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Abstract. Aim: Prenatal stress inhibits neurogenesis and increases apoptosis in the hippocampus. Both 
Choline [C] and docosahexaenoic acid [DHA] are essential nutrients, important for the formation of neural 
cell membrane phospholipid bilayer. The neuroprotective potential of synergistic supplementation of these 
nutrients on the outcome of hippocampal neural cell density and neural development in prenatally stressed 
gestation is seldom evaluated. This study assesses the role of supplemented choline and or DHA in prenatally 
stressed neonates on their hippocampal neural cell density and serum cortisol levels. Materials and Methods: 
Pregnant rat dams were separated into [NC] - Normal control, [SC] - Saline control, [STR] - Stress, 
[STR+C] - Stress+Choline, [STR+DHA] - Stress+DHA, and [STR+C+DHA] -Stress +Choline+DHA 
groups [n= 6/group]. NC dams were undisturbed throughout the gestation. All other experimental groups of 
dams were supplemented by Saline, C, and DHA throughout the gestation respectively. All STR group dams 
were exposed with restraint stress from E11 till delivery. On postnatal day 40, pups were sacrificed after blood 
sample collection to estimate cortisol levels. Results: Cresyl violet stained, and caspase-3 labeled hippocampal 
sections were observed to analysis neural cell density and apoptosis. Significant restoration (p<0.001) in the 
total number of viable neuronal cells in CA1and CA3 subregions of the hippocampus and reduced caspase-3 
labeled apoptotic cells were observed in STR+C+DHA rat pups compared to the age-matched NC, SC and 
stressed pups. In addition, a significant reduction in (p<0.01) serum cortisol concentration was found in 
[STR+C+DHA] pups when compared with age-matched stressed rat pups. Conclusion: Oral supplementation 
of nutrition like choline and DHA during stress among rat dams restores stress induced neonate hippocampal 
neural cell density and diminishes apoptotic cells in CA1 and CA3 regions with reductions in serum cortisol 
levels. 
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Introduction

Human brain development includes neurulation, 
neuronal proliferation, neural migration, neural cell 
differentiation, myelination, and apoptosis that occurs 

in the third week of intrauterine life as a result of dif-
ferentiation with the progenitor cells of the neurons 
and prolongs up to all over the lifetime (1) Hippocam-
pus is a small part of the human and animal brain that 
lies in the temporal lobe of the cerebrum. It forms the 
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posterior part of the limbic lobe and is responsible for 
learning, and memory (2). In both animals and humans, 
prenatal stress has detrimental effects on the neurobio-
logical and hormonal development of offspring, which 
can lead to abnormal changes in cognition and behav-
ioral outcomes in adolescent (3,4). Exposure to prena-
tal stress in monkeys’ results in decreased neurogenesis 
in hippocampus and dentate gyrus (DG), leading to a 
decrease in the hippocampal volume (5). Exposure to 
abnormal levels of cortisol in the fetus causes a reduc-
tion in the number of neurons in hippocampus that 
results in reduction of hippocampal size (6). Prenatal 
stress induces a reduction in hippocampal volume and 
reduces postnatal neurogenesis in experimental ani-
mals. This decrease in hippocampal volumes/weight 
is due to the reduced number of hippocampal neural 
cells in prenatally stressed rats compared to normal 
control rat pups (7). Other animal studies also report 
that prenatal stress leads to depletion in neuron pro-
liferation in hippocampus(8,9). Prenatal stress causes 
premature birth, low birth weight, fearfulness, and 
an increased risk of respiratory and skin illnesses in 
life (10). Another study reported that maternal stress 
affects heart rate of the fetus, intrauterine activity of 
the fetus, sleep cycle, leads to depression, and anxi-
ety in postnatal life (11). Many human studies have 
expressed that pregnant woman who exposed to stress 
due to poor economic status, loss of relatives leads to 
sever consequences to their offspring such as autism 
and schizophrenia (12). Hormone cortisol plays a cru-
cial role during stress in humans, monkeys, and ro-
dents and affects the hypothalamic-pituitary-adrenal 
(HPA) axis (13). Chronic prenatal and/or early post-
natal stress, resulting in dysregulation of negative HPA 
feedback via altered glucocorticoid receptor sensitivity 
to glucocorticoids (14). Stress causes the secretion of 
high levels of glucocorticoids which decreases gluco-
corticoid receptors in the hippocampus. The above 
findings clearly indicate that the negative feedback by 
HPA axis is impaired. Various human studies show 
that hyperactivity of the HPA axis is linked with low 
birth weight (15,16). The higher and prolonged glu-
cocorticoid exposure affects neurotransmitter systems 
in the brain, especially hippocampus, serotonergic, 
dopaminergic, GABA-ergic, and noradrenergic sys-
tems (17-19). Calcium supplementation in pregnancy 

