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Abstract. Background and aim: To have a healthy lifestyle and to reduce the risk of chronic diseases, a fully 
balanced diet with enough quantity of nutrients is required. Maintaining the required levels of consump-
tion of food and regularity in eating habits is important for preserving a healthy life and live without any 
health-related diseases. In regards to the above statement, the proposed work has been defined to provide 
novel smart dietary solutions and to monitor and detect the nutrition intake each day. Methods: Comfortable 
sensors such as PPG sensor incorporating a BPW34FS photodiode, SFH4247 LED, and FG-23329D65 
microphone are worn to record the observations in the form of signals during the consumption of foods. The 
data are pre-processed, and models are proposed to identify eating bouts and swallowing events, using the 
extracted features. The human body also needs physical movements which are recognized from an LIS3DH 
Triaxial accelerometer model to analyze the physical behavior. On the aggregation of both the eating and 
physical activity analyses, this paper proposes to monitor the ingestive habits and physical behavior related 
to health. Results: The detection of chewing occurrences was classified by RMWC, obtaining an accuracy 
of 97% while the determination of swallowing sounds to obtain accurate chewing rate, was performed by 
the proposed Temporally Efficient Bidirectional (TEB) algorithm attaining a higher accuracy of 97.51%. 
Conclusions: In this paper, misclassification of saliva from normal swallowing has been overcome. On the 
contrary, physical activities have been determined by constructing a hierarchy of clusters. Thus, the proposed 
paradigm determines the ingestive behavior and the energy balance by generating the daily report for the 
user in an effective way.

Key words: calorie detection, chewing analysis, swallowing detection, discrimination of saliva, neural network

Introduction

Carrying on with a good routine of health gives 
peace in our life. Variations from the norm in this par-
ity can result in chronic inflammation, which weakens 
the immune system and heightens the susceptibility to 
infections, such as heftiness, anorexia (31), and other 
dietary problems leading to ceaseless maladies if not 
ideally treated. Since energy imbalance and unhealthy 
eating behavior are strongly related to chronic dis-
eases, hence, observing the ingestive conduct of peo-
ple and physical behavior helps evade such problems. 

Monitoring the Ingestive Behavior (MIB) of a person 
based on acoustical and visual approaches is salient 
to the research of eating habits in humans suffering 
from obesity and eating disorders. More recently, de-
vices were opened to subdue erroneous readings from 
people’s views and to lessen the self-reporting (30) bur-
den by uniquely recognizing food intake episodes (11).  
Previous approaches have used different types of de-
vices which are non-obtrusive and subtle (10) such 
as microphones to determine the crushing sounds (29),  
videofluorographic swallowing study (VFSS) to ana-
lyze bolus while swallowing (14), a piezoelectric sensor 
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to differentiate between liquid and solid food  (15), 
wireless surface electromyogram (sEMG) to clas-
sify swallowing and chewing activities (2). Physical 
behavior analysis of an individual is essential for a 
healthy life to overcome energy imbalance (23). Pres-
ently, there are commercial activity trackers such as fit 
bit, Actigraph’s Uniaxial GT1M, and Triaxial GT3X, 
which measures the intensities of activities to motivate 
people to exercise (16). Moreover, indirect calorimetry 
validates the Tritac-R3D to determine the sedentary 
behavior of adolescents (17). However, the ActiGraph 
accelerometers are frequently used for the accurate 
study of physical activity (12). At present, the Inter-
net of Things (IoT) technology helps in effective ac-
tivity monitoring system by interconnecting wearable 
devices with or without human intervention. At the 
same time, robust, automatic eating guidance based on 
individuals’ ingestion behavior and dietary assessment 
still needs to be addressed (33).

