsible for an increase in 
LDL cholesterol levels and decrease of HDL choles-
terol levels which, in turn, have been implicated with 
an increased risk for heart disease (6, 7).

The guidelines for a healthy diet issued in vari-
ous countries recommend to lower the diet fat content 
to 20-35% of total energy content (5). A reduction of 
energy intake through a reduction of dietary fat in-
take is easier said than done because fat contributes 
strongly to the sensory characteristics of our food such 
as taste, appearance and texture. New developments 
in food technology now allow the partial replacement 
of dietary fat with substitutes called structured lipids 
(SLs), which combine unique characteristics of com-
ponent fatty acids such as melting behavior, digestion, 
absorption, and metabolism to enhance their use as 
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functional lipids and as nutraceuticals of much lower 
energetic value and many health benefits. 

Structured lipids are generally defined as triacyl-
glycerols (TAGs) that have been modified by the in-
corporation of new fatty acids, restructured to change 
the positions of fatty acids, or synthesized to yield novel 
TAGs aiming at obtaining some desirable properties 
(Figure 1) (8, 9). Various fatty acids, including different 
classes of saturated, monounsaturated, and n-3 and n-6 
polyunsaturated fatty acids (PUFAs) or their mixtures 
may be used in this process, depending on the desired 
metabolic effect (10). Lipids can be restructured to meet 
essential fatty acid requirements or to incorporate spe-
cific fatty acids of interest. SLs may offer the most ef-
ficient means of delivering target fatty acids for nutritive 
or therapeutic purposes as well as to alleviate specific 
disease and metabolic conditions. Structured lipids can 
also be produced to obtain TAG with modified physi-
cal and/or chemical features, including melting point, 
iodine and saponification values. They can be produced 
via inter-esterification reactions of fats, oils, or mixtures 
thereof, either chemically or enzymatically (11-14).

Much attention is being paid to SLs due to their 
potential biological functions and nutritional perspec-
tives. The aim of this review is to focus on the com-
ponent fatty acids, production strategies, medical and 
food applications and future prospects for research and 
development in this field.

Methods of SLs production

Chemical or enzymatic reactions. SLs can pro-
vide medium-chain fatty acids (MCFA) as a quick 
energy source and long-chain fatty acids (LCFA) as 

essential fatty acids to hospital patients (15). Basic 
strategies for developing structured lipids are essen-
tially based on one of the following approaches:
•	 replacement of glycerol moiety of triacylglycer-

ols with alternative alcohols such as carbohydrates, 
sugar alcohols or polyols such as sucrose fatty acid 
esters;

•	 replacement of long-chain fatty acids with alterna-
tive acids such as short-, medium and long-chain 
fatty acids esterified to glycerol.

To produce SLs, chemical or enzymatic reactions 
such as direct esterification, acidolysis, alcoholysis, or 
interesterification can be used depending on the types 
of substrates available.

Chemical interesterification is a random reaction 
conducted at relatively high temperature and produc-
ing complete randomization of the fatty acid moieties 
in the triacylglycerol backbones (16). Chemical inter-
esterification seems to be attractive due to the low cost 
and large scale application. However, under the per-
spective of producing lipids with very specific compo-
sitions aiming at functional and medical applications, 
enzymatic interesterification is far more interesting 
(17). With this respect, the enzymatic interesterifica-
tion has the advantage of allowing a greater control of 
the positional distribution of fatty acid moieties in the 
final product due to both selectivity and regiospecific-
ity of lipases (16, 18).

Many factors can influence the synthesis of SLs 
such as the type of lipase and the lipase/substrate ratio 
(19), the reaction medium (19), substrate concentra-
tions, content of water (20), temperature (19), and op-
erational mode (21-23). 

Lipases occur widely in nature and are active at 
oil/water interface in heterogenous reaction system. 
They catalyze the hydrolysis of triacylglycerols into 
monoacylglycerols, diacylglycerols, free fatty acids and 
glycerol, under macroaqueous conditions (24). In ad-
dition to acylglycerol ester hydrolysis, lipases can also 
catalyze a wide variety of esterification, transesterifica-
tion, and polyesterification reactions (24). The set of 
transesterification reactions includes acidolysis, inter-
esterification, and alcoholysis (24, 25). 

Most lipases have their substrate selectivity ac-
cording to chain length, unsaturation, and positional 
distribution (26, 27). Many different types of lipases 

Figure 1. General structure of structured lipids.
S, M, and L is for short-chain, medium-chain, and long-chain 
fatty acids, respectively.
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have been investigated for the enzymatic modification 
of oils and fats. Commercial lipases are available from 
microbial, plant, and animal sources. Among those, 
microbial lipases are the most attractive ones and their 
utilization has been described extensively (28). Lipases 
are enzymes that preferentially catalyze the hydrolysis 
and synthesis of esters and TAG. Some lipases exhibit 
substrate selectivity. Lipase from Penicillium camem-
bertii U-150 can hydrolyze mono- and diacylglycerols 
but not TAG (29). TAG with lower molecular weight 
fatty acids  were hydrolyzed more easily with lipase 
from Penicillium caseicolum than those with higher mo-
lecular weight fatty acids (30). Lipase from Geotrichum 
candidum has shown preference to the unsaturated 
substrates with a double bond at the 9-position (31). 
When cis- and trans- form of 18:1 in l-elaidate-2,3-
dioleate were compared for lipolysis, lipase from Ge-
otrichum candidum preferentially hydrolyzed the cis-
form to free fatty acid (32).