also plays a role in reducing maternal and neonatal 
morbi-mortality by directly reducing the likelihood 
of developing pre-eclampsia and eclampsia (20). Vari-
ations of blood ion concentrations in pregnancy do 
not only affect maternal physiology but go a long way 
to impact fetal outcomes (21). Choline is one of the 
precursors for compounds, like phospholipids, ace-
tylcholine, betaine, and is crucial for the developing 
fetus and neonate. Oral supplementation of choline 
for the pregnant mother and thereafter for the infant 
causes brain development which leads to changes to 
brain function (22). A high choline diet in pregnancy 
in animals increases hippocampal stem cell prolifera-
tion and inhibits apoptosis (23,24). Thus, in animals, 
prenatal choline supplementation enhances the brain 
structure and function of their offspring. Increased 
brain choline mediates memory function by elevating 
acetylcholine release (25). DHA enhances memory 
function by acting on the synaptic membrane fluidity 
cell signaling and regulating the gene expression (26).  
The availability of DHA promotes the differentiation 
of stem cells of central nervous system. In addition, 
DHA converts these stem cells into mature neural cells, 
thereby DHA influencing brain development (27).  
Animals supplemented with DHA during fetal life 
have high brain DHA which increases hippocampal 
neurogenesis. In vitro investigation also shows the ef-
ficiency of DHA in promoting neurogenesis. DHA 
not only facilitates the proliferation of embryonic stem 
cells but also causes neurite outgrowth of differenti-
ated neural cells (28). DHA is vital for neurogenesis 
and neuritogenesis in prenatal and postnatal develop-
ment (29). Until recently, no specific therapy has been 
developed to overcome stress-related neurodevelop-
mental deficits of the offspring, from dams exposed 
to stress during gestation. The first three months of 
pregnancy would be critical since medication would 
cause malformations in fetus. It is also recommended 
that certain medications are not to be used by preg-
nant women, even though no harmful effects have 
been observed (30). By considering all the above facts, 
this study was carriedout to analyze the efficacy of in-
dividual or combined supplementation of C and DHA 
during gestational stress in dams on the outcome of 
hippocampal neural cell density as well as serum cor-
tisol levels in their neonates.
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Materials and Methods

In-house bred albino Wistar strain adult male 
and female rats, obtained from the Central animal re-
search facility, Manipal University, and their neonatal 
male and female rat pups were used in this study. All 
pups were maintained at 12:12 hrs. day: night environ-
ment, in a well-ventilated room in the Central animal 
research facility. Rats were fed with water and food  
ad libitum. Experiments were conducted only after the 
approval from institutional animal ethical committee 
with the approval number (IAEC/KMC/32/2012) 
that obey the guidelines enacted by the CPCSEA, 
New Delhi [India]. Proper care was taken while hu-
manely handling the rats and all precautions were 
made and, we have used minimum number of animals 
for generating the necessary data.

Experimental design

E0 day pregnant rat dams were divided into fol-
lowing groups: NC, SC, STR, STR+C, STR+DHA, 
and STR+C+DHA. Dams from NC group were un-
disturbed throughout the gestation period. Dams of 
SC group were supplemented orally with saline for the 
entire gestation period. STR group of dams were sub-
jected to restraint stress from E11 to delivery. Pregnant 
dams from the STR+C group were supplemented with 
Choline from E0 to delivery and subjected to restraint 
stress from E11 until delivery. Dams from STR+DHA 
were supplemented with DHA from E0 until delivery 
and subjected to restraint stress from E11 until delivery. 
Dams of the STR+C+DHA group were supplemented 
orally with Choline and DHA from E0 until delivery 
and subjected to restraint stress from E11 to until de-
livery. Choline [Extra Pure choline chloride 98% was 
obtained from Loba Chemical Laboratory Reagents 
and Fine Chemicals] and dissolved with distilled water 
to make a dosage of (4.6 mmol/kg/day of choline) (31),  
and DHA [gelatin capsules consisting of 300 mg 
DHA were procured from Nouveau Medicament (P) 
Ltd., located at Chennai] (400 mg/day of DHA) (32).  
was supplemented orally to the dams using feed-
ing needles. The need for choline and DHA during 
pregnancy is very high and the demand for these nu-
trients is increased workload by maternal organs, and 

