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Summary. It has been recently highlighted the link between vitamin D and metabolic and immunological pro-
cesses, which established its role as an essential component of human health preservation. Vitamin D has been 
defined as natural immune modulators, and through the activation of its receptors (VDRs), it regulates calcium 
metabolism, cellular growth, proliferation and apoptosis, and other immunological functions. In this setting, vita-
min D has also been reported to influence glucose regulation via effects on insulin secretion and action. Vitamin D 
deficiency is strongly associated with obesity mostly due to the storage of vitamin D in adipose tissue because of its 
lipophilic properties. The decrease in vitamin D levels may occur through several mechanisms such as a decrease 
in the calcium concentration, an increase in PTH, or a direct effect of vitamin D on worsening insulin resistance 
and secretion, augmenting the risk of developing type 2 diabetes. On the other hand, retrospective analysis and 
observational studies demonstrated high prevalence of vitamin D deficiency in patients with type 1 diabetes  and 
suggested a contributory role in the pathogenesis of type 1 diabetes, specially with certain allelic variations of the 
VDR.  Vitamin D supplementation during pregnancy and early childhood decreased the risk of autoimmune dia-
betes and perhaps, even after the onset of diabetes, it may improve glycemic control. In addition, in subjects that are 
affected by a high risk of developing diabetes (impaired fasting glucose and/or glucose tolerance, possibly without 
obesity) vitamin D supplementation could be helpful on the prevention of type 2 diabetes.
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«Le complesse interazioni tra deficit di vitamina D e diabete»
Riassunto. È stata recentemente messa in evidenza la relazione tra vitamina D e processi immunologici e metabolici, 
che ha permesso di stabilire il ruolo di tale vitamina come componente essenziale del mantenimento dell’omeostasi 
dell’organismo umano. La vitamina D è stata definita come immunomodulatore naturale, e attraverso l’attivazione 
dei suoi recettori (VDR), regolatore del metabolismo del calcio, della crescita cellulare, della proliferazione e 
dell’apoptosi, nonchè di altre funzioni immunologiche. In questa contesto, la vitamina D è risultata in grado di 
influenzare la regolazione del metabolismo del glucosio tramite effetti sulla secrezione e sull’azione dell’insulina. 
La carenza di vitamina D è fortemente associata con l’obesità, soprattutto a causa del deposito di vitamina D nel 
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Introduction

It has been recently highlighted the link between 
vitamin D and metabolic and immunological process-
es, which established its role as an essential component 
of human health preservation. Vitamin D has been de-
fined as natural immune modulators, and through the 
activation of its receptors (VDRs), it regulates calcium 
metabolism, cellular growth, proliferation and apopto-
sis, and other immunological functions (1).

In this setting, vitamin D has also been reported 
to influence glucose regulation via effects on insulin 
secretion and action (2). Vitamin D insufficiency, typi-
cally assessed by circulating blood levels of 25-hydroxy 
vitamin D (25(OH)D), has long been suspected as a 
risk factor for Type 1 diabetes (T1D)(3). This finding 
was explained by the higher rates of metabolic disor-
ders including diabetes and hypertension (4,5) with 
increasing distance from the equator, suggesting pos-
sible associations of vitamin D insufficiency in areas 
with less sunlight. More recently, there is accumulating 
evidence to suggest that altered vitamin D and Cal-
cium homoeostasis may play a role in the development 
of Type 2 diabetes (T2D)(6–9).

The aim of our literature review is to analyze the 
current knowledge about:
a) the metabolism of vitamin D
b) the prevalence of vitamin D insufficiency/defi-

ciency in patients with T1D and T2D
c) the relationship between vitamin D and insulin 

incretion

d) the therapeutic effects of vitamin D supplementa-
tion on disease severity and progression.

The metabolism of vitamin D

Vitamin D is the derivative of a steroid, 7-dehy-
drocholesterol, which is derived from cholesterol and 
it is found in the sebaceous glands of the skin of ani-
mals. Upon exposure to sunlight, 7-dehydrocholesterol 
will absorb UVB light (280 to 315 nm) and convert 
to precalciferol  in the skin. Much of the precalcif-
erol eventually is isomerized into cholecalciferol (also 
called vitamin D3) through thermal conversion (10).  