Among the currently available methods for modi-
fying lipids, lipase-catalyzed reactions are better than 
conventional chemical methods since lipases mimic 
natural pathways, which concern mild reaction condi-
tions, high catalytic efficiency, and the inherent selec-
tivity of natural biocatalysts (33, 34). Typical applica-
tions of lipase-catalyzed interesterification reactions 
include the production of cocoa butter substitutes, hu-
man milk fat substitutes, partial acylglycerols, modi-
fied fish oil products, margarines, structured lipids, and 
several lipid products (35, 36).

Genetic engineering. Genetic modification of 
oilseed crops to improve quality, pest and disease resis-
tance and yield has expanded in recent years to include 
modification of the fatty acid composition of oils for 
food use.

The main method of fatty acid profile modifica-
tion is the cloning and transfer of a gene from one 
plant species into another species to produce the de-
sired levels of specific fatty acids. As well, naturally 
occurring enzymes can be modified or new ones can 
be introduced to modify the fatty acid profile of the 
oilseed (37). Genes from bacterial, animal and yeast 
sources have also been incorporated into oilseeds for 
fatty acid modification (38).

Genetic codes are available to introduce double 
bonds, elongate carbon chains, synthesize eicosapentae-

nate, and produce fatty acid isomers not normally found 
in common sources of edible oils. Plant engineers are 
now trying to incorporate the principles used in chemi-
cal and enzymatic synthesis of “tailor-made” structured 
lipids into their genetic engineering techniques.

Since oleic acid (18:1) appears to have a similar 
effect on cholesterol as linoleic acid (18:2 n-6) and is 
not as susceptible to oxidation, researchers increased 
the ratio of monounsaturated fatty acids (MUFAs) to 
PUFAs in soybean and canola oil by modifying the 
activity of a microsomal membrane-bound oleate de-
saturase (39). Trans fatty acids are produced during the 
hydrogenation process used by food companies and 
their presence become a major health concern for con-
sumers. Several companies are actively pursuing the 
development of seed oils that contain levels of satu-
rated fatty acids high enough to permit the elimina-
tion of the need for hydrogenation, and, subsequently, 
the production of trans fatty acids (40). Cloning and 
characterizing genes for a family of thioesterases was 
the 1st step toward the goal of incorporating MCFAs 
into oil seed crops that naturally do not contain such 
fatty acids. A gene from the California bay tree that 
produces MCFAs in its seeds was incorporated into 
canola plants. The transgenic canola now accumulates 
up to 65% more lauric acid in their seed TAGs (41). 
The sn-2 acyltransferase has a high degree of specific-
ity for an unsaturated fatty acid; therefore, most of the 
oleic acid found in these TAGs is at the sn-2 position. 
This oil was marketed as Laurical® (Table 1). 

Commercial products examples of structured lipids

Caprenin. Caprenin is a common name for cap-
rocaprylobehenin, a structured lipid containing C8:0, 
C10:0, and C22:0 fatty acids esterified to glycerol 
moiety (Figure 2) (42). It is manufactured by Procter 
& Gamble’s (Cincinnati, Ohio, U.S.A.) from coconut, 
palm kernel, and rapeseed oils by a chemical trans-
esterification process. The MCFAs are obtained from 
the coconut oil and the LCFAs from rapeseed oil. Be-
cause behenic acid is only partially absorbed and capric 
and caprylic acids are more readily metabolized than 
other longer chain fatty acids, caprenin provides only 
5 kcal/g (43, 44).
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Procter & Gamble filed a Generally Recognized 
as Safe (GRAS) affirmation petition to the U.S. Food 
and Drug Administration (FDA) for use of caprenin 
in soft candies such as candy bars, and in confectionery 
coatings for nuts, fruits, cookies, and so on. Caprenin 
has a bland taste, is liquid or semisolid at room tem-
perature, and is fairly stable to heat. It can be used as 
a cocoa butter substitute. Caprenin, in combination 
with polydextrose, was commercially available briefly 
in reduced-calorie and reduced- fat chocolate bars 
(45). Swift et al. (46) showed that Caprenin fed as an 
SL diet to male subjects for 6 days did not alter plasma 
cholesterol concentration but decreased HDL-chol 
by 14%. However, the medium chain triacylglycerol 
(MCT) diet raised plasma TAGs by 42% and reduced 
HDL-chol by 15%.

Salatrim/Benefat. Salatrim (an acronym derived 
from short and long acyl triglyceride molecule) is the 
generic name for a family of structured triglycerides 
comprised of a mixture containing at least one short 
chain fatty acid (primarily C2:0, C3:0, or C4:0 fatty 
acids) and at least one long chain fatty acid (predomi-
nantly C18:0, stearic acid) randomly attached to the 
glycerol backbone (Figure 3) (47). 

Salatrim was developed by the Nabisco Foods 
Group (Hanover, N.J., U.S.A.) but now marketed 

as Benefat® by Cultor Food Science (Ardsley, N.Y., 
U.S.A.). Benefat is produced by base-catalyzed inter-
esterification of highly hydrogenated vegetable oils 
with TAGs of acetic and/or propionic and/or butyric 
acids (48).