To bring up a solution, the Ingestive and Physi-
cal Activity Monitoring (IPAM) system has been pro-
posed that automatically determines eating behavior 
using various behavioral indicators through accurate 
detection of ingestion and estimation of energy intake 
and expenditure. The data from worn sensors are used 
to classify the chewing and swallowing activities. The 
novel Random Median Weighted Classifier (RMWC) 
built by merging the Random Forest Classifier (RFC) 
with the Median Weighted algorithm has been pro-
posed to determine the normality of chewing behavior. 
Swallowing instances have been identified by finding 
relevant peaks and differentiated from chewing events 
as determined by the proposed TEB algorithm. Fur-
ther, the misclassification of saliva from swallowing 
has been overcome to estimate the food intake pre-
cisely. In addition, the chewing rate is determined to 
estimate the energy intake from the foods consumed. 
Accordingly, the calories consumed by the subject are 
calculated depending on the food provided. Besides, 
the accelerometer device has been integrated to iden-
tify various body movements hierarchically, followed 
by classifying into distinct activities, which assists in 
estimating the energy expended through it. Finally, 
the robust IPAM system offers automatic dietary 
monitoring, assessing ingestive behavior, recognizing 
physical activities, computing calories, and generating 

comprehensive reports to provide individuals with a 
holistic view of their health, facilitating weight loss 
and promoting a healthy lifestyle, particularly benefi-
cial for those focusing on diet control.

Related works

The ingestive behavior is monitored to under-
stand the health of individuals with great attention to 
prevent them from spending for health and to avoid 
getting suffered from chronic diseases. A food intake 
monitoring system to estimate calories.

On the other hand, M. Farooq et al. (1), evalu-
ated the capability of an accelerometer to monitor 
the intake in normal subjects providing an accuracy 
of 87.9%. This device also has the potential to record 
the physical activities using the accelerometer. Inde-
pendent models of SVM were used to recognize the 
physical activities and to identify more postures and 
evaluate the algorithms in (7). Consequently, in (18), 
a wide range of different physical activities such as 
sedentary, household, the gym workouts, and indirect 
calorimetry was used to obtain Energy Expenditure 
(EE) reference data. Zui Rhang et al. (27), presented a 
bottom-up paradigm to detect and recognize the eat-
ing events and the individual cycles of chew, possess-
ing a higher time complexity.

As summed-up above, various techniques have 
been established to identify the chewing and swal-
lowing activities. The physical activities, recorded us-
ing a variety of equipment, have only been classified 
wherein the unsupervised learning approach has not 
yet been carried out. The misclassification of saliva 
from swallows and detecting the context of swallow, 
which plays a vital role to estimate the accurate 
chewing activity, was absent and not detected. Also, 
only the top-down and bottom-up methodologies of 
higher complexity have been followed to detect the 
chewing cycles.

This paper is organized as follows. Related works 
are described in Section II. The proposed work and 
the experimental evaluation are described in Section III  
and Section IV, respectively. Discussion of results 
is provided in Section V. The conclusion is given in 
Section VI.
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Proposed work

Recording equipment

In this paper, the dataset used was collected from 
SPLENDID Chewing Detection Challenge (4). The 
prototype model combines an audio microphone and 
PPG sensor incorporated together, placed in the ear 
pinna (3). The BPW34FS photodiode, SFH4247 
light-emitting diode (LED), and the FG-23329D65 
microphone that detects the chewing sounds at 48 kHz 
were used. The PPG sensor captures the jaw move-
ment depending on the blood flow variations when the 
photodiode generates the voltage, and the LED irradi-
ates the skin. Triaxial accelerometer model LIS3DH 
by STMicroelectronics is worn around the waist to de-
termine the physical activities. The position of sensors 
placed is shown in Figure 1. There were 22 subjects 
out of which 19 were female, and 3 were male. Due 
to hardware discrepancies, 26 sessions from 14  sub-
jects have been collected and used for the analysis. 
The individuals with mean body-mass-index (BMI) 
of 28±2.3kg/m2 and mean age of 22.9±1.9 years par-
ticipated. Different varieties of food like meat, orange 
juice, etc., were provided to them and were allowed to 
consume the desired quantity. The subjects were in-
formed to consider at least four physical activities and 

three eating events. Further, the dataset can be down-
loaded from https://dx.doi.org/10.17026/dans-zxw 
-v8gy, as given in (4).

Signal pre-processing

A high pass FIR filter with a cut-off frequency 
of 0.5 Hz, 20 Hz, and 1 Hz is applied to the PPG, 
microphone and accelerometer signals respectively as a 
pre-processing step. The PPG signal is low sampled at 
21.3 Hz (3,4), and the accelerometer signal is sampled 
at the same frequency as the PPG signal. Then, adap-
tive amplification is performed on PPG to accurately 
detect the events. The microphone recordings are 
downsampled at 2 kHz, to match with the design pa-
rameters of the setup, undergo pre-processing as done 
in (3), and normalized by scaling the values to remove 
any unwanted external noise. Besides, the intensity of 
physical activity is obtained from the raw acceleration 
signals (13). Thus, the necessary pre-processing steps 
have been undertaken.