Both vitamin D3 formed in the skin and vitamin 
D3 absorbed from the digestive tract, travel to the liv-
er, where they are hydroxylated at carbon 25 to form 
calcidiol (also called 25-hydroxy vitamin D3, abbrevi-
ated as 25(OH)D) by liver 25-hydroxylase, CYP2R1 
and CYP27A1. 25(OH)D is the major circulating vi-
tamin D metabolite and a reliable indicator of vitamin 
D status. Following the hydroxylation in liver, calcidiol 
is further hydroxylated by 1-α-hydroxylase, CYP27B1, 
in the proximal convoluted tubule cells of kidney, 
forming calcitriol (also called 1,25-dihydroxy vitamin 
D3, abbreviated as 1,25(OH)2D) which is considered 
the active form of vitamin D (11). 

At the cellular level, 1,25(OH)2D interacts with 
nuclear vitamin D3 receptor (VDR), which belongs 
to the superfamily of nuclear hormone receptors, to 
modulate gene transcription.

tessuto adiposo grazie alle sue proprietà lipofile. La diminuzione nei livelli di vitamina D può verificarsi attraverso 
diversi meccanismi, quali una diminuzione della concentrazione di calcio, un aumento di PTH o un effetto di-
retto della vitamina D sul peggioramento dell’insulino-resistenza e della secrezione insulinica, aumentando così il 
rischio di insorgenza di diabete di tipo 2. D’altra parte, studi retrospettivi e osservazionali hanno dimostrato un’alta 
prevalenza della carenza di vitamina D in pazienti con diabete di tipo 1 ed hanno suggerito un ruolo contributivo 
nella patogenesi del diabete di tipo 1, specialmente in associazione ad alcune variazioni alleliche della VDR.  La 
supplementazione di vitamina D durante la gravidanza e la prima infanzia è risultata in grado di ridurre il rischio 
di diabete autoimmune e forse, anche dopo l’insorgenza del diabete, in grado di migliorare il controllo glicemico. 
Inoltre, nei soggetti che sono caratterizzati da un alto rischio di sviluppare il diabete (alterata glicemia a digiuno 
e/o tolleranza al glucosio, possibilmente senza obesità) la supplementazione di vitamina D potrebbe essere utile alla 
prevenzione del diabete di tipo 2.

Parole chiave:  Diabete mellito tipo 1, diabete mellito tipo 2, vitamina D
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Ligand binding initiates a conformational change 
that increases the receptor’s affinity to the retinoid X 
receptor (RXR). Once the VDR-1,25(OH)2D com-
plex is heterodimerized with RXR, this complex will 
bind to vitamin D3 response elements (VDREs) and 
recruit a number of nuclear coactivator or corepressor 
proteins. The transcription of genes for specific mRNA 
may be ultimately either enhanced or inhibited by this 
ligand-activated transcription factor (12, 13).  

Prevalence of vitamin D insufficiency/deficiency in 
patients with Type 1 diabetes and Type 2 diabetes 

Several studies have examined the prevalence of vi-
tamin D deficiency among individuals with T1D, both 
in childhood and adulthood and in a variety of geo-
graphic locations (14).

A case-control survey of 170 Qatari youth with 
T1D and 170 age-, gender- and ethnicity-matched 
controls demonstrated a significant increase in the 
prevalence of vitamin D deficiency (25OHD/30 ng/
ml) in the T1D subjects (90.6%), in a country in which 
vitamin D deficiency in non-diabetic children was also 
high (85.3%), likely due to culturally limited sunlight 
exposure (15). In this analysis, the incidence of fractures 
and a family history of vitamin D deficiency were also 
significantly higher in diabetic children.

Another prospective study of 129 Swiss children 
and adolescents with T1D also reported a high preva-
lence of vitamin D deficiency (25OHD/50 nmol/L) in 
these patients (60.5%), possibly attributed to the absence 
of vitamin D supplementation in many Swiss foods (16).

In this study a control group comparison was not 
available. 