Benefat is a low-calorie fat like Caprenin, with a 
caloric availability of 5 kcal/ g. Stearic acid is poorly or 
only 50% absorbed (49), whereas acetyl and propionyl 
groups in Benefat are easily hydrolyzed by lipases in 
the stomach and upper intestine and readily converted 
to carbon dioxide (50). Nabisco filed a Generally Rec-
ognized as Safe (GRAS) affirmation petition to the 
U.S. Food and Drug Administration (FDA) in 1994 
for use of Benefat in baking chips, chocolate-flavored 
coatings, baked and dairy products, dressings, dips, 

Table 1. Commercial Sls containing polyunsaturated fatty acids and their applications.

Brand name	 Fatty acid composition	 Application

Betapol	 C16:0 (45%)	 Infant food formulation

Impact	 Interesterification with high lauric acid oil 	 Pharmaceuticals for patients suffering from 
	 and high linoleic acid oil	 trauma or surgery, sepsis or cancer

Laurical	 C12:0 (40%) and unsaturated fat 	 Medical nutrition and confectionery coating, 
	 (C18:1, C18:2 and C18:3)	 coffee whiteners, whipped toppings and  
		  filling fats

Neobee	 C8:0, C10:0 and LCFA (n–6 and n–3)	 Nutritional or medical beverages

Structolipid	 LCT (63%) and MCT (37%) – 	 Intravenous fat emulsion as a rapid source of 
	 caprylic (27%), capric (10%), 	 energy for patients and parenteral nutrition 
	 palmitic (7%), oleic (13%),  
	 linoleic (33%) and α-linoleic acid (5%)

Captex	 C8:0, C10:0, C18:2	 Captex diet resulted in increased heat  
		  production and altered energy metabolism  
		  in obese Zucker rats. It also improved  
		  absorption of 18:2 n-6 when administered  
		  to cystic fibrosis patients.

LCFA: Long chain fatty acid, LCT: Long chain triacylglycerol, MCT: Medium chain triacylglycerol.

Figure 2. Caprenin chemical structure.
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and sauces, or as a cocoa butter substitute in foods. The 
consistency of Benefat varies from liquid to semisolid, 
depending on the fatty acid composition and the num-
ber of short chain fatty acids (SCFAs) attached to the 
glycerol molecule.

Olestra/Olean®. Olestra is an acylated sucrose 
polyester with six to eight fatty acids obtained from 
vegetable oil (e.g., soybean, corn, sunflower) as shown 
in figure 4. It is prepared by interesterifying sucrose and 
edible oil methyl esters in the presence of an alkali cata-
lyst, at 100-140°C (51). Sucrose polyester (SPE) devel-
opment dates back to the year 1880, when a derivative 
of sucrose was prepared by acetylation to sucrose octa-
acetate. In 1952 the concept of sucrose fatty acid polyes-
ter (SPE) production was initiated for use in detergents. 
The other concept was to come up with a fatlike mol-
ecule that would significantly reduce fat calories by pre-
venting their hydrolysis and absorption. This led to the 
discovery of a non-digestible and non-absorbable fatlike 
molecule called sucrose fatty acid polyester, now known 
as olestra, by Mattson and Volpenhein while working 
on the absorption of fats by infants (52).

Olestra has the organoleptic, and thermal prop-
erties of fat. Is not hydrolyzed by gastric or pancre-
atic enzymes because the large size and number of the 
nonpolar fatty acids, thus it is nondigestible, hence 
noncaloric; it is also nontoxic, yet nutritional concerns 
potentially exist (53). Its functionality is dependent on 
the chain length and unsaturation of the esterified fats, 
as with normal lipids (54). Olestra made from highly 
unsaturated fatty acids is liquid at room temperature; 
olestra made from highly saturated fatty acids is solid 
(55). Because of its unique properties, olestra can serve 
as a zero-calorie replacement (up to 100%) for conven-
tional fat in a variety of foods. It can be exchanged for 
fats in products such as ice cream, margarine, cheese, 
and baked goods, and it can be blended with vegetable 
oil (56). Olestra’s configuration also makes it possible 
for the substance to be exposed to high temperatures, 
such as frying.

Neobee. Neobee is another caloric reduced fat, it 
is composed of capric and caprylic acids and produced 
by Stepan Company (Maywood, N.J., U.S.A.). This 
class of specialty lipids includes different products. 
For example, Neobee 1053 and Neobee M-5 contain 
both capric and caprylic acids, while Neobee 1095 is 

made up of only capric acid (57). Neobee 1095 is a 
solid product. Therefore, this product may be suitable 
in certain applications which require solid fats. Neobee 
1814 is an MCT derivative made by interesterification 
of MCT with butter oil (58); it contains half of the 
long-chain saturated fatty acids found in conventional 
butter oil and is suitable to replace butter oil in a vari-
ety of applications. Neobee 1814 may serve as a flavor 
carrier and functions as a textural component for low-
fat food products (57).