to support exponential fetal organ growth (33). Until 
recently, however, no specific drug therapies have been 
developed, which is administered during pregnancy, 
especially when the mother is in the stressful situation, 
would enhance the development of neurons in CNS 
especially in the hippocampus of offspring. The first 
12 weeks of pregnancy is a critical time when medica-
tion can cause malformations of the fetus. So, experts 
may advise discontinuing medicines over this period 
unless a woman had multiple episodes of severe stress 
and depression. It is recommended that certain medi-
cations are not used by pregnant women, even though 
no harmful effects have been observed. The primary 
dietary factors involved in maintaining homeostasis 
and energy requirements such as calorie restriction, 
lipids, vitamins and other special nutritional supple-
ments such as choline and DHA (30). Blood samples 
from each of the pups were collected for the estimation 
of cortisol. Then the pups were sacrificed after tran-
scardial perfusion with saline and 10% formalin on 
postnatal day 40. Their brains were removed without 
any damage and processed for paraffin sectioning. Al-
together, 300 sections of 5 μ thickness were made from 
the hippocampus. One section of every 30 sections 
were processed for cresyl violet staining. Randomly 
selected viable neural cells (cell body of the neurons) 
from 250 μm area of CA1, CA3, and CA4 regions of 
the hippocampus, as also from the upper blade por-
tion of the dentate gyrus (DG), were quantified using 
an ocular micrometer scale by another experimenter, 
blinded to the study. Non-viable or degenerated neu-
rons were darkly stained, shrunken with fragmented 
nuclei were excluded from the count. Blinding of the 
slides from different groups were done prior to the 
counting to avoid observer bias. Photomicrographs 
were recorded under the compound Olympus micro-
scope using cellSens Imaging Software at 40x magnifi-
cation. The apoptosis of hippocampal neurons of CA1 
and CA2 regions were observed by labeling caspase-3 
expression using the immunofluorescence technique. 
Immunohistochemistry technique for estimating the 
apoptosis marker caspase-3 is based on the principle 
of antigen-antibody interactions. The hippocampal 
subregions were targeted with rabbit anti-caspase-3 
primary antibodies which bind to express caspase-3 
enzymes. After appropriate processing, the secondary 
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Prenatal stress and neural cells in hippocampal  
CA1 region

Rat pups subjected to prenatal stress exhibit a 
significant decrease (P<0.001) in mean number of vi-
able neurons in CA1 region of the hippocampus when 
compared to NC & SC group of rat pups. STR+C, 
STR+DHA groups of rat pups exhibit significant in-
crease (p<0.05) in the mean number of viable neu-
rons, respectively, when compared to STR group 
of pups. However, STR+C+DHA rat pups exhibit 
significantly higher mean number of viable neurons 
(p<0.001) when compared to STR rat pups (Figures 2 
and 3).

Prenatal stress and neural cells in hippocampal CA3 region

Rat pups subjected to prenatal stress exhibit sig-
nificant decrease (P<0.001) in mean number of vi-
able neurons in CA3 region when compared to NC 
& SC groups. Rat pups are subjected to prenatal 
stress with the supplementation of choline (p<0.05) 
or DHA (p<0.05) exhibit higher number of neurons, 

sheep antibody tagged with CY-3 immunofluorescence 
were targeted to bind the primary antibody, and the 
fluorescence was identified and photomicrographed 
with a confocal microscope.

Restraint stress procedure

Restraint stress was performed from embry-
onic day 11 until delivery. The stress protocol in-
volved placing the pregnant female in a wire mesh 
restrainer 6 hours per day. Control dams were left 
undisturbed throughout gestation. The wire mesh 
restrainer has a wooden base and stainless-steel wire 
mesh restrainer hinged to the base. A padlock and 
latch will help to secure the rat in the restrainer. The 
restrainers of two different dimensions used. The 
restrainer with 11 cm (length) × 6 cm (breadth) × 
6 cm (height) dimensions for restraining the preg-
nant rats from E1-E17 and restrainer with 11 cm 
(length) × 8 cm (breadth) × 8 cm (height) dimen-
sions will be used to stress the pregnant rats from 
E18 till delivery. This type of restrainer claimed to 
restrict the animal’s movement without any pain, 
discomfort or suffocation (34).

