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Abstract. Objective: In this paper, hierarchical ways of constructing a fuzzy regression model using the jack-
knife resampling technique were the basis of the study. Fuzzy techniques are based on blurring the coeffi-
cients, while the jackknife technique is based on the delete one and delete-d observations. Methods: This study 
aimed to estimate the deviation, standard error, and confidence interval of the regression coefficients calcu-
lated by the jackknife Revised Tanaka ( JFLR) technique, and to compare the performance of the jackknife 
least squares ( JOLSR) technique with the relevant estimates. Results: The calculation of estimates is presented 
with a clinical numerical example. The deviation of the Revised Tanaka FLR model, standard errors, and con-
fidence intervals of regression coefficients were found to be significantly smaller than the estimated JOLSR 
standard errors. The value of MSE calculated by fuzzy jackknife regression based on Revised Tanaka FLR 
technique was found to be bigger than MSE calculated by JOLSR technique. Conclusion: Jackknife OLS and 
jackknife FLR regression methods can be used effectively for parameter estimation, and the jackknife revised 
Tanaka regression method gives more reliable and valid results.
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O r i g i n a l  a r t i c l e

Introduction

Statistical regression analysis is considered a useful 
estimation technique used in different scientific fields. 
Regression analysis, including statistical regression 
analysis and fuzzy regression analysis, aims to deter-
mine the best-fit model for describing the functional 
relationship between dependent variables and inde-
pendent variables by exploiting the knowledge from 
the data pairs obtained as a result of the measurement. 
It is assumed that some differences may arise between 
observed values and the estimated values due to meas-
urement errors and modeling errors. As the source of 
some differences, in many real-world problems, obser-
vations are usually described as approximate values 
instead of exact values due to a lack of information or 
inexact knowledge (1). In these cases, for linear regres-
sion with normal random errors εj having a constant 

variance, the least squares theory of regression estima-
tion and inference provides clean, exact, and optimal 
methods for analysis. But for generalizations to non-
normal errors and non-constant variance, exact meth-
ods rarely exist, and we are faced with approximate 
methods based on linear approximations to estima-
tors and central limit theorems. Ordinary least squares 
linear regression, wherein ideal conditions resampling 
essentially reproduces the exact theoretical analysis, 
also offers the potential to deal with non-ideal cir-
cumstances such as non-constant variance. The prob-
ability distributions for the observations either cannot 
be found or can be done so only with great difficultly 
for such a data fuzzy set. The fuzzy set theory intro-
duced by Zadeh (2) has caused to do valid and reli-
able applications in many areas of studies. The theory 
of fuzzy set is preferred because it handles uncertainty 
and vagueness.
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The fuzzy regression analysis is a new statistical 
regression analysis technique that combines the ordi-
nary least squares regression technique with the theory 
of fuzzy logic. The approach is one of the most widely 
used statistical techniques for evaluating the functional 
relationship between dependent and independent vari-
ables in uncertain situations. In fuzzy regression analy-
sis, the relationship between dependent variables and 
independent variables is not as precise as in ordinary 
least squares regression analysis (3-5). In these cases, 
the jackknife resampling technique has the potential 
to provide more accurate analysis. The use of the jack-
knife resampling technique in linear regression and 
fuzzy linear regression is important. Regression analy-
sis is one of the areas in which fuzzy set theory is used 
frequently since Tanaka (6) initiated research on fuzzy 
linear regression (FLR) analysis. This area is widely 
developed, and a wide variety of methods are proposed. 
In general, there are two approaches in the analysis of 
fuzzy regression models: the possibilistic approach 
and the fuzzy least squares regression (FLSR) analysis 
method, which is based on linear programming (LP). 
One approach to deal with FLSR is Linear Program-
ming (LP). The fuzzy least squares (FLS) technique, 
an extension of the least squares technique to fuzzy set 
theory, was first introduced by Tanaka and developed 
by others. The different aspects of the method were 
investigated by Celmins (7), Diamond (8), Diamond 
and Körner (9), Savic and Pedrycz (10), Chang and 
Lee (11). The technique has been introduced to mini-
mize the fuzziness of the analyzed data and the total 
spread of the output (see, for example (5, 12, 13)). The 
approach is based on blurring the coefficients. Blurring 
can be done in two ways. It is possible by 1) blurring 
the model coefficients estimated by the ordinary least 
squares technique at a specified “h level”, or 2) esti-
mating the coefficients as fuzzy numbers (14). Most 
of these fuzzy regression models are considered with 
fuzzy outputs and fuzzy parameters but non-fuzzy 
(crisp) inputs. The estimation process in fuzzy regres-
sion analysis is carried out based on both dependent 
and independent variables that take numeric values. 
For constructing models, a least-squares technique is 
usually adopted to find the regression coefficients using 
the collected observations of independent and depend-
ent variables. The determination of the regression 