IPAM system

The workflow of the proposed novel IPAM sys-
tem, as shown in Figure 2, depicts the behavioral 
analysis and the nutrient estimation for the individual. 

Figure 1. Prototype sensors (4).
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In equation (1), Pn[q] denotes the DFT 
coefficients for q = 1,2…N for the nth window, 
X represents the pre-processed data and j is a complex 
number. The Pn[q] is computed only up to M=N/2 
values since the signal is of real-valued. Thus, a ten-
dimensional spectral log energy feature vector F is 
obtained consisting of energy values for each times-
tamp in frequency bands of 0.0−1.0, 1.0−1.8, 1.8−3.3, 
3.3−5.9, and 5.9−10.7 (Hz). It is identified that only 
the secondary (1.0-1.8 Hz) and tertiary (1.8-3.3 Hz) 
bands show the highest chewing properties and are 
considered as the chewing bands.

Algorithm 1: RMWC Chew Monitoring
Input: Pre-processed Training data X, Extracted 

Features F
Parameters: Classifier C, Threshold Value V, 

Weights W, Median Array M, Estimated Value E, 
Matrix A, No. of chewing samples R, Loop variables  
i, j, Intermediate Value K

Output: Inference I
1: �Select desired features from F and build an 

Ensemble learning model C
2: Assign W to F
3: for each F in X
4: �Calculate M

for j=0 to R-1

M X
X X

i
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5: Combining W and M
for i=0, j=0 to R-1
Aij = Wi * Mi ; j = j + R
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A
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=

The recording equipment consists of a PPG sensor, a 
Microphone, and a Triaxial Accelerometer. The PPG 
readings are used to recognize the chewing activ-
ity, and microphone recordings are used to detect the 
instances of swallow activity. To analyze the calorie 
intake of a person, there is a need to determine the 
chewing rate as the energy intake depends on it (32). 
To estimate the chewing rate accurately, the discrimi-
nation of saliva from swallow is necessary, and thus, 
the eating behavior can be determined. Parallelly, the 
physical activities are determined by the accelerometer, 
and the energy expended through it is calculated. A 
final report consisting of information about the eat-
ing behavior and calories consumed and expended is 
generated to stay hygienic and healthy.

C.1 Chewing detection

For the detection of eating episodes and absorbing 
the nutrients of the food well, monitoring of how the 
individual masticates and how their body behaves in re-
sponse to ingestion is necessary. To extract the features, 
the time varying spectrum (TVS) of the signal is esti-
mated using the Welch method (3) by calculating the 
Discrete Fourier transform (DFT) coefficients for each 
window. The sample size is considered as N=128, and 
the Hamming windowing technique is applied over 
each sliding window. The sample step is taken as 2, and 
the sliding window is moved for every 6 seconds. Since 
there are overlapping windows for each frame, the opti-
mal average of the DFT coefficients is considered.
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N[ ] 1 [ ]
0

1
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=

−
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(1)

Figure 2. Workflow of proposed IPAM system.
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which is to be identified. The swallowing events are 
most often clearly visible as peaks (6), and moreover, 
the liquid contents result in higher and sharper am-
plitude and magnitude in comparison with the solid 
items which are shallow. Therefore, there is a need to 
detect swallow events efficiently. In this paper, Tem-
porally Efficient Bidirectional (TEB) Chew bout 
detection algorithm has been proposed to determine 
the swallow peaks, discrimination of salivary events, 
and the presence of consecutive chews based on the 
context of occurrence of swallow. At first, the input 
microphone signal X is univariate uniformly sampled 
into N samples, and the samples are processed by slid-
ing the window W where {Wm = 2m|m =1, 2,…, L}, 
and L = (N/2) – 1. The data is detrended quadrati-
cally and polynomial function is applied by finding the 
least-squares fit in contrast to the existing approach 
to determine the obtained sequence of values. Then, 
a matrix of values is generated using a random num-
ber in uniform distribution around the local maxima 
within a specific time frame, as in (2). A minimum 
threshold value is evaluated by calculating the row wise 
summation of M. The global minimum value is picked 
up for calculating the column wise standard deviation 
of M and thus the peak vector is obtained.