Statistical analysis

Data were analyzed using the method of one-way 
ANOVA and by Bonferroni’s test and was expressed as 
mean ± SEM. p < 0.05 was considered as significant. 
Entire analysis was done in software Graph pad prism 
version 5.03.

Results

Serum cortisol levels in prenatally stressed rat pups

Rat pups subject to prenatal stress marked a 
significant increase (p<0.01) in mean serum corti-
sol level when compared with age-matched NC and 
SC group of rat pups. Rat pups subjected to prena-
tal stress and prenatal supplementation of choline 
marked a significant decrease (p<0.01) in the serum 
cortisol concentration when compared with the age-
matched rat pup groups which are exposed to prena-
tal stress (Figure 1).

Figure 1. Mean serum cortisol level (ng/mL). n = 6 rats / 
group. NC & SC vs. STR [**P<0.01], STR vs. STR+C+DHA 
[ccP<0.01], (One way ANOVA, Bonferroni’s test). Normal con-
trol (NC), Saline control (SC), Stress (STR), Stress + Choline 
(STR+C), Sress+DHA (STR+DHA) and Stress+Choline+ 
Docosahexaenoic acid (STR+C+DHA) group of rat pups.
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respectively, when compared to STR groups. However, 
rat pups subjected to prenatal stress and undergone the 
supplementation of C+DHA exhibit significantly a 
greater number of neurons (p<0.001) when compared 
to STR group (Figures 4 and 5).

Prenatal stress and neural cells in hippocampal CA4 region

Rat pups exposed to prenatal stress exhibit signif-
icant (P<0.001) reduction in the mean number of vi-
able neurons in the CA4 region when compared to NC 
& SC group of pups. Rat pups subjected to prenatal 
stress and undergone the supplementation of choline 
(p<0.05); DHA (p<0.05) and C+DHA exhibit a sig-
nificantly greater (p<0.001) number of neurons when 
compared to STR group (Figures 6 and 7).

Prenatal stress and neural cells in hippocampal DG region

Rat pups exposed to prenatal stress showed sig-
nificant reduction in the number of viable neurons 
(P<0.001) in DG region when compared to NC & 
SC groups. Rat pups subjected to prenatal stress and 
undergone the supplementation of choline (p<0.05); 
DHA (p<0.05) and C+DHA exhibit significantly 

Figure 2. Mean number of viable neural cells across 250μ 
length in CA1region of hippocampus; Mean ± SD. NC & 
SC vs. STR [***P<0.001], STR vs. STR+C[aP<0.05], STR vs. 
STR+DHA[bP<0.05], STR vs. STR+C+DHA [cccP<0.001], 
(One way ANOVA, Bonferroni’s test) Normal control (NC), 
Saline control (SC), Stress (STR), Stress+Choline (STR+C), 
Stress+Docosahexaenoic acid (STR+DHA) and Stress+Choline+ 
Docosahexaenoic acid (STR+C+DHA) group of rat pups.

Figure 3. Photomicrographs of CA1 region of hippocampus. Normal control (NC), 
Saline control (SC), Stress (STR), Stress+Choline (STR+C), Stress+Docosahexaenoic 
acid (STR+DHA) and Stress+Choline+ Docosahexaenoic acid (STR+C+DHA) group 
of rat pups. (Cresyl violet stain X 10).
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greater number of neurons (p<0.001) when compared 
with STR group of rat pups (Figures 8 and 9).

Caspase – 3 immunofluorescence expression in neurons  
of hippocampal CA1 region

NC & SC group of rat pups showed very few and 
random signals of caspase - 3 in CA1 sub-region of 
hippocampus whereas the caspase - 3 expression of 
CA1 neurons of STR group were observed to be more 
while comparing to NC and SC groups. However 
caspase - 3 expressions of apoptotic CA1 neurons in 
hippocampal sections of all supplemented groups of rat 
pups [(STR+C), (Stress+DHA) and (STR+C+DHA)] 
were markedly reduced compared to STR group of rat 
pups (Figure 10).

Caspase – 3 immunofluorescence expression in neural cells 
of hippocampal CA3 region

NC & SC group of rat pups showed very few and 
random signals of caspase - 3 in CA3 sub-region of 
hippocampus whereas the caspase - 3 expression of 
CA3 neurons of STR group were observed to be more 
while comparing to NC and SC groups. However 

Figure 4. Mean number of viable neurons across 250μ length 
in CA3 region of hippocampus; Mean ± SD is shown. NC & 
SC vs. STR [***P<0.001], STR vs. STR+C[aP<0.05], STR vs. 
STR+DHA[bP<0.05], STR vs. STR+C+DHA [cccP<0.001], 
(One way ANOVA, Bonferroni’s test) Normal control (NC), 
Saline control (SC), Stress (STR), Stress+Choline (STR+C), 
Stress+Docosahexaenoic acid (STR+DHA) and Stress+Choline+ 
Docosahexaenoic acid (STR+C+DHA) group of rat pups.