coefficients is important since they are used to describe 
the contribution of the corresponding dependent vari-
able. Here, the basic idea is to minimize the fuzziness 
of the model by minimizing the total uncertainty of the 
fuzzy coefficients, which were calculated using all data.

Jackknife resampling method is the process of 
taking repeated samples from the main sample data set 
of n volumes selected by chance sampling method in 
order to obtain a new sample. The logic of the jack-
knife method is “leave someone out.” In other words, 
in order to create new Jackknife samples from the 
main sample data set of n capacity, one observation 
is excluded each time and n pieces jackknife subsam-
ples, each consisting of n-1 observations, are created. 
The observation excluded is returned (by putting it in 
place) and the process continues until all other obser-
vations in the sample have been excluded. Each Jack-
knife sample produced represents the property of the 
main sample’s data. The jackknife or “leave one out” 
logic is a cross-validation technique first developed 
by Quenouille (1949, 1956) to estimate the bias and 
variance estimation from estimators (15, 16). The 
technique is a process of estimating the unknown 
parameters through Jackknife samples obtained by 
resampling the original sample (17). First, the param-
eters are estimated from the whole sample. Then, 
each element is, in turn, dropped from the sample 
and the parameter of interest is estimated from this 
smaller sample. A pseudo-value is then computed as 
the difference between the whole sample estimate and 
the partial estimate. These pseudo-values reduce the 
bias of the partial estimate. It is also used to obtain 
improved estimates and confidence intervals for com-
plicated statistics (18). It is resampled artificially based 
on the original sample, and the estimated value of each 
parameter is obtained by the Jackknife sample as the 
observation value. The real purpose of the Jackknife is 
a logic that is used to obtain an unbiased prediction, 
reduce the random effects, and minimize higher risks 
(19, 20). The most important feature of the technique 
is that it can obtain an unbiased or small-bias estimate 
of the parameter values of the original sample by using 
only one sample by sampling (21). 

The aim of this research was to estimate the 
jackknife OLS and jackknife FLS regression coef-
ficients with anthropometric measurement variables 
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such as head circumference and abdominal circum-
ference, height, chest circumference, and gender 
using the jackknife delete-one algorithm. It was also 
aimed to evaluate the relationships between anthro-
pometric measurement variables such as head cir-
cumference with abdominal circumference, height, 
chest circumference, and gender by using in the 
clinical context.

Materials and Methods

Revised Tanaka regression (FLR) analysis

According to the FLSR approach, it is assumed 
that the deviations between the observed values and 
the predicted values are caused by the uncertainty of 
the system structure or the blurring of the regression 
coefficients, not from measurement and observation 
errors, contrary to the OLSR analysis method (22). 
Because of that, they introduced FLR model. He et 
al.(22) clarified that the hi (0 ≤ h ≤ 1) value, which is 
referred to as the degree of fit of the estimated fuzzy 
linear model to the given data, in Tanaka’s FLR model 
depends not only on the estimated ’s spread but also 
on the distance between ’s center and observed. 
Therefore, they proposed a new model by develop-
ing the objection function in Tanaka’s FLR. It is seen 
in the proposed model that, the system of fuzziness 
decreases, and the average of estimated  values i.e  
increases compared with Tanaka’s model. So, the nov-
elty of this article is to estimate the fuzzy regression 
parameter with the help of He et. al (23). So, He et. 
al’s FLR is used in the parameter estimation of the 
fuzzy regression for the first time in this study. The 
title of our study is “ Fuzzy Jackknife Regression Based 
on Revised Tanaka FLR”. FLR which is mentioned in 
this paper revised Tanaka FLR. He et al. (23) denoted 
that their method gives better estimation than Tanaka 
FLR’s.