An older, but larger study of young adults in Swe-
den demonstrated lower levels of vitamin D in partici-
pants with T1D compared with age and sex-matched 
controls, both at the time of diagnosis and when as-
sessed 8 years later, particularly in diabetic men (17) 
Interestingly, they noted a positive correlation between 
25OHD concentrations at diagnosis and at 8-year fol-
low-up, but no correlation with HbA1c, suggesting per-
haps an individual propensity toward deficiency. 

Consistent with the data from the northern hemi-
sphere, an australian study of 47 adolescents with T1D, 

compared with gender- and age-matched historical 
control data, also reported a significantly lower mean 
25OHD level in T1D participants (54.7 nmol/L vs. 
64.6 nmol/L) (18); furthermore, adolescents with T1D 
were three times more likely to have vitamin D defi-
ciency (B50 nmol/L). 

Vitamin D insufficiency was also reported as com-
mon in a study of pediatric patients with T1D in the 
northeastern United States; 25OHD levels <30 ng/ml 
were present in 76% of subjects, and 25OHD concen-
tration correlated negatively with age (19) And, in our 
own investigation of T1D subjects (14–40 years of age) 
in a southern US location, we found that 25OHD con-
centrations were lower in participants with T1D (n = 
115) and 53% of T1D participants were vitamin D in-
sufficient (B30 ng/ml) while only 38% of age-matched 
healthy control participants (n = 55) were vitamin D 
insufficient (20). 

Finally, a recent comparison of 25OHD concen-
trations measured in 720 T1D plasma samples and 
2,610 control plasma samples in the United Kingdom 
also confirmed that both male and female T1D subjects 
had lower circulating levels of 25OHD compared with 
the general population (21).

In contrast to these studies, Bierschenk and cow-
orkers (22) demonstrated that median 25OHD levels 
were comparable between established T1D subjects, 
new-onset T1D subjects and control subjects (includ-
ing first-degree relatives of T1D subjects), when studied 
in individuals residing in a solar rich environment in the 
United States. Interestingly, however, in this study, vita-
min D levels in all groups were suboptimal, with 76.1% 
of new-onset T1D, 68.5% of established T1D and 70.1% 
of control subjects having 25OHD levels below 30 ng/ml 
(22). By comparison, in a recent study of 57 adolescent 
subjects with T1D recruited from the Diabetes Center 
at Vanderbilt Medical Center, the authors report that se-
rum 25OHD levels were comparable to a general adoles-
cent population, as reported by the National Health and 
Nutrition Examination Survey (NHANES 2001–2004) 
(23); furthermore, when comparing the T1D subjects 
with HbA1c values C9% (n = 27) to those with HbA1c 
values <9% (n = 30), they found no difference in 25OHD 
status or bone mineral density (BMD) between groups 
(24). In this study, however, only 43% of T1D women 
and 40% of T1D men had 25OHD levels >30 ng/ml. 
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Lower vitamin D levels are present in both obese 
adolescents and obese adults (25, 26); also, an inverse 
correlation between vitamin D and body mass index 
(BMI) has been established (27, 28), attributable in 
part to increased vitamin D storage in adipose tissue 
(29). Because obesity is a primary risk factor for T2D, 
lower vitamin D levels in T2D would be anticipated. 
In addition, some studies have demonstrated an asso-
ciation between lower vitamin D levels and either met-
abolic syndrome or carbohydrate intolerance. Despite 
this, studies examining vitamin D levels in patients 
with established T2D provide inconsistent results (14).

Cross-sectional studies in adults comparing 
T2D with geographic controls have demonstrated: 
(1) a higher prevalence of vitamin D deficiency (<50 
nmol/L) in South Asians with T2D living in the 
United Kingdom (30) (2) a lower prevalence of severe 
vitamin D deficiency (<12.5 nmol/L) in Saudi Arabi-
ans with T2D (31) and yet (3) a similar prevalence of 
deficiency in elderly patients with T2D in Indonesia 
(<50 nmol/L) (32). 