Value n in Matrix M
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In equation (2), M represents L* N matrix, µ rep-
resents a random number in a uniform distribution 
in the range [0,1], and the set of values of n where 
µ+constant factor are assigned for values from n=1,…, 
m+1 and n=N-m+2,…, N. However, often there is 
misclassification of saliva and swallow instances lead-
ing to the problem of classifying saliva events as swal-
low occurrences. Hence, the discrimination of the 
saliva events from swallowing activity is necessary and 
is performed after identifying the peaks. Swallowing of 
saliva normally occurs only when there are not many 
eating instances. The probability of consuming saliva 
is high and is being detected only in the silent periods 
of the signal where much of eating events have not 
been taken place. Accordingly, the feature extraction 
is used as performed in (3) on microphone signals by 
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The next step after extracting the features is clas-
sification. The Random Median Weighted Classifier 
(RMWC) model is proposed where the random for-
est classifier (RFC) and the median weighted algorithm 
have been combined. RMWC model is employed as it 
could provide efficient estimations and has the power 
to handle a large amount of data. As the weighted me-
dian algorithm (19) is robust to outliers, the chewing 
behavior can be detected more accurately. The model 
uses 70% of data for training and the remaining 30% 
for testing. The features of the model are assigned with 
high weights and low weights, decided empirically, to 
the chewing bands and the second-order priority bands, 
respectively. The median value is computed on the train-
ing set for every feature and combined with weights to 
calculate the threshold (as step 6 in Algorithm 1) and 
to be compared with the estimated value in the test-
ing data. The ensemble learning is applied by build-
ing sub-models that predict a class, and the class with 
maximum value is considered as the output. Thus, the 
output provides information about individual chewing 
behavior with respect to normality. The 10-fold cross-
validation is used as it has lower variance and the classi-
fier produced a higher accuracy of 97%, as discussed in 
Section IV. Besides, the data containing only the chew-
ing signals is considered such that (-1) indicates below 
normal, (0) indicates normal and (+1) indicates above 
normal chewing activity. The non-chewing segments 
are not considered for detection purposes. Therefore, 
the three classes distinguish how the chewing behavior 
of an individual varies with respect to normal chewing. 
The normality refers to the normal chewing behavior.

C.2 Swallowing recognition

The necessity of a swallowing recognition algo-
rithm is to avoid being prone to diseases such as Dys-
phagia and Parkinson’s, which lead to difficulty in 
swallowing, especially in elderly people (22). Gener-
ally, the swallows can occur at unspecified times (28), 
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Right_Flag = True

14: if Left_Flag=Right_Flag is True

15: C S
DR

i= ; print CR and SS

16: else
17: print LS

These features largely contribute to the discrimi-
nation to avoid the misclassification, which is likely to 
obtain. After discriminating saliva from swallow events, 
for each phase between the detected peaks from the peak 
vector, a varying window is applied. This window is pro-
cessed simultaneously from both sides back and forth; that 
is, the window is moved bidirectionally in order to find 
the presence of any chewing activity. This bidirectional 
movement is necessary to understand the contextualized 
occurrences of swallow. For e.g., the chewing of crispy 
foods into pieces will be classified as SS, as they must 
have been broken down before swallowing. Thus, the left 
and the right half are recursively processed to determine 
and track the continuous movement of the microphone 
signals. The signals may also produce continuous peaks 
representing the consumption of liquid intake without 
delay. Hence, the context, i.e., the swallow occurred be-
cause of liquid or solid food consumption, is determined 
to avoid any misclassification in swallow counts and 
chew signals. Thus, the swallow events are even more 
accurately determined. Besides, the chewing rate is esti-
mated considering the duration and length of each sig-
nal from bottom to top and reaching bottom again, as 
stated in TEB. As the loop runs from both sides, TEB 
executes in lesser time than the usual peak detecting al-
gorithm. This bidirectional way of determining the pres-
ence of chewing cycles and bouts overcomes the higher 
execution time of the bottom-up algorithm (27). Hence, 
the time complexity optimally reduces to O (log n),  
which is better than the linear processing of O(n2).