That is, it assumes that the coefficients of the 
regression analysis model are related to its blur. For this 
purpose, the formula below is employed to estimate 
parameters of Fuzzy Regression Based on Revised 
Tanaka FLR “;

	 (1)
It is given by. Here; , x denotes the dependent 

variable in the symmetric triangular property struc-
ture estimated as a fuzzy number and is shown as 

. , denotes the mean value (center) and 
, denotes the propagation value.

In the case of fuzzy observations, consider a 
fuzzy linear regression for crisp explanatory and fuzzy 
response observations as follows:

 (2.b)
It is defined by  In the fuzzy LS 

regression model, the data of the dependent  variable 
can be real numbers or fuzzy numbers. It is generally 
assumed that the data for the dependent  variable are 
symmetrical fuzzy numbers of interval type (24).

In which  
is the coefficient values of the independent vari-
ables in the function and It is a set of dependent 
and independent variables formed in the form of 

, and each depend-
ent variable observation is expressed as x∈X 

. That is, they are crisp 
values of the explanatory variables.

 are fuzzy regres-
sion coefficients vectors with a symmetric triangular 
fuzzy number structure and they are fuzzy numbers 
in the form of   (j: 0,1,2,3,….,p-1).  is 
the value representing the midpoint of the 
coefficients, that is, the center value, and has the form 

. , shows the spread of the coeffi-
cients belonging to the fuzzy regression analysis model 
and is  shaped (24). 

Each coefficient value  
has a symmetric triangular property structure and is,  
(j: 0,1,2,3,…,p-1) (6,25)

The  value of the fuzzy coefficients was 
estimated by the minimum blur method proposed by 
Tanaka. The method is given in the following equation. 

In Possibilistic Regression Analysis proposed by 
Tanaka and lshibuchi (1992) (26), the linear program-
ming (LP) formulation considers triangular mem-
bership functions (not necessarily symmetric). The 
parameters of fuzzy regression can be estimated by 
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using the objective function and constraints shown 
The LP formulation is follow (3):

and, 
,

Here, Z(x): function shows the total blur in the 
model. SF is the system fuzziness. m: is the number of 
observations regarding the dependent variable j: The 
number of arguments. : is the ith observation value 
of the jth independent variable. For each predicted  
observation value, the constraint number must be 2xn 
(27). In order to minimize the total spread, the level h, 

, the predictor of each observation value , is assumed 
to have a turbidity tolerance  i=1,2,..,m. (28) 
In Equation 3, the objective function is weighted with 
the absolute values of the measurements of the dis-
tributions of the independent variables. The applica-
tion of Jackknife resampling technique in fuzzy least 
squares regression analysis is given below.

Fuzzy Jackknife Regression Based on Revised Tanaka 
FLR Algorithm.

In this section, algorithm for fuzzy jackknife 
regression based on revised Tanaka ( JFLSR) models 
based on the resampling observations was given. These 
approaches are usually applied when the regression 
models built from data have fixed explanatory vari-
ables. There are two cases of jackknife resampling. The 
first of them is based on deleting a single case from 
the original sample (delete one jackknife), and the sec-
ond is based on deleting multiple cases from the origi-
nal sample (delete d jackknife) sequentially (29-31). 
In the study, an algorithm based on deleting a single 
case (delete a jackknife) from the original sample was 
applied. The jackknife fuzzy regression analysis proce-
dure is as follows.

Steps of The Algorithms for Delete-One Jackknife Revised 
Tanaka Regression. 