In African Americans, a concurrent racial dispar-
ity characterized by both lower serum 25OHD levels 
(25, 26) and a higher prevalence of T2D, compared 
with European Americans, would predict an overlap of 
vitamin D deficiency and T2D in this group. Studies 
directly examining the prevalence of vitamin D defi-
ciency among African Americans with T2D are limit-
ed; however, an analysis of serum 25OHD concentra-
tions, diabetes and ethnicity from the National Health 
and Nutrition Examination Survey, years 1988–1994 
(NHANES III), failed to confirm an association be-
tween serum 25OHD quartile and diabetes relative 
risk in non-Hispanic blacks, though the expected in-
verse correlation was seen in non-Hispanic whites and 
in Mexican Americans (26). In contrast, a study of 133 
adults with diabetes (116 with T2D, 17 with T1D) 
evaluated at a US academic medical center confirmed 
a high combined prevalence of vitamin D deficiency 
(51.1%; B20 ng/mL) in this cohort and reported rela-
tively lower 25OHD levels in African Americans.

Studies directly comparing vitamin D deficiency 
in T1D and T2D are also imperfect. A study by Di 
Cesar and coworkers (33) reported that 63.5% of adult 
type 2 diabetics (n = 50) were vitamin D deficient (<20 
ng/ml) compared with only 36% of type 1 diabetics 

(n = 63), though their T1D cohort was significantly 
younger (49 vs. 61 years) and had a lower BMI (26 vs. 
34 kg/m). 

These studies suggest  that the relationship be-
tween T2D and vitamin D is multifactorial and con-
currently influenced, at minimum, by ethnicity, geog-
raphy, BMI and age. Studies have also examined vita-
min D levels as they relate to the relative risk of T2D, 
though this type of analysis does not directly address 
the prevalence of vitamin D deficiency in individuals 
with T2D. Nevertheless, a meta-analysis of 28 studies, 
including 99,745 adult participants demonstrated that 
higher levels of vitamin D in middle-aged and elderly 
individuals were associated with a 55% reduction in 
relative risk of T2D (34). Another meta-analysis re-
viewing all MEDLINE observational studies report-
ed through January 2007 combined data from those 
studies that reported an association between 25OHD 
level and prevalent T2D (34). When data from non-
Hispanic blacks were excluded, they found a signifi-
cant inverse association between 25OHD concentra-
tion and T2D (OR = 0.36; 95% CI: 0.16, 0.80). These 
authors also examined case-control studies from the 
same time period and noted that of 13 studies pub-
lished from 1979 to 2006, 10 studies reported lower 
serum 25OHD levels in patients with T2D or glucose 
intolerance, compared with nondiabetic controls (35). 
An examination of 3,983 adults participating in the 
NHANES Survey for years 2001-2002 and 2003–
2004 also suggested that 25OHD levels were nega-
tively associated with the prevalence of diabetes (36).

In contrast, a population-based longitudinal as-
sessment over 11 years of follow-up in Norway dem-
onstrated that while individuals in the lowest quartile 
for serum 25OHD concentration had an increased 
hazard ratio for T2D (RR = 1.89), adjustment for BMI 
eliminated this as a significant risk association (37).

Studies have also examined prospectively, wheth-
er low serum 25OHD levels impact, prospectively, the 
development of T2D at some time in the future. A re-
cent population-based prospective study of 5,200 Aus-
tralian men and women in which serum 25OHD lev-
els were assessed at baseline demonstrated that during 
a 5-year follow-up period, each 25-nmol/L increment 
in serum 25OHD was associated with a 24% reduced 
risk of subsequently being diagnosed with T2D (38). 
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Similarly, a retrospective analysis of pooled data avail-
able from two nested case–control studies collected 
between 1973 and 1980 in Finland, demonstrated that 
during a 22-year follow-up period, men (free of diabe-
tes at baseline) with baseline serum 25OHD levels in 
the highest quartile had a significantly reduced risk of 
incident diabetes (39, 40). One of these two studies, 
however, demonstrated that participants in the high-
est serum 25OHD quartile also had lower BMIs (41), 
reinforcing the hypothesis that obesity is a common 
risk factor for both vitamin D deficiency and future 
T2D. A study examining 524 non-diabetic European-
origin adults found that baseline 25OHD levels were 
significantly inversely associated with 10-year risk of 
hyperglycemia and insulin resistance, even after ad-
justing for BMI (42). Finally, in a very recent study 
of 489 Canadian adults considered at risk for T2D, a 
higher baseline 25OHD level independently predicted 
better b-cell function and glucose homeostasis 3 years 
later (43).