estimating the TVS, which captures frequencies till 
1000 Hz, and the coefficients are collected in nine en-
ergy bands with the window size of 0.3 seconds. The 
values of Skewness and Kurtosis (21) plays a vital role 
in determining the characteristics of salivary consump-
tion. The distribution of values, whether positively or 
negatively skewed and higher peaked value, determines 
the swallowing of saliva. The energy capacity of saliva 
swallow is of shorter amplitude and low production in 
comparison to that of any solid swallow (SS) or liquid 
swallow (LS) and is represented in equation (3).

Energy for Saliva (ES) < Energy for Swallow 
(ESW) (3)

Algorithm 2: TEB
Input: Pre-processed Input data X
Parameters: No. of Samples N, Ceil values array L,  

Matrix LSM, Time t, Polynomial function P, row-
major calculation µk, global minimum β, Loop vari-
able i, Sliding Window Wn, Peak vector PQ, Previous 
Peak Index Ppr, Next Peak Index Pnt, Signal Values S, 
Window Index W, Duration D, Intermediate Value ct, 
Intermediate Value V, Condition Variable Left_Flag, 
Condition Variable Right_Flag, Skewness SK, Kurto-
sis K, constant α, Energy of Saliva ES, Saliva events 
vector SQ

Output: Chewing Rate CR, Solid Swallow SS, 
Liquid Swallow LS

1: Evaluate P(t)	 f P t for Xi
i

N

( ( ))
1

∑
=

2: Fit values of L=(N/2) – 1 for each Wn

3: �Update values in LSM as given in (2) and find 
β = min(µk)

4: Peak vector PQ is determined
5: for each i in PQ

6: V = Calculate SK, K and ES

7: �if V represents ES as in (3), SK, and K, append 
V to SQ

8: Update PQ removing SQ

9: for each consecutive peak in PQ

10: Calculate S

	
S Xi i

i P

P

pr

nt

∑=
=

11: �Initialize W = (Pnt – Ppr)/2, 
Left_Flag=Right_Flag= False

12: for i=Ppr to W
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subset (ρ, θ, ϕ) gives us the posture information and an-
gle of twist. These multiple subsets (20) are formed and 
used as features to identify which subset gives optimal 
performance to distinguish one activity from another. 
The identified features are fed as input to the hierarchical 
clustering algorithm, which forms clusters starting from 
the single large cluster decomposed into smaller atomic 
clusters as the points were far apart. Euclidean distance is 
used to determine the closeness of two points, and prox-
imity helps in recognizing similar actions. Then, using the 
similarity measure, the least similar clusters are grouped 
together to form five different activities. To distinguish 
the activities more accurately, the obtained cluster labels 
are considered a feature and fed as input to the RFC 
model for better classification and discussed in Section V.

C.4 Eating behavior estimation

As saliva swallow instances play a vital role in 
monitoring the food intake and detecting the chewing 
activity, the discrimination of saliva from solid/liquid 
swallow can accurately estimate the eating behavior of 
an individual. Spectrograms are computed on chewing 
signals in time-frequency domain where the fast Fou-
rier Transform (FFT) size=128 samples and sample 
rate=2000. The rate of chewing from TEB is used to

Algorithm 3: Estimation of Calories
Input: �Change in Acceleration ΔA, Change in 

Time ΔT, Rho ρ, Phi ϕ, Theta θ, signal 
values (of an accelerometer) i, Clusters C

C.3 Physical activity analysis

Motion in a subject is usually characterized by the 
speed of movement or acceleration A. Static accelera-
tion, owing to gravity and dynamic acceleration, can be 
detected by a device called triaxial accelerometer (7). 
The accelerometer captures the signals along x, y, and z 
axes, with the timestamp. Because of the gravity in the 
downward direction towards the earth’s surface, an ac-
celerometer at an idle or inert state may move upwards. 
Hence, a high pass FIR filter with 1 Hz is applied to 
eliminate the 1g acceleration for all the objects sub-
jected to it (26).