To describe the resampling methods we start 
with an n sized sample  and assume that 

s are drawn independently and identically from a 
distribution of F, where  contains the 
responses,  is a matrix of dimension 
nxk, where j = 1,2,...k, i = 1,2,3,...,n. Let the px1 vector 

, (i = 1,2,…,n) denote the values associated 
with ith observation. In this case, the set of observa-
tions are the vectors (  ). The jackknife 
procedure based on delete-one (do) is as follows (32).

1(do). Draw n sized sample from population ran-
domly and label the elements of the vector  
as the vector  and the matrix 

 where j = 1,2,...k, i = 1,2,3,...,n.
2(do). Omit the first row of the vector  

and label remaining n-1 sized observation sets =(
 and  as delete 

-one Jackknife sample  and estimate the FLS 
regression coefficients  from . Then, omit sec-
ond row of the vector  and label remaining 
n-1 sized observation sets = (  and 

 as  and estimate the FLS 
regression coefficients . Similarly, omit each one 
of the n observation sets and estimate the regression 
coefficients as  alternately, where  is Jackknife 
regression coefficient vector estimated after deleting of 
ith observation set from .

3(do).Obtain the probability distribution  of 
Jackknife estimates  

4(do). Calculate the jackknife regression coefficient 
estimate which is the mean of the  distribution 
(33) as;

5(do). Thus, the delete-one Jackknife regression 
equation is

	 (5)
An illustrative study that shows how the delete-

one Revised Tanaka Regression jackknife regression 
parameters are estimated was given in Table 2. 
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Revised Tanaka Jackknife bias, variance, confidence, and 
percentile interval. 

The jackknife bias, variance, and confidence inter-
vals are estimated by using the following equations 
from  distribution (19, 34, 35). The jackknife 
bias equals,

The jackknife variance equals,

where  is the estimate produced from the 
replicate with ith observation set or jth group deleted 
(36).

Jackknife (1-α) 100 % confidence interval equals 
(37).

	 (8)
where  is the critical value of t with prob-

ability α/2 the right for n-p degrees of freedom; and 
 is the standard error of the .

The jackknife percentile Interval can be con-
structed from the quantiles of the jackknife sampling 
distribution of . The (α/2) % and (1-α/2) % percen-
tile interval is

	 (9)
where  is the ordered jackknife estimates of 

fuzzy least squares regression coefficient from Equa-
tion 11 or 13, lower = (α/2) n, and upper = (1-α/2) n 
(38).

Goodness of Fit Test Criteria for Fuzzy  
Regression Models

In the study, in order to determine to what extent, 
the real observation values and the estimated fuzzy 
results are compatible with each other, the goodness 
of fit test criteria.

•	 MSE: Mean square error, 

	 (10) 

•	 Coefficient of determination (R2), 

	 (11)

Here; :  The nx1 dimensional predicted values 
show the vector. n: number of observations, p: number 
of input variables, : Shows the observed values (39). 

Results

Head circumference measurement is an important 
indicator in predicting brain development, especially in 
early childhood (40-41). Abnormal values in the head 
circumference can be an early sign of many diseases, 
including developmental retardation, as well as inher-
ited disorders. It is known that most of the change in 
the head circumference is due to genetic factors (42). 
In many studies, it has been shown that in addition to 
genetic and age factors, parental head circumference 
has an important effect on determining the reasons for 
the change in head size (43). In the study conducted to 
determine whether gender affects the head circumfer-
ence, it was determined that the mean head circumfer-
ence of the newborn boys is approximately 0.7-0.8 cm. 
larger than that of the newborn girls. Anthropometric 
measurement data of 50 healthy newborns (50% male, 
50% female) constituted the study sample. Anthro-
pometric measurements of the variables such as head 
circumference, abdominal circumference, body length, 
chest circumference, and gender of the newborns were 
taken retrospectively from specially created patient 
files and those variables are used in the JOLS and 
JFLS regression models that are summarized in previ-
ous sections. This example focuses onthe illustration 
and application of jackknife techniques in JOLS and 
JFLS regression analysis. The data pairs  of 
Table 1 population, (i = 1, …, 50) are used to demon-
strate the proposed procedure in a case where the crisp 
input X and crisp output Yi.