Structured lipid containing polyunsaturated 
fatty acids (PUFA). Nowadays, the most familiar 
types of low-calorie lipids are triacylglycerols with 
short- and long-chain acyl residues (SLCTs), triacyl-
glycerols with medium- and long-chain acyl residues 
(MLCTs) and diacylglycerols (DAGs) (59). To act as 
an ideal lipid substitute, the products should contain 

Figure 3. Salatrim chemical structure.

Figure 4. Olestra chemical structure.
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unsaturated fatty acids, especially essential fatty ac-
ids, and have no harmful effects. SLs containing n–3 
highly unsaturated fatty acids were produced with im-
mobilized sn–1,3 specific and non-specific lipases as 
biocatalysts. Highly unsaturated fatty acids, such as 
eicosapentaenoic (EPA, 20:5 n–3), docosahexaenoic 
(DHA, 22:6 n–3), linolenic (18:3 n–3) and gamma 
linolenic (18:3 n–6) acids, are important in foods, nu-
trition, and pharmaceutical applications (60). SLs con-
taining these fatty acids and medium-chain fatty acids 
may be desirable as ‘nutraceuticals’ for supplementa-
tion in infant formula or as food supplement for adults 
to enhance overall health (61). 

For the most part, the position of the highly un-
saturated fatty acid in the glycerol moiety is key to 
their functionality in foods and absorption when con-
sumed. Perhaps, these designer lipids may replace con-
ventional fats and oils in certain specialty applications 
because of their structure-health (nutraceutical or 
medical lipids) and structure-function (functional lip-
ids) attributes. In most cases, insertion of the desired 
highly unsaturated fatty acid at the sn–2 position will 
provide maximum nutritional benefits (60). Specific 
structured lipids were designed with PUFA residues 
at the sn-2 position and MCFA residues at the sn-1,3 
positions. In this form, the PUFA residues are pro-
tected against oxidation by the two saturated MCFA 
residues. Hamam et al. (62) showed that the presence 
of palmitate in the sn-2 position of the TAG, in in-
fant formula instead of conventional fats, improved 
digestibility of the fat and absorption of other impor-
tant nutrients such as calcium. In a study conducted by 
Decker (63), saturated fatty acids at the sn-2 position 
have been found to be beneficial in terms of providing 
increased caloric intake through infant formula and 
enteral supplements.

An SL made by reacting tripalmitin with unsatu-
rated fatty acids using an sn-1,3 specific lipase closely 
mimicked the fatty acid distribution of human milk 
was commercially developed for application in in-
fant formulas under the trade name Betapol (Loders 
Croklaan, Glen Ellyn, Ill., U.S.A.) (64).

Structured lipids (SL) enriched with omega 6 
PUFA were synthesized from coconut oil triglycerides 
by employing enzymatic acidolysis with free fatty acids 
obtained from safflower oil (65).

Structured triacylglycerols (ST) enriched in eicos-
apentaenoic acid (EPA) in position 2 of the triacylg-
lycerol (TAG) backbone were synthesized by acidolysis 
of a commercially available EPA-rich oil and caprylic 
acid, catalyzed by the 1,3-specific immobilized lipase 
lipozyme IM (66).

Table 1 summarize some commercial SLs con-
taining polyunsaturated fatty acids and their food and 
medical applications (67).

Despite the health benefits of SLs containing 
polyunsaturated fatty acids, they are highly prone to 
oxidative deterioration and thus require adequate pro-
tection to deter their oxidation (68). Some studies 
have shown that the rate of autoxidation and melting 
properties of TAGs can be affected by the position of 
unsaturated fatty acids on the glycerol molecule (69). 
TAGs having unsaturated fatty acids at the 2-position 
of glycerol are more stable toward oxidation than those 
linked at the 1- and 3-positions (70).

Further research are conducted in order to opti-
mise the SLs’ stabilisation and storage by use of appro-
priate antioxidants and packaging technologies. 

In Nagachinta and Akoh study (71), Maillard re-
action products, obtained from heated whey protein 
isolates and corn syrup solids solution, were used as 
encapsulants for microencapsulation of 2 enzymati-
cally synthesized SLs for infant formula applications. 
The encapsulated SL powders had low peroxide and 
thiobarbituric acid-reactive substances values. 

Nutraceutical characteristics of SLs

Functional SLs
The interesterification and genetic engineering 

processes have been used in the production of struc-
tured lipids with specific physical properties such as 
having a desired melting point, slow rancidification, 
and also for the production of functional structured 
lipids possessing specific compositions and nutritional 
properties. Table 2 summarize the potential uses of 
functional structured lipids.

Margarine fats. Chemical and enzymatic inter-
esterification has been specially employed in the for-
mulation of margarines and shortenings with no trans 
FAs while still maintaining physical properties, taste 
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and stability. The vegetable oils including corn, palm, 
peanut, cottonseed, canola, and sunflower oils can be 
randomly interesterified with fully hydrogenated soy-
bean oil or fully hydrogenated cottonseed hard fats to 
produce desirable fat compositions for margarines and 
shortenings (72). 