Vitamin D deficiency and risk of diabetic complica-
tions 

Vitamin D deficiency is associated with increased 
inflammatory markers in diabetics including CRP, 
monocyte toll-like receptor (TLR) 2, TLR4, and nu-
clear factor-kappa B (NFKB) expression; this might 
predict increased microvascular complications.

However, no statistically significant difference 
was found in 25-OH D levels in diabetics with mi-
crovascular complications compared to those without 
(44) On the other hand, another study showed that 
persistent microalbuminuria is associated with lower 
25-OH D levels in T1DM compared to controls (45) 
Cardiovascular diseases increased with low 25-OH D 
levels in the general population (46) but these results 
have not been specifically studied in diabetics.

25-OH D deficiency has been prevalent upon the 
initial presentation of T1DM patients who presented 
with DKA, making it a contributing factor. However, 
given that levels improved spontaneously after correc-
tion of acidosis, the direct contribution of 25-OH D 
deficiency in the acute presentation of DKA remains 
controversial (47).

Role of Vitamin D deficiency in the pathogenesis of 
diabetes 

Association between Vitamin D and insulin resistance.

25-OH D plays an important role in glucose 
homeostasis via different mechanisms. It not only 
improves insulin sensitivity of the target cells (liver, 
skeletal muscle, and adipose tissue) but also enhances 
and improves β-cell function. In addition, 1,25-dihy-
droxyvitamin D protects β- cells from detrimental im-
mune attacks, directly by its action on β-cells, but also 
indirectly by acting on different immune cells, includ-
ing inflammatory macrophages, dendritic cells, and a 
variety of T cells. Macrophages, dendritic cells, T lym-
phocytes, and B lymphocytes can synthesize 25-OH 
D, all contributing to the regulation of local immune 
responses (48, 49) 

Vitamin D associated gene polymorphisms and insulin re-
sistance

Gene polymorphisms of the DBP, VDR, or vi-
tamin D 1alpha-hydroxylase (CYP1alpha) genes may 
affect insulin release and result in insulin resistant. In 
addition, these gene polymorphisms may disturb vita-
min D production, transport, and action (48). 

Electrophoretic variants of DBP have been asso-
ciated not only with diabetes, but also with prediabetic 
traits. Two frequent missense polymorphisms at co-
dons 416 GAT → GAG (Asp → Glu) and 420 ACG 
→ AAG (Thr → Lys) in exon 11 of the DBP gene 
are the genetic basis for the three common electropho-
retic variants of DBP (Gc1F, Gc1S, and Gc2) and the 
resulting circulating phenotypes (Gc1F/Gc1F, Gc1F/
Gc1S, Gc1S/Gc1S, Gc1F/Gc2, Gc1S/Gc2, and Gc2/
Gc2) (44). These variants of DBP are the serum carri-
ers of vitamin D metabolites and have been associated 
with a higher risk of type 2 DM or prediabetic pheno-
types in several studies (50-54). However, some stud-
ies have shown that the genetic variants of the DBP 
gene are not associated with diabetes (55, 56).

VDR functions as a transcription factor when 
bound to 25-OH D. VDRs are present in pancreatic 
β-cells and vitamin D is essential for normal insulin 
secretion (57). Several VDR polymorphisms have 
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been found since the early 1990s, including Apa1 
(58), EcoRV, Bsm1 (59), Taq1 (60), Tru91 (61), Fok1 
(62), and Cdx2 (63). To date, three adjacent restriction 
fragment length polymorphisms for Bsm1, Apa1, and 
Taq1at the 3’ end of the VDR gene have been the most 
frequently studied (64) VDR polymorphisms have 
been reported to be related to type 1 DM (65-67).