Figure 5. Photomicrographs of CA3 region of hippocampus. Normal control (NC), 
Saline control (SC), Stress (STR), Stress+Choline (STR+C), Stress+Docosahexaenoic 
acid (STR+DHA) and Stress+Choline+ Docosahexaenoic acid (STR+C+DHA) group 
of rat pups. (Cresyl violet stain X 10).
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caspase - 3 expressions of apoptotic CA3 neurons in 
hippocampal sections of all supplemented groups of rat 
pups [(STR+C), (Stress+DHA) and (STR+C+DHA)] 
were markedly reduced compared to STR group of rat 
pups (Figure 11)

Discussion

Results from the present study shows that postna-
tal rat pups from gestationally stressed dams have sig-
nificantly higher serum cortisol concentration/levels 
when compared with the rat pups from non-stressed 
age-matched NC and SC dams. High cortisol levels 
during pregnancy is associated with results in abortion 
of the fetus, delay in fetal growth, premature delivery, 
and very low birth weight of offspring, respectively 
(35,36). Constriction of placental arteries are one of 
the complications of the maternal stress, which leads 
to reduced blood flow to the fetus thereby decreasing 
the availability of essential nutrients and oxygen to the 
offspring (37). The amount of cortisol produces during 
stress will have an adverse effect on HPA axis of the de-
veloping fetus which suppresses fetal growth and cause 
premature delivery (38). Rat pups from gestationally 

Figure 6. Mean number of viable neurons across 250μ length 
in CA4 region of hippocampus; Mean ± SD is shown. NC & 
SC vs. STR [***P<0.001], STR vs. STR+C[aP<0.05], STR vs. 
STR+DHA[bP<0.05], STR vs. STR+C+DHA [cccP<0.001], 
(One way ANOVA, Bonferroni’s test) Normal control (NC), 
Saline control (SC), Stress (STR), Stress+Choline (STR+C), 
Stress+Docosahexaenoic acid (STR+DHA) and Stress+Choline+ 
Docosahexaenoic acid (STR+C+DHA) group of rat pups.

Figure 7. Photomicrographs of CA4 region of hippocampus. Normal control (NC), 
Saline control (SC), Stress (STR), Stress+Choline (STR+C), Stress+Docosahexaenoic 
acid (STR+DHA) and Stress+Choline+ Docosahexaenoic acid (STR+C+DHA) group 
of rat pups. (Cresyl violet stain X 10).
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stressed dams when supplemented prenatally with 
choline and DHA showed a significant decrease in 
serum cortisol concentrations when compared to rat 
pups from age-matched non-supplemented stressed 
dams. These findings could be better explained by 
understanding various mechanisms through which 
choline produces higher methylation of CRH (corti-
cotropin releasing hormone) genes of the placenta, this 
results in lower CRH transcription in the placenta, 
which leads to low concentrations of cortisol in the 
cord blood of the fetus. Studies have also reported that 
prenatal choline supplementation regulates the expres-
sion of genes that alter the fetal HPA axis sensitivity 
via epigenetic mechanisms (39,40). PUFAs, especially 
DHA and arachidonic acid, are fundamental elements 
of membrane phospholipids of the brain which are 
needed for optimal cerebral function (41). The hip-
pocampus is the major constituent of the limbic sys-
tem, which regulates the stress response. This part of 
the brain is also vulnerable to Glucocorticoids since 
mineralocorticoid receptors and glucocorticoid recep-
tors are expressed in this limbic region (42). Feeding 
dams with DHA is proved to prevent stress-induced 
neural cell damage, apoptosis, and mitochondrial dam-
ages in hippocampus of their fetuses as we observed 

Figure 8. Mean number of viable neurons across 250μ length 
in DG region of hippocampus; Mean ± SD is shown. NC & 
SC vs. STR [***P<0.001], STR vs. STR+C[aP<0.05], STR vs. 
STR+DHA[bP<0.05], STR vs. STR+C+DHA [cccP<0.001] 
(One way ANOVA, Bonferroni’s test) Normal control 
(NC), Saline control (SC), Stress (STR), Stress+Choline 
(STR+C), Stress+Docosahexaenoic acid (STR+DHA) and 
Stress+Choline+ Docosahexaenoic acid (STR+C+DHA) group 
of rat pups.