+∆ = −1( ( ) ( ))i iA abs A time A time 	 (4)

The change in acceleration ΔA, calculated as in 
equation (4) is necessary to decide the activity being 
performed with respect to change in time ΔT. The cal-
culated features such as acceleration, change in time 
and the tilting angles, as in equation (5), (6), and (7), 
namely pitch ρ, theta θ, and phi ϕ, between the di-
mensions, give us postures of the activities relative 
to the ground (25). For predicting different activities 
into groups, the rule-based classification based on the 
IF-THEN rules framed is used to satisfy two or more 
conditions simultaneously.

*ρ π
 
 = + 
 

2 2180 x
arctan y z

	

(5)

*ϕ π
 

=  + 
2 2180

y
arctan x z

	

(6)

*θ π
 
 = + 
 

2 2180 z
arctan x y

	
(7)

The rules are manually identified based on the val-
ues present in the dataset. The optimally suitable rules 
are chosen to classify the activities and the rules gener-
ated are defined in Table 1.

The subset (ΔT, ΔA) provides the intensity and 
duration of the activity, and the tilt angle measurement 

Table 1. Generated rules for classification of activities.

Rule1 ΔA > 4.2 m/s2 for ΔT of 3 seconds, 
Activity=Motion

Rule2 ΔA < 0.2 m/s2 for ΔT of 6 seconds, 
Activity≠Motion

Rule3 Activity≠ Motion and ρ≈90°, θ≈0°, ϕ≈0°, Standing

Rule4 Activity≠ Motion and ρ≈ 90°, θ ≈ 90°, ϕ ≈ 0°, 
Sitting

Rule5 Activity=Motion and ρ≈90°, θ≈105°-115°, 
ϕ≈170°-180°, Walking

Rule6 Activity= Motion and ρ≈42°, θ≈9°-13°, ϕ≈13°-16°, 
Walking including stairs

Rule7 Activity= Motion and ρ ≈40°-50°, θ ≈ 140°-150°, 
ϕ ≈ 90°-100°, cycling
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calories depends on many determinants such as age, 
weight, height, gender, etc. The major macronutri-
ents (M) consumed regularly are Carbohydrates, Fats, 
Proteins, Alcohol, and is considered for estimation. A 
standard 1 cup measurement is considered as 250ml, 
and 1 spoonful is considered to be 15 ml. The quan-
tity (Q) of food is obtained from the dataset, contain-
ing the details about the foods consumed. The energy 
equivalents of the macronutrients are identified in kJ. 
The Q and the number of servings add on to estimate 
the intake of calories (36). The M is multiplied with its 
appropriate EE values in kcals and is summed up for 
all the Figure 3 macronutrients of the food. The higher 
and lower chewing rate per bite, ingested low and 
high energy into the body respectively. The base value, 
quantity of the food was considered from the dataset 
for ground truth and further estimated the required 
information. The estimation of calories is described 
in algorithm 3. The energy expenditure is calculated 
by combining the MET value of each activity multi-
plied with BMI value and the time taken to perform 
the activity. Similarly, it is calculated for each activity 
and summed up to obtain the total energy expended. 
A correlation graph illustrating the estimated calorie 
versus the actual calorie intake, demonstrating a high 
correlation coefficient (R2) of 0.9057 and is shown in 
Figure 3.

Parameter: MET Values V, Macronutrients M, 
Quantity Q, BMI B, Initial value I, Energy Equiva-
lents EE, Intermediate Value A

Output: Calories Intake Cin and Calories Ex-
pended Cout

1: for each i
2: calculate average of ΔA with respect to ΔT
3: �calculate the values of ρ, ϕ, θ from equations 

(5,6,7) for each day
4: Cout =0
5: for each activity in C
6: Determine V for activity
7: I = Combining B and V
8: Cout = Cout + I
9: print Cout

10: for each food
11: Determine Q
12: for each row in M
13: A = Multiply row and EE
14: Cin = Cin + A
15: return Cin

determine the calorie consumption as it is af-
fected by the energy intake. Additionally, the human 
body also requires the intake of minerals and vitamins 
to maintain the dietary level of energy. The intake of 

Figure 3. Correlation graph illustrating the estimated calorie versus ground truth.
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to continuously monitor and evaluate the RMWC 
model on different subjects, cumulative based evalua-
tion is carried out. This evaluation of the precision and 
recall of all the subjects are shown in Figure 5 provid-
ing a clear depiction of the proposed RMWC model 
with higher accuracy.