Cocoa butter equivalents. Due to high cost and 
fluctuations in the supply and demand of cocoa butter, 
cocoa butter equivalent (CBE) with a TAGs composi-
tion similar to cocoa butter is used as an alternative 
source. Recently, vegetable oils such as Mahua, Kokum 
and mango fats, palm oil, tea seed oil, and olive oil 
have been used to prepare CBE through enzymatic 
catalyzed interesterification until a similar composi-
tion of cocoa butter is obtained. The triacylglycerol 
composition of oils was redesigned so that properties 
such as the melting point, solid fat content and fat 
crystal network microstructures of the structured oil 
and cocoa butter were very much similar (73).

Frying oils. Genetic engineering process had been 
used for the production of modified oils that have a lot 
of benefits which include high oxidative stability, zero 
trans-fat and low saturated FAs, non-hydrogenated, 
high oleic content, liquid at room temperature, and ex-
cellent taste and flavor (74). Recently, genetically mod-
ified soybean oil has been introduced that eliminates 

the need for hydrogenation to be used in bakery goods 
and for frying. The oil also has a healthier FA composi-
tion. High-oleic sunflower oil having better oxidative 
stability in deep frying applications and extended shelf 
life compared to traditional sunflower oil has been de-
veloped using selective breeding and mutagenesis (75). 
Other example includes canola oil seed mutants with 
low linolenic/high oleic acid content (76). 

Breast milk fat substitute. Lipids are the major 
source of energy in human milk or infant formulas. 
Hence, modification of fats and oils for infant formulas 
in order to obtain not only the correct fatty acid (FA) 
composition but also the same positional distribution 
as in human milk fat (HMF) via interesterification 
had been widely investigated. Christensen and Hol-
mer (77) prepared a HMF analogue using a Rhizomu-
cor miehei lipase-catalyzed modification of butter oil. 
Unilever produced a milk fat substitute named Betapol 
for infant formulas (64). Also, Yang et al. (78) modi-
fied lard by lipase to produce HMF substitutes.

Health benefits of SLs
One of the earliest uses of SL was in enteral 

and parenteral nutrition followed by its application 
in a range of clinical settings including prevention of 
thrombosis, improved nitrogen balance, and enhanced 

Table 2. Potential uses of functional structured lipids.

Potential uses	 SL related to food application	 References

Margarine, butter, spreads, 	 Benefat, Neobee and Olestra	 48, 56, 58 
shortening, dressings, dips,  
and sauces

Cocoa butter equivalents	 Caprenin and Benefat	 45, 50

Confectioneries and soft candies	 Caprenin and Laurical	 41, 45

Baking chips, baked goods	 Benefat and Olestra	 48, 56

Snack foods	 Caprenin, Captex	 45

Low caloric food	 Caprenin, Benefat, Neobee	 43, 49, 57

Frying oil	 Genetically modified soybean oil, 	 75, 76 
	 high-oleic sunflower oil and canola oil  
	 seed mutants with low linolenic/high  
	 oleic acid content.

Infant food formulas	 SLs containing EFAs and	 61, 64  
	 MCFAs such as Betapol

Dairy products	 Benefat	 50
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immune function (Table 3). Low-calorie structured 
lipids (SLs) are mainly designed for special nutritional 
applications, especially to meet the growing need for 
healthier foods and to prevent obesity (79, 80).

Data from several short-term investigations sug-
gest that SLs are well tolerated and rapidly oxidized 
and cleared from the plasma (81-83). 

Enteral and parenteral nutrition. The advantag-
es of enterally fed SLs may well relate to differences in 
absorption and processing. Structure TAGs that con-
tain MCFA may provide a vehicle for rapid hydrolysis 
and absorption, due to their smaller molecular size and 
greater water solubility in comparison to long-chain 
TAGs (84).

The TAGs in total parenteral nutrition (TPN) are 
normally administered as an emulsion. These emul-
sions are suspected of suppressing the immune func-
tion because pneumonia and wound infection often 
occur in patients treated with TPN. Kruimel et al. (85) 
attempted to explain this phenomenon, the results in-
dicated that physical mixtures caused higher peak lev-
els and faster production of oxygen radicals, compared 
to SLs. Chambrier et al. (86) conducted a similar study 
comparing the effect of physical mixtures and SL on 
postoperative patients. They did not see the hepatic 
function disturbances in patients given the SL, which 
are often observed with TPN.

Structured lipids synthesized from fish oil and 
MCFA were administered to patients undergoing sur-
gery for upper gastrointestinal malignancies. This diet 
was compared to a control diet that differed only in 
its fat source. The SL diet was tolerated significantly 

better, led to improved hepatic and renal function, and 
reduced the number of infections per patient (87).

In a recent study, a novel SL was designed and 
synthesized based on lipase-catalyzed interesterifica-
tion of camellia oil fatty acid methyl esters and triac-
etin. The SL product contains relatively high amounts 
of unsaturated fatty acids and has a lower risk of safety 
problems (88). Triacetin was found to be metabolically 
beneficial in hypermetabolic states, it improves protein 
utilization and structural components of the small and 
large bowel and reduces the development of intestinal 
mucosal atrophy associated with conventional paren-
teral nutrition in burn injury (89).

The use of fish oil emulsions in patients undergo-
ing stent implantation resulted in lower incidences of 
atrial fibrillation and the length of intensive therapy 
unit ITU and hospital stay is reduced, compared to the 
therapy with soybean oil-based emulsions (90).