The jackknife procedure based on deletion (do) is 
applied to the data in Table 1 as follows.

1(do). First, the ordinary least squares regression 
(OLSR) model was fitted to data given in and the 
results of the ordinary least squares regression were 
summarized in Table 2. 

All regressions in Table 2 are significant (P<0.01) 
and the determination of coefficient , respec-
tively. The regression of BÇ on B and C is significant 



Progress in Nutrition 2021; Vol. 23, Supplement 2: e20212916

Table 1. n = 50 volume original data set

BÇ(Y ) KÇ(X1) B(X2) GÇ(X3) C

1 35 34.5 51 38 2

2 36 35 51.5 35.5 2

3 33 30 43 30 2

4 34 29 46 31 2

- - - - - -

47 35 30 48 32 1

48 29 28 46 29.5 1

49 35.5 32 47 33 1

50 33 32 48 32.5 1

BÇ: Head circumference (cm); KÇ: Abdominal circumference 
(cm); B: body length (cm); GÇ: Chest circumference (cm), 
C: gender

Table 2. The summary statistics of regression coefficients for OLS regression

Variables S.E.( ) t Sig 95% Confidence Interval

Constant 11.467 4.051 2,831 .007 (3.309) –(19.626)

KÇ(X1) -0.014 0.056 -0.260 .796 (-0.127) – (0.098)

B(X2) 0.273 0.100 2.730 .009 (0.072) - (0.474)

GÇ(X3) 0.267 0.116 2.309 .026 (0.034) - (0.500)

C(X4) 0.890 0.295 3.017 .004 (0.296) - (1.484)

R2=0.558, N = 50, SSE = 0.994, F = 14.216**

BÇ: Head circumference (cm); KÇ: Abdominal circumference (cm); B: body length (cm); GÇ: Chest circumference (cm), C: gender, 
SSE: sum of squares of error.

as a result of variance analysis (P<0.01**). According 
to the t-tests for significance of regression coefficients, 
KÇ and GÇ of the regression coefficients are signifi-
cant (P<0.01).

2(do). 3(do). 4(do). 5(do). The jackknife (jackknife sam-
ples, each of size n-1=50-1=49) regression procedure, 
from the data given in Table 1, calculating the OLS 
jackknife and FLR jackknife estimates of the OLS 
jackknife and FLR jackknife regression parameters for 
each sample are shown in Table 3.

The objective function in equation (3) is calcu-
lated as follows:

Above objective functions’ constraints are shown 
in equation (13) and equation (14) for the first and last 
data. For the first data;

 (13)
For the last data;

 ≤ 0.5  (14)

The coefficients obtained from Lingo 16. Soft-
ware are as follows:

The summaries of some OLS jackknife and FLS 
jackknife values of regression coefficients are presented 
in Table 4.

Jackknife samples are generated omitting each 
one of the n observation sets and estimated the regres-
sion coefficients as . The histograms of the jackknife 
estimates conform quite atypical to the limiting nor-
mal distribution for all regression coefficients.

The combined display of statistics calculated by 
jackknife OLS and jackknife Revised Tanaka FLR 
regression analysis methods applied for the estimation 
of head circumference of newborns is as in Table 5.

According to the JOLS and JFLR regression 
analysis methods, it was determined that there was no 
statistically significant difference between the observed 
head circumference values (cm) of the newborns and 
the mean measurements of the estimated head cir-
cumference values (cm). Based on these results, it was 
also seen in this study that the approaches were calcu-
lated with minimum deviation as a result of the study 
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Table 3. The of the jackknife (jackknife samples, each of size n-1=50-1=49) regression procedure from the data given, calculating the 
Jackknife OLS ve jackknife FLR regresyon estimates of the regression parameters for each sample newborn’s head cırcumference model.