The Bsm1 polymorphism has been shown to be 
associated with type 1 DM in Indians living in the 
south of the country (65), and combinations of Bsm1/
Apa1/Taq1 have been shown to influence susceptibil-
ity to type 1 DM in Germans (66). In a Taiwanese 
population, the AA genotype of the Apa1 polymor-
phism was found to be associated with type 1 DM 
(67). In type 1 DM, four well-known polymorphisms 
(Fok1, Apa1, Bsm1, and Taq1) in the VDR gene have 
been implicated in the susceptibility to type 1 DM, 
however the results to date have been inconclusive. A 
metaanalysis (57 case-control studies in 26 published 
studies) indicated that the Bsm1 polymorphism is as-
sociated with an increased risk of type 1 DM (BB + Bb 
versus bb: OR = 1.30, 95% CI = 1.03−1.63), while the 
Fok1, Apa1, and Taq1 polymorphisms were not, espe-
cially in Asians (68). The VDR genotype may affect 
insulin resistance, both with regards to insulin secre-
tion (the Apa1 VDR polymorphism) and insulin re-
sistance (the Bsm1 VDR polymorphism) (69). In type 
2 DM, the VDR gene polymorphism aa genotype was 
found to be associated with defective insulin secretion 
in Bangladeshi Asians, a population at increased risk 
of type 2 DM (70). The associations of the Fok1, Apal, 
Bsm1 and Taq1 polymorphisms of the VDR gene with 
type 2 DM were also explored in a case-control study 
(308 type 2 DM patients and 240 control cases). In 
this study, no associations were found between the 
four polymorphisms examined and type 2 DM (71). 
In another study, the distributions of alleles and geno-
types of the four single-nucleotide polymorphisms in 
intron 8 (Bsm1, Tru91, Apal) and exon 9 (Taq1) of the 
VDR gene were similar in patients with type 2 DM 
(n = 309) and controls (n = 143) (72). Therefore, the 
evidence supporting an association of VDR genotypes 
with the risk of diabetes is conflicting (48).

Polymorphisms of the CYP1alpha gene involved 
in the metabolism of vitamin D may influence the sus-
ceptibility to type 2 DM. A study on the association 

of two markers, one in intron 6 and the other located 
upstream from the 5’ end of the CYP1alpha gene, with 
type 2 DM in a Polish population found no differences 
in the distributions of genotypes, haplotypes, and hap-
lotype combinations between the groups. However, 
the T-C/T-T heterozygous haplotype combination 
was more prevalent in the subgroup of obese type 2 
DM patients (BMI ≥ 30) than in the controls (41.5% 
versus 28.6%, P = 0.01), suggesting an association with 
the risk factors for diabetes and obesity (73, 48).

Effects of Vitamin D on the immune system and insulin 
resistance

Basic science and epidemiological studies indi-
cate that vitamin D has importance not only for car-
diovascular health, but also for the immune response. 
Vitamin D has been shown to have a role in the devel-
opment and function of the immune system. In fact, 
inadequate vitamin D and other nutrients during the 
development of the immune system may play a critical 
role in the development of autoimmune diseases. Evi-
dence from animal models and prospective studies of 
rheumatoid arthritis, multiple sclerosis, systemic lupus 
erythematosus, and type 1 DM suggests that vitamin 
D has an important role as a modifiable environmental 
factor in autoimmune diseases (74-76).