Figure 6 shows the analysis between an individual 
and conventional (normal) chewing activity, indicat-
ing fast chewing behavior as the deviation is high. The 
y axis indicates the amount of variation between the 
two and x axis indicates the time in secs. Moreover, 
the completion of chewing activity falls in the range 
of [0,18000] seconds. This depicts that the chewing 
behavior is above normal conduct. The identification 
of fast chewing indicates that the person is not biting 

Experimental evaluation

The experiments were conducted to evaluate and 
validate the performance of ingestive events and as-
sess the physical activity. Primarily, the learning curve 
of the RMWC model indicating the cross-validation 
score in (%), is shown in Figure 4. Besides, the ac-
curacy of the RMWC model turns out to be 97%, 
whereas 88% is obtained for SVM as given in (3). 
The parameters for SVM are regularization param-
eter Cϵ{10i, i = −2,−1,0,1,2} and radial basis kernel  
γϵ{γ0

i,i = −2,−1,0,1}, where γ0 = D−1 is the standard 
value in libSVM library. Here, D represents the num-
ber of features (D = 15 for audio and D = 10 for PPG) (3).

The SVM classifier could not fit since the data-
set is very large and not robust to outliers. On the 
contrary, the parameters considered for RMWC are 
max_features=sqrt (no. of features), n_estimators=110, 
min_samples_leaf=2 and min_samples_split=2. Thus, 
RMWC involved constructing smaller decision trees 
where the weights assigned were of energy features. 
Here, ensemble learning was performed achieving a 
significant performance. Furthermore, the precision 
vs. recall curve of RMWC model achieves an average 
precision of 0.98. In equation (8), True positive (TP) 
indicates the number of correctly classified chewing 
events.

TP
TP FP , TP

TP FNPrecision Recall= + = + 		
(8)

False positive (FP) and False negative (FN) indi-
cate the number of chewing events that were not con-
sidered above and below normal respectively. In order 

Figure 4. Learning Curve of RMWC.

Figure 5. Evaluation of chewing activity on all subjects.

Figure 6. Chewing behavior analysis of subject 1.
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the food into pieces and is consuming in a high-speed 
manner than normal, leading to indigestion and acid 
reflux problems. Moreover, the discrimination of sa-
liva from the swallow instances is an unaddressed 
challenge and is distinguished based on the charac-
teristics of saliva efficiently by the IPAM system. The 
features such as the energy during the silent periods 
in the signal, skewness, and kurtosis are used for dis-
crimination, and the graph is shown in Figure 7. De-
termining the percentage of the presence and absence 
of saliva events in swallow occurrences by discrimi-
nating them correctly avoids any false assumption of 
ingestive activities.

The terms “Swallow with Saliva” is referred as 
“Saliva Swallow” and “Swallow without Saliva” is re-
ferred as “Swallow instances” or as “Solid Swallow/
Liquid Swallow”. The comparison graph of the execu-
tion time between the existing Chewing cycle detec-
tion (27) algorithm with TEB has improved by 8% 
and is depicted in Figure 8. The swallow events are 
detected with higher accuracy as shown in Figure 9. 
TEB is validated by building a neural network model 
with 10-fold cross-validation consisting of 70% of 
training data and remaining for testing to reduce lot 
of variations that might affect performance. There are 
32 nodes in the first hidden layer and 12 nodes in the 
second hidden layer with ‘ReLU’ activation function. 
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higher accuracy and are used to determine the energy 
expended by the body, as discussed in Section V. The 
average calories expended on each activity for the en-
tire dataset is shown in Figure 11.

The classified output from the TEB model is validated 
against the ground truth labels in the neural network 
model wherein the label (1) indicates the presence of 
swallow, and label (0) indicates non-swallow.

An accuracy of 97.5% is obtained, which conveys 
that the new data can be identified more accurately. 
Furthermore, the coordination of all three activities 
chewing, swallowing and physical activities are veri-
fied, such that no two activities happen simultaneously.