Observation sets JOLSR JFLR

wi
(J) Variables 1 2 3 - 50

1

BÇ(Y)

om
itt

ed

36 33 - 33

9.952 -0.018 0.272 0.316 0.935 -6.471 0.094 0.412 0.496 1.058

KÇ(X1) 35 30 - 32

B(X2) 51.5 43 - 48

GÇ(X3) 35.5 30 - 32.5

C(X4) 2 2 - 1

2

BÇ(Y) 35

om
itt

ed

33 - 24.50

11.134 -0.011 0.281 0.262 0.901 -10.750 0.690 0.661 -0.295 0.718

KÇ(X1) 34.5 30 - 25.10

B(X2) 51 43 - 24

GÇ(X3) 38 30 - 19.07

C(X4) 2 2 1

3

BÇ(Y) 35 36

om
itt

ed

- 33

10.379 -0.011 0.292 0.270 0.850 -11.161 0.490 0.724 -0.151 0.746

KÇ(X1) 34.5 35 - 32

B(X2) 51 51.5 - 48

GÇ(X3) 38 35.5 - 32.5

C(X4) 2 2 1

-
-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

-
-

- -

50

BÇ(Y) 35 36 33 -

om
itt

ed

11.545 -0.011 0.276 0.259 0.866 -8.331 0.594 0.586 -0.163 0.602

KÇ(X1) 34.5 35 30 -

B(X2) 51 51.5 43

GÇ(X3) 38 35.5 30 -

C(X4) 2 2 2 -

11.479 -0.010 0.271 0.264 0.890 -7.726 0.572 0.574 -0.148 0.637

Table 4. The summary statistics of the regression coefficients for OLS jackknife and FLR Revised Tanaka jackknife regression (n=50)

Variables Observed Mean S.E. Bias
Confidence intervals

5%, 95% Persentile Interval

JOLSR

Constant 11.467 11.469 4.830 0.574 (10.556)-(12.115)

KÇ(X1) -0.014 -0.010 0.253 0.218 (-0.023)-(-0.009)

B(X2) 0.272 0.271 0.123 -0.083 (0.252)-(0.291)

GÇ(X3) 0.267 0.264 0.175 -0.104 (0.233)-(0.297)

C(X4) 0.889 0.890 0.255 0.021 (0.836)-(0.946)

JFLR

Constant 11.467 -7.726 1.504 0.605 (10.411)-(12.181)

KÇ(X1) -0.014 0.572 0.0 -0.022 (-0.026)-(-0.008)

B(X2) 0.272 0.574 0.0 -0.012 (0.246)-(0.293)

GÇ(X3) 0.267 -0.148 0.0 0.015 (0.196)-(0.309)

C(X4) 0.889 0.637 0.0 0.035 (0.833)-(0.953)

BÇ: Head circumference (cm); KÇ: Abdominal circumference; B: body length; GÇ: Chest circumference, C: gender



Progress in Nutrition 2021; Vol. 23, Supplement 2: e20212918

Figure 1. Histogram of jackknife OLS (n=50, (a), (b), (c), (d), (e)) and jackknife FLR 
(n=50, (a), (b), (c), (d), (e)) regression parameter estimates.

(a) (a)

(b) (b)

(c) (c)

(d) (d)

(e) (e)
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conducted for the application of JOLS and Revised 
Tanaka ( JFLR) regression analysis methods in cases 
where uncertainties and outlier observation values 
were found in clinical studies. The mean head circum-
ference observed and estimated by the JOLSR and 
JFLR regression methods were calculated as 34.60 cm 
and 34.22 cm, respectively. 

According to the JOLSR and JFLR regression 
methods, among the anthropometric measurements 
of the newborns, there was a significant relation-
ship between , ,  
(correlation is significant at 0.01 level(2-tailed) and 
the head circumference of the newborns, while no 
relationship was found between the abdominal cir-
cumference. According to the JOLSR and JFLR 
regression methods, it was determined that the 
height and gender of the newborn are the main fac-
tors affecting the head circumference of the new-
born. In the analysis of the head circumference 
values of newborns, it was determined by both mod-
els that gender should be taken into account as well 
as genetic characteristics. In addition, it was con-
cluded that the head circumference results calcu-
lated with the JFLR model represented the reality 
more strongly.