The immune system plays a central role in the 
destruction of β-cells (77). The detection of VDR in 
almost all cells of the immune system, especially anti-
gen-presenting cells (macrophages and dendritic cells) 
and activated T cells (78-80), led to the investigation of 
a potential role for vitamin D as an immunomodulator. 
In addition, activation of nuclear VDR is also known 
to modify transcription via several intracellular path-
ways and influence proliferation and differentiation of 
immune cells (81,82). The importance of vitamin D 
in immune regulation is highlighted by the facts that 
VDR is expressed in activated inflammatory cells, that 
T-cell proliferation is inhibited by 25 OH D, and that 
activated macrophages produce 25 OH D (78,83). Vi-
tamin D signaling pathways regulate both innate and 
adaptive immunity, maintaining the associated inflam-
matory  response within physiological limits. The in-
nate immune response involves the activation of Toll-
like receptors (TLRs) on polymorphonuclear cells, 
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monocytes, macrophages, and a number of epithelial 
cells (84). 1,25-dihydroxyvitamin D primarily influ-
ences dendritic cell maturation and macrophage dif-
ferentiation, and also reduces the release of cytokines 
(85). The adaptive immune response is initiated by 
cells specializing in antigen presentation, including 
dendritic cells and macrophages, which are responsible 
for presenting antigens for specific recognition by T 
lymphocytes and B lymphocytes (86). 25 OH D exerts 
an inhibitory effect on the adaptive immune system 
by modifying the capacity of antigen-presenting cells 
(APCs) to induce T lymphocyte activation, prolifera-
tion and cytokine secretion (87). 25 OH D decreases 
the maturation of dendritic cells and also inhibits the 
release of interleukin-12 (IL-12) (stimulating T-help-
er 1 cell development), IL-2, interferon-γ (INF-γ), 
and tumor necrosis factor α (TNFα) (stimulators of 
inflammation), which involves the destruction of 
β-cells resulting in insulin resistance. Overall, 25-OH 
D directly modulates T-cell proliferation and cytokine 
production, decreases the development of T helper 1 
(TH1) cells, inhibits TH17 cell development, and in-
creases the production of Thelper 2 (TH2) cells and T 
regulatory cells (88). These immunomodulatory effects 
of 1,25-dihydroxyvitamin D can lead to the protection 
of target tissues, such as β-cells (48).

Inflammation, Vitamin D, and insulin resistance

Chronic inflammation is involved in the de-
velopment of insulin resistance, which increases the 
risk  of type 2 DM. VDR is known to be expressed 
bymacrophages and dendritic cells, suggesting that 
vitamin D plays an important role in the modula-
tion of inflammatory responses (89). Both cell types 
express the enzymes vitamin D-25-hydroxylase and 
1α-hydroxylase and can produce 1,25-dihydroxyvita-
min D (90) Several studies have supported the role of 
vitamin D and 1,25-dihydroxyvitamin D as an anti-
inflammatory agent. Macrophages are cells with a 
large capacity for cytokine production, in particular 
TNFα, which is one of the most important products 
released from these cells. The transcriptional acti-
vation of the TNFα gene in macrophages is largely 
dependent on nuclear factor κB (NF-κB) dependent 
transcriptional activation (91). In lipopolysaccha-

ride-(LPS-) stimulated murine macrophages, 25-
OH D upregulates IκB-α (the inhibitor of NF-κB) 
by increasing mRNA stability and decreasing IκB-α 
phosphorylation. Furthermore, increased IκB-α levels 
can reduce the nuclear translocation of NF-κB (92). 
In addition, 25-OH D suppresses the expressions 
of TLR2 and TLR4 proteins and mRNA in human 
monocytes in a time- and dose-dependent fashion 
(93). Recently, it has also been suggested that inflam-
mation and activation of the innate immune system 
could be downregulated by hydroxyvitamin D by in-
creased levels of inflammatory markers (TNFα, IL-6, 
IL-1, IL-8, cyclooxygenase-2, intercellular adhesion 
molecule-1, and B7-1) in monocytes from type 2 DM 
compared with monocytes from healthy controls (94). 
In summary, 1,25-dihydroxyvitamin D inhibits the 
release of the pro-inflammatory cytokine TNFα and 
regulates the activity of NF-κB, (95) and suppress-
es the expressions of TLR2 and TLR4 proteins and 
mRNA in human monocytes, reducing the release of 
cytokines. Therefore, vitamin D may also function to 
reduce insulin resistance and the risk of diabetes by 
decreasing inflammatory responses.

Other molecular actions of Vitamin D to alter glucose ho-
meostasis

Several mechanisms have been proposed to explain 
the impact of vitamin D on insulin resistance including 
gene polymorphisms and the immunoregulatory func-
tion of vitamin D and inflammation as mentioned pre-
viously. The regulation of serum calcium via PTH and 
1,25-dihydroxyvitamin D following changes in dietary 
calcium and obesity has been proposed to mediate the 
effects of vitamin D on insulin resistance (48).