SLs containing MCFAs and n-3 PUFAs could 
be a therapeutic or medical lipid source, and may be 
useful in enteral and parenteral nutrition. These SLs 
provided an efficient way to supplement n-3 PUFAs 
and to provide energy from the MCFAs, which were 
the preferred substrate for oxidative metabolism (91). 
No signs of central nervous system toxicity were noted 
in patients given the SL, and there was no tendency to 
ketosis (92). Additionally, SLs were safe and efficient 
when provided to patients on home parental nutrition 
on a long-term basis because they may be associated 
with possible reduction in liver dysfunction (93).

Immune function. The essential constituents of 
structured lipids in terms of their effects on the im-
mune system are fatty acids, which are composed of 
the hydrocarbon chain of various lengths. Fatty acids 
used in structured lipids can affect the immune system 
via several mechanisms. The first mechanism involves 
incorporation of lipids into the structure of the cell 
membranes and thus affecting their fluidity, perme-
ability of ion channels and functions of membranous 
receptors. The second mechanism is associated with 
penetration of fatty acids to the cell where they can af-
fect the production of eicosanoids, resolvins, cytokines, 
pathways responsible for signal transduction into the 
cell, and expression of genes. Moreover, fatty acids can 
alter cell apoptosis and production of reactive oxygen 
species (94).

Table 3. The main applications of SLs in human health

The main application of SLs in human health	 References

Lipids in enteral and parenteral nutrition	 79-88

Enhanced immune function	  89-95

Improved nitrogen balance	 96-100

Prevention of thrombosis	 101-104

Reduced cholesterol and triacylglycerols 	 60, 105-107

Decreased cancer risk	 98, 108-113

Reduced-calorie triacylglycerols 	 114-120

Absorption of structured lipids	 121, 122
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Studies reporting on novel emulsions based on 
olive and fish oils, structured lipids or mixed-type 
emulsions in which various lipid species replace con-
ventional long-chain triglycerides indicate that these 
lipids are generally well tolerated. While long-chain 
triglycerides may promote inflammation due to con-
version of n-6 polyunsaturated fatty acids into arachi-
donic acid-derived eicosanoids, structured lipids and 
olive oil emulsions appear more immune-neutral (95, 
96). The structured lipid diet named Impact, contain-
ing low levels of linoleic acid, resulted in decreased 
length of hospital stay compared to other enteral for-
mulae.  Bower et al (97) also demonstrated a decrease 
length of hospital stay and infection rate when using 
diets with low level of linoleic acid an added fish oil.

Fish oil-based emulsions contain mainly long-
chain n-3 polyunsaturated fatty acids. They have in-
hibitory effects on signal transduction and expres-
sion of genes involved in the inflammation, they also 
modify significantly the cytokine profile and increase 
the EPA levels in serum (98). Moreover, its use was 
demonstrated to enhance the production of DHA and 
EPA metabolites without affecting the production of 
AA, whose products show pro-inflammatory effects 
(99). Importantly, recent investigations indicate ben-
eficial effects of parenteral fish oil on relevant clinical 
outcome measures.

Leukocyte-activating effects of medium-chain 
triglycerides in experimental studies await further 
characterization in vivo, although the recent data indi-
cate that MCTs are not indifferent to the functioning 
of the immune system (100).

Nitrogen balance. Patients with sepsis and 
trauma are characterized by hyper-metabolism, insu-
lin resistance and protein catabolism. Fat emulsions 
containing medium chain triglycerides have been sug-
gested to be beneficial for these patients since medium 
chain fatty acids are a more readily available source 
of energy when compared to long chain fatty acids. 
Lindgren et al. (101) show a better nitrogen balance 
by the infusion of a structured lipid emulsion compris-
ing medium chain fatty acids (MCFA) and long chain 
fatty acids (LCFA) compared to a pure long chain tri-
glyceride (LCT) emulsion during short term infusion 
over three days in ICU patients. The amelioration in 
nitrogen balance in the SLs group was despite the lack 

of effect on respiratory quotient or energy expenditure. 
The mechanism behind the improved n-balance by in-
fusion of a structured triglyceride comprising MCFA, 
compared both to pure LCT emulsions and to physical 
mixtures of MCT and LCT, is not obvious. It has been 
suggested that this occurs as a result of a more favor-
able energy metabolism. 

In the study of Teo et al. (102), the effects of en-
teral feeding with SL composed of MCT and fish oil 
were compared with sunflower oil on energy metab-
olism in burned rats. A decrease in total energy ex-
penditure (7%) and improved nitrogen balance were 
obtained in the SL group, suggesting that SL reduced 
the net protein catabolic effects of burn injury. A simi-
lar study by Mendez et al. (103) compared the effects 
of a structured lipid (made from fish oil and MCFAs) 
with a physical mix of fish oil and MCTs and found 
that the SL resulted in improved nitrogen balance in 
animals, probably because of the modified absorption 
rates of SL.

More studies in humans and animals indicate that 
the use of SLs in catabolic subjects improves nitrogen 
balance and preserves the function of the hepatic re-
ticuloendothelial system (104, 105).