Discussion and Conclusion

Usually, researchers make recommendations by 
using methods that contain different assumptions, try-
ing to show them as alternatives to each other. How-
ever, it should be kept in mind that jackknife OLS 
and jackknife FLS regression approaches cannot be 
substituted for each other. Because the applicabil-
ity of each method is limited by various assumptions, 
their applications differ from each other. The jackknife 
OLS regression and jackknife FLR regression meth-
ods estimate the variation of a statistic from the vari-
ation of that statistic between subsamples, rather than 
from parametric assumptions, and may yield different 
results in many situations. So, they provide a way of 
decreasing bias and obtaining standard errors in situ-
ations where the standard methods might be expected 
to be inappropriate. But when the jackknife OLS 
regression method is used to estimate the standard 
error of a statistic, it gives very few different results 
when on the same data, whereas the jackknife FLR 
regression method gives the same result each time. In 
these cases, Heltshe and Forrester (1985) also reported 
that not only sample size but also the total number 
of individuals in the sample is important in improving 

Table 5. Statistics of the estimated mean head circumference values of newborns with the JOLSR and JFLR analysis approach

wi
(j)

Observed Head 
circumference values of 

newborns(cm) )

Head circumference values 
estimated with the JOLSR 

approach (cm) 

Head circumference values 
estimated with the JFLR 

approach (cm)

1 35 36.77 36.93

2 36 36.24 37.88

3 33 32.53 30.95

4 34 36.51 31.95

… … ... …

47 35 33.53 32.89

48 29 32.34 30.97

49 35.5 33.50 33.31

50 33 33.64 33.96

Mean 34.64 34.60 34.22

Standard error 1.434 33.64 21.97

Goodness of Fit Test Criteria
MSE( J)= 0.89 MSE(F)= 3.53

R2
observed/ Jestimated= 0.999 R2

observed/ Festimated= 0.997
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the jackknife estimators (44, 45). There are a limited 
number of studies in the literature examining anthro-
pometric measurements affecting the head circum-
ference of the newborn. However, it was stated that 
under normal nutritional and health conditions, body 
size, gender, and head circumference are significantly 
related. However, a few studies have emphasized that 
the apparent general relationship between the new-
born’s abdominal circumference, body length, chest 
circumference, gender, and head circumference is mis-
leading and causes misinterpretations (44, 46, 47). In 
order to be a solution to these problems, on the data 
set with a small sample, the Jackknife fuzzy regression 
method was preferred to obtain reliable and valid esti-
mations. Hence, the jackknife bias, the standard errors, 
and confidence intervals of the KÇ, B, GÇ, and C 
coefficients based on the distribution  are sub-
stantially larger than the jackknife FLS and estimated 
asymptotic OLS standard errors. The Jackknife OLS 
percentile ranges are also larger than the Jackknife 
FLR percentile ranges of the B and C coefficients.

As a result, Jackknife OLS and jackknife FLR 
regression methods can be used effectively for param-
eter estimation. Comparisons can be made between 
them. They are preferred to the nonlinear regression 
method due to some theoretical properties such as not 
having any distribution assumption on residues and 
therefore allow inference even if errors do not conform 
to normal distribution, the explanatory performance 
of the proposed model using the mean square of error 
is satisfactory. However, the jackknife OLS regression 
method is easier to apply to complex sampling logic 
than the jackknife FLR regression method. The appli-
cation of both regression techniques depends on the 
development of computer technologies and could also 
be more frequently used if statistical computer packages 
featured these analyses. Jackknife resampling method 
works for descriptive and spread measures statistics, 
e.g. the estimators such as averages, bias, variances, but 
not for statistics, e.g. medians, maxima value, smallest 
value, etc. The estimator preferred should be appropri-
ate to the model used or reliable and valid estimations 
can not be obtained. When we compare the methods 
according to the clinical results, the jackknife Revised 
Tanaka regression method is preferred to the Jackknife 
OLS regression method because it can calculate reli-
able and valid results that represent the reality better.

Funding:This study was completed by no means of financial sup-
port or funding.
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