Figure 9. Photomicrographs of DG region of hippocampus. Normal control (NC), 
Saline control (SC), Stress (STR), Stress+Choline (STR+C), Stress+Docosahexaenoic 
acid (STR+DHA) and Stress+Choline+ Docosahexaenoic acid (STR+C+DHA) group 
of rat pups. (Cresyl violet stain X 10).
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of rat pups. The number of surviving neurons in these 
sub-regions of the hippocampus was observed to be 
significantly increased by prenatal supplementation 
of choline and DHA alone or together during gesta-
tional stress. Additionally, surviving neural cells were 
observed to be significantly greater when both choline 
and DHA were supplemented in combination during 
the prenatal stress period. Chronic stress is associated 
with structural changes in the sub-regions of the hip-
pocampus and can impair neurogenesis in the DG 
region (44). Maternal stress during gestation reduces 
hippocampal neurogenesis in primates (5). Maternal 
restraint stress even during the third trimester of ges-
tation causes a significant decrease in neuronal prolif-
eration in dentate gyrus (45). Maternal stress in mice 
reduces the number of dendritic spines and neuronal 
synapses in CA3 pyramidal cells (46). Neuronal pro-
liferation of the hippocampus was decreased in PND 
10 male rat pups in addition to the apoptosis in the 
sub-regions of the hippocampus caused by the chronic 
stress (47). Another study reported that stress causes 
elevation of cortisol and reductions in body weight and 
apoptosis in sub-regions of the hippocampus and cor-
tex (48). Prenatal supplementation of choline, which 
is an important methyl donor, influences neurogenesis 
and apoptosis in fetal hippocampus (49). Apoptosis in 
the nervous system is modulated by neurotrophins and 
sex hormones (50). It has been proved that choline-
regulated intermediate signals that mediate apoptosis 
are induced by deficiency of choline in the cortex and 
hippocampus of the fetus (51,52). Choline deficiency 
was associated with a decrease in phosphatidyl cho-
line concentrations in some subcellular compartments, 
leading to the induction of apoptosis (53). Thus, cho-
line deficiency causes apoptosis in neurons by alter-
ing the cell cycle, as these neurons normally do not 
progress past G0/G1 (52). Representative photomi-
crographs of CA1 and CA3 sub-regions of the hip-
pocampus from NC and SC rat pups were observed 
to have very few and arbitrary signals of caspase - 3 
expression. Whereas caspase - 3 expressions were 
observed to be more in CA1 and CA3 neurons from 
prenatally stressed rat pups when compared to non-
stressed NC and SC rat pups. Moreover, caspase - 3 
expression in CA1 and CA3 neurons of hippocam-
pal regions were found to be markedly reduced in 

in our histochemical evaluations (43). Gestational 
stress affecting the fetus prenatally caused significantly 
lower numbers of surviving neural cells in postnatal 
rat hippocampus specifically in CA1, CA3, CA4, and 
DG regions when compared with NC and SC group 

Figure 10. Photomicrographs of CA1 neurons showing the sig-
nals of caspase -3 expression in different groups. Normal con-
trol (NC), Saline control (SC), Stress (STR), Stress + Choline 
(STR+C), Sress+DHA (STR+DHA) and Stress+Choline+ 
Docosahexaenoic acid (STR+C+DHA) group of rat pups.

Figure 11. Photomicrographs of CA3 neurons showing the 
signals of caspase -3 expression in different groups. Normal 
control (NC), Saline control (SC), Stress (STR), Stress + Cho-
line (STR+C), Sress+DHA (STR+DHA) and Stress+Choline+ 
Docosahexaenoic acid (STR+C+DHA) group of rat pups.
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DHA through the PEMT enzyme restores neural cell 
density in the hippocampus by reduced apoptosis and 
low serum cortisol concentration.

Conclusion 

In conclusion, our findings documenting for the 
first time that supplementation of choline-DHA dur-
ing prenatal stress in rats restores stress-induced neonate 
hippocampal neural cell density in CA1, CA3, and CA4 
subregions of the hippocampus, and the dentate gyrus 
and diminishes apoptotic cells in CA1 and CA3 regions 
with reductions in serum cortisol levels. The result of 
this study suggests for further studies to revel the mech-
anism and the implication of the findings in humans.
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