Thrombosis. Thrombosis is the formation of 
blood clots. Blood clotting involves the clumping to-
gether of platelets into large aggregates and is triggered 
when endothelial cells lining the artery walls are dam-
aged. If the platelet membranes are rich in long-chain 
n-3 PUFAs, formation of certain eicosanoids such 
as prostacyclin I3 and thromboxane A3 is promoted. 
These do not trigger platelet aggregation as much as 
the corresponding eicosanoids, prostacyclin I2 and 
thromboxane A2, that are formed from n-6 PUFA. 
Therefore, long-chain n-3 PUFAs may help to reduce 
the tendency for blood to clot (106).

Mori et al. (107) suggested that n-3 fatty acid 
intake from fish consumption in conjunction with a 
low-fat diet was most beneficial in terms of reducing 
cardiovascular disease. Studies indicate that the n-3 
fatty acids, especially EPA and DHA, may be effective 
in reducing the clinical risk of cardiovascular disease 
by favorably altering lipid and hemostatic factors such 
as bleeding time and platelet aggregation (108). EPA 
incorporating into the atheromatous plaque decreases 
the number of foam cells and T lymphocytes, reduces 

04-Zam.indd   206 27/10/15   10:39



Structured lipids: methods of production, commercial products and nutraceutical characteristics 207

the inflammatory process and increases the stability of 
platelets (109). 

Cholesterol and triacylglycerols concentrations. 
Long-term feeding studies with an SL containing MC-
FAs and fish oil fatty acids showed that SL modified 
plasma fatty acid composition, reflecting dietary intake 
and induced systemic metabolic changes that persisted 
after the diet was discontinued (110). When SL (emul-
sion of MCT + fish oil composed of 50% MCT, 40% 
fish oil, and 10% canola oil) and soybean oil were pro-
vided to rats enterally, TAG and cholesterol levels in 
liver were lowered in the SL group (111).

Rats were fed a diet containing coconut oil, coco-
nut oil-sunflower oil blend (1:0.7 w/ w) or structured 
lipid enriched with omega 6 PUFA at 10% levels for 
a period of 60 days. The SL lowered serum cholesterol 
levels by 10.3 and 10.5% respectively in comparison 
with those fed coconut oil and blended oil. Similarly 
the liver cholesterol levels were also decreased by 35.9 
and 26.6% respectively in animals fed structured lip-
ids when compared to those fed on coconut oil or the 
blended oil. Most of the decrease observed in serum 
cholesterol levels of animals fed structured lipids was 
found in LDL fraction. The triglyceride levels in serum 
showed a decrease by 17.5 and 17.4% while in the liver 
it was reduced by 45.8 and 23.5% in the structured 
lipids fed animals as compared to those fed coconut oil 
or blended oil respectively (65). 

SL containing caprylic and n-3 polyunsaturated 
fatty acids was synthesized and this enzymatically pro-
duced SL vs soybean oil (20% of diet weight) were fed 
to female mice for 21 days. The result showed that the 
concentration of total cholesterol, LDL cholesterol, 
and triacylglycerol were significantly decreased in SL-
fed group (112).

Tumor and cancer risk.

In contrast to the tumor promoting effects of di-
ets high in fat, some FAs of chain length 8-C or higher 
have been found to have cytolytic activity, which can 
be directed against tumor cells in some situations, and 
represent a novel type of antitumor agent. In a study 
by Burton (113), caprylic acid showed oncolytic effects 
in liver of mice and rats.

Many studies have shown that n-3 fatty acids 
can decrease the number and size of tumors and in-
crease the time elapsed before the appearance of tu-
mors (114). Reddy and Maruyama (115) showed that 
diets containing high levels of fish oils were effective 
in destroying some cancer cells, but it is not known 
whether such results are reproducible with humans, or 
what potential side effects exist (116). 

Medium chain fatty acids possess a nutritional ad-
vantages compared with other fatty acids in that they 
are non-tumor-producing forms of fat (117). Ling et 
al. (118) demonstrated that tumor growth in mice was 
decreased when they were fed with a SL made from 
fish oil and MCTs. 

Diet and calorie intake. Salatrim, Neobee and 
Caprenin are widely known as the low-calorie fats, 
whereas Olestra is known as a zero calorie fat. Re-
duced calorie SLs are designed by taking advantage of 
either limited absorption of long-chain saturates or the 
low caloric value of SCFAs. In humans, SCFAs con-
tribute to 3% of total energy expenditure and these are 
more easily absorbed in the stomach and provide fewer 
calories than MCFAs and LCFAs (119). Thus, acetic, 
propionic, and butyric acids have caloric values of 3.5, 
5.0, and 6.0 kcal/g, respectively.

Despite containing saturated fatty acids, MCT 
are utilized by the human body more readily than 
triacylglycerols containing other fatty acids. Their di-
gestion process omits the lymphatic system and they 
enrich the cardiovascular system without hydrolysis or 
re-esterification. Therefore, MCT do not accumulate 
in the fatty tissue and do not form a reserve fat and, 
unlike other triacylglycerols, they have lower caloric 
values. Thus, MCT are used as a source of easily avail-
able energy and a low-calorie product (120).