Vitamin D and PTH have also been associated 
with a variety of other actions beyond their classical 
functions, including cell growth, differentiation and 
apoptosis. Both hormones have been shown to in-
crease levels of intracellular calcium and other rapid 
signaling pathways in a variety of tissues including adi-
pocytes and muscle cells. Vitamin D may reduce adi-
posity, thereby improving insulin sensitivity indirectly 
through improving muscle mass and the reduction in 
vitamin D status with increased adiposity (96). In ad-
dition, obesity, increasing sequestration of vitamin D 
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in adipose tissue, is also known to be associated with 
reduced vitamin D status.

Effects of vitamin D supplementation on diabetes 
severity and progression 

Given that vitamin D deficiency increases the risk 
of diabetes development and supplementation showed 
protective effects, many studies looked at the protective 
effect of vitamin D on diabetes progression and control 
(97). One randomized controlled study aimed to assess 
the effect calcitriol (given as 0.25 mcg every other day) 
compared to nicotinamide, within 4 weeks of diabetes 
diagnosis, on the preservation of beta-cell function; it 
showed no improvement in C-peptide and HbA1c lev-
els but significantly lower insulin doses in the calcitriol-
treated group (98) Even when the dose of calcitriol was 
increased to 0.25 mcg daily and after a followup of 2 
years, there was no protective effect of such supplemen-
tation on C-peptide levels (99). Conversely, in LADA 
patients, when calcitriol (0.5 mcg daily) was added to 
insulin, it showed stabilization or improvement in fast-
ing and 2 h after 75-g glucose load C-peptide level at 1 
year, especially in those whose diabetes duration was less 
than 1 year (100). Similarly, in a study in Saudi Arabia, 
vitamin D3 supplementation to T1DMpatients who 
were deficient showed improvement in glucose control 
(with significantly lower HbA1c) when 25OHD level 
reached >75 nmol/L at 12 weeks (101).

Guidelines of Vitamin D supplementation in children

The American Academy of Pediatrics and the Ca-
nadian Pediatric Association recommended vitamin D 
supplementation of 400 IU daily, starting the first few 
days of life (102). The Institute of Medicine (IOM) 
recommended that the adequate intake and RDA for 
children below 1 year of age is 400 IU/d and for all 
individuals of 1 year to 70 years should be 600 IU/d 
(103). It seems prudent to ensure that all infants in the 
United States and other areas with comparable sunlight 
exposure receive enough vitamin D, especially in winter 
(104)Whether these recommended doses are enough 
to allow extraskeletal benefits of vitamin D is still un-

known. Until now, no specific recommendations regard-
ing vitamin D supplementation in patients with T1DM 
or at risk of developing autoimmune diabetes (105) but 
intakes between 5 mcg daily and the 25 mcg daily, toler-
able upper intake level, may be desirable (97, 104).

Conclusions and recommendations

Based on the excursus of the several studies de-
scribed above, vitamin D deficiency is strongly associ-
ated with obesity mostly due to the storage of 25(OH)
D vitamin in adipose tissue because of its lipophilic 
properties. The decrease in 25(OH)D levels may occur 
through several mechanisms such as a decrease in the 
calcium concentration, an increase in PTH, or a direct 
effect of vitamin D on worsening insulin resistance 
and secretion, augmenting the risk of developing type 
2 diabetes. On the other hand, retrospective analysis 
and observational studies demonstrated high preva-
lence of 25-OH D deficiency in patients with T1DM 
and suggested a contributory role in the pathogenesis 
of T1DM, specially with certain allelic variations of 
the VDR. 

Vitamin D supplementation during pregnancy 
and early childhood decreased the risk of autoimmune 
diabetes and perhaps, even after the onset of diabetes, 
it may improve glycemic control.

Despite all these data, the best dose to be used 
and the target population in order to decrease the in-
cidence of T1DM have not been yet defined. In addi-
tion, further studies are required especially in subjects 
that are affected by a high risk of developing diabetes 
(impaired fasting glucose and/or glucose tolerance, 
possibly without obesity). Based on the hypothesized 
mechanism of action of vitamin D, these subjects may 
be the main beneficiaries of the effects of vitamin D on 
the prevention of type 2 diabetes.
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