The synchronization of all the recordings ob-
tained from different devices helps us differentiate be-
tween distinct behavior such as chewing, swallowing, 
and physical activity to avoid any further misclassifi-
cation between them. The occurrences were classified 
correctly, such that the events were getting coincided. 
Next is the recognition of the physical activity, which 
is a time series prediction, and the rate of change of 
acceleration provides an important measure in de-
tecting the activity. The activities were discriminated 
considering the motion of the body, the intensity of 
movement and the angle of twist. A scatter plot is 
used to visualize the clusters of different physical ac-
tivities, as in Figure 10. Moreover, the physical activi-
ties were further classified using RFC classifier with 
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Table 2. Eating behavior of subjects.

S SI Th AV CA TC CI CB

S 1 949 0.405 0.26 Below 689.5 621.97 778.05

S 2 258 0.339 0.16 Below 709.8 620.89 1055.6

S 3 770 0.074 0.28 Above 768.3 696.2 1111.7

S 4 100 0.166 0.33 Above 738.6 689.11 809.47

S 5 439 0.176 0.16 Normal 811.2 805.68 895.51

S 6 184 0.101 0.32 Above 728.2 675.24 977.2

S 7 181 0.181 0.34 Above 708.6 658.19 1002.4

S 8 161 0.279 0.07 Below 602.3 520.60 960.59

S 9 261 0.291 0.17 Below 682.4 592.31 962.84

S 10 103 0.286 0.27 Normal 735.9 730.14 694.71

S 11 900 0.281 0.14 Below 899.1 653.27 862.29

S 12 690 0.106 0.34 Above 1012.5 923.44 987.53

S 13 1137 0.300 0.31 Normal 648.2 639.21 924.38

S 14 189 0.278 0.27 Normal 1016.2 1004.3 981.54

Discussion

The objective of this paperwork is to propose an au-
tomatic dietary food intake monitoring system. The first 
step in determining the ingestive activities is to analyze 
the chewing behavior of an individual. Hence, the chew-
ing behavior of a person is detected and distinguished 
using the RMWC method as above, below, or normal 
behavior. The proposed RMWC model produced 97% 
accuracy and an average precision of 0.98 with cumula-
tive based evaluation. However, distinguishing swallow-
ing events play a vital role in accurately determining the 
chewing activity. Therefore, to avoid incorrect predic-
tions of chew and swallow counts, there comes a need 
to determine the context of swallow occurrences to 
know whether the swallow is a liquid or a solid swallow. 
Hence, a novel TEB algorithm has been proposed. The 
relevant swallowing peaks are identified, and the bidi-
rectional method is used to determine the context of the 
occurrence of swallows. For e.g., the dominant sounds 
produced by chewing of crispy foods will be detected 
as the presence of chewing activity before swallowing 
and is classified as SS by TEB. Thus, the bidirectional 
execution is necessary. However, the energy intake of a 
person depends on the rate of chewing and is estimated 
by TEB. Thus, the detection of all these ingestive activi-
ties and chewing rate help determine the proper eating 
guidelines. The F1 measure of the swallowing evaluation 

of TEB on the entire dataset reaches about 94.8%. Fur-
thermore, the swallow instances are validated against the 
ground truth labels by building a bidirectional neural 
network model achieving the highest accuracy of 97.5%. 
Next, the energy expended through physical activities 
is determined. The clustered labels of the physical ac-
tivities determined are used as an input feature to the 
RFC model and validated achieving a recognition per-
formance of 98.1% in distinguishing the activities more 
accurately. The physical activities are determined from 
the values present in the dataset of accelerometer. The 
Metabolic Equivalent of Task (MET) values are identi-
fied using (35) for each of the physical activity carried 
out by the participant and the energy expended based 
on mild or heavy activities were computed. The human 
weight impacts in estimating the expended energy. The 
body demands indispensable calories, but the exces-
sive calories supplements to gaining weight. Thus, the 
physical activities performed by the participants help in 
calculating the calories expended through it. The IPAM 
system could now analyze ingestive behavior and nutri-
ent estimation. The data has been gathered from all the 
detected events and examined to generate a report. The 
entire ingestive behavior of an individual, and the quan-
tity of energy consumed and spent, have been reported 
to indicate the progress of the person to know their 
health. The eating behavior of all the subjects has been 
tabulated in Table 2 to study how the behavior of the 
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Conclusion
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