Although MCTs provide fewer calories than ab-
sorbable long chain triacylglycerols (LCTs), MCTs 
need to be used with LCTs to provide a balanced nu-
trition in enteral and parenteral products (121, 122). 
In many medical foods, a mixture of MCTs and LCTs 
is used to provide both rapidly metabolized and slowly 
metabolized fuel as well as EFAs. Clinical nutrition-
ists have taken advantage of the simpler digestion of 
MCTs to nourish individuals who cannot utilize LCTs 
owing to fat malabsorption. Thus, patients with certain 
diseases (Crohn’s disease, cystic fibrosis, colitis, enteri-
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tis, etc.) have shown improvement when MCTs are 
included in their diet (123). 

For example, Akoh and Yee (124) interesterified 
tristearin with tricaprin (C10:0) or tricaprylin (C8:0) 
with sn-1,3-specific immobilized lipase to produce a 
low calorie SL.

Another group of researchers synthesized an SL 
from natural vegetable oils so it would contain EFAs 
and natural antioxidants (125). The synthesized product 
delivered 5.36 kcal/g and had an improved plastic na-
ture, which increases the potential food applications for 
such a product, especially since it is a trans-free solid fat. 
After producing the SL, it was fed to rats and compared 
to a control group fed sunflower oil. No differences were 
observed in the amount of food consumed, which indi-
cates that the palatability and taste of the SL was very 
similar to the native sunflower oil (125).

Absorption of structured lipids. In the absence 
or deficiency of pancreatic lipase, previous studies have 
indicated that a large fraction of MCT can be absorbed 
as triacylglycerol, whereas LCT are not absorbed. How-
ever, structured triacylglycerols containing LCFAs in 
the sn-2 position and MCFAs in the primary positions 
have improved metabolic benefits and have potential 
advantages for providing polyunsaturated fatty acids. 
The presence of MCFAs in dietary fatty acid as well as 
the triacylglycerol structure may influence the absorp-
tion and lymphatic transport of fatty acids (126). Swails 
et al. (127) demonstrated that diets containing an SL 
composed of MCFAs and linoleic acid led to improved 
absorption of EFAs in patients with cystic fibrosis. 

Finally, the differences in the health effects of struc-
tured lipids are largely dependent on the composition of 
lipid mixtures, particularly the content of MUFA, n-6 
or n-3 PUFA. Table 4 gives the suggested levels of some 
of these fatty acids in SLs intended for clinical applica-
tions (123).

Critics attribute a variety of gastrointestinal com-
plaints to the consumption of olestra. Symptoms cited 
include bloating, diarrhea, cramps, loose stools, and ur-
gency of defecation (38, 48). In addition, olestra is lipo-
philic, non-digestible and non-absorbable, so it has the 
potential to interfere with the absorption of other com-
ponents of the diet, especially lipophilic ones, eaten at 
the same time as olestra. Among these biochemicals are 
fat-soluble vitamins (A, D, E, and K) and carotenoids, 

such as beta-carotene, lycopene, lutein, and zeaxanthin 
(128, 129). However, the effects can be offset by adding 
specified amounts of the vitamins to olestra foods.

The concentration of vitamins A, D, E, and K re-
quired for supplementation in olestra-containing foods 
are 0.34 X RDA (Recommended Dietary Allowance) 
for vitamin A/10g olestra, 0.3 X RDA for vitamin 
D/10g olestra, 0.94 X RDA for vitamin E/10g olestra, 
and 1.0 X RDA for vitamin K/10g olestra (130).

As a result, the Food and Drug Administration 
(FDA) requires that food containing olestra be labeled 
with the statement: “This Product Contains Oles-
tra. Olestra may cause abdominal cramping and loose 
stools. Olestra inhibits the absorption of some vitamins 
and other nutrients. Vitamins A, D, E, and K have been 
added”. 

Conclusion

Public concerns about obesity, cancer and cardio-
vascular disease have increased our interest in mini-
mizing the consumption of saturated fats and trans 
fats. These concerns have been a driving force in the 
lipid industry to develop fat-based ingredients that 
retain the physical, functional and sensory features of 
traditional lipids and provide specific nutritional prop-
erties and health benefits. 

Food chemists have developed a number of syn-
thetic fats using new processing technologies, along 
with the creative use of newly discovered functional 
properties of triglycerides. Chemical and enzymatic 
interesterification lead to the development of struc-
tured lipids which can be useful for diabetics, people 
who are trying to lose weight, and others concerned 
about maintaining a healthy diet. At the same time, 
this is not to ignore that while FDA had approved the 
use of different SLs, EFSA (European Food Safety 
Authority) restricted the use of some SLs such as 
Olestra because of the potential health risks for some 
people who may be allergic to such products and may 
develop other health problems by using them. 

Research on structured lipids remains an interest-
ing area that holds great promise for the future and has 
certainly not come to an end. Food chemists will con-
tinue to search for new products with which to aug-
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ment and improve peoples’ diets. Designing SLs with 
specific fatty acids at specific locations of the TAG for 
use in medicine needs more studies. For example, it 
may be desirable to develop a SL for patients with cys-
tic fibrosis that contains PUFA (e.g., EPA or DHA) at 
the sn-2 position, and MCFA at the sn-1, 3 positions.

Further research is also needed to stabilize the 
modified fats containing PUFAs during storage by in-
corporation of appropriate antioxidants and adequate 
packaging technologies. Moreover further research 
should focus on the various esterification processes, 
the metabolism and medicinal importance and eco-
nomic feasibility of large-scale production of SLs